fair.c 203.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1020
static unsigned long capacity_of(int cpu);
1021 1022
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028

	/* Total compute capacity of CPUs on a node */
1029
	unsigned long compute_capacity;
1030 1031

	/* Approximate capacity in terms of runnable tasks on a node */
1032
	unsigned long task_capacity;
1033
	int has_free_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1049
		ns->compute_capacity += capacity_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1059 1060
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1061 1062 1063 1064
	 */
	if (!cpus)
		return;

1065
	ns->task_capacity =
1066
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 1069
}

1070 1071
struct task_numa_env {
	struct task_struct *p;
1072

1073 1074
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1075

1076
	struct numa_stats src_stats, dst_stats;
1077

1078
	int imbalance_pct;
1079 1080 1081

	struct task_struct *best_task;
	long best_imp;
1082 1083 1084
	int best_cpu;
};

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1098
static bool load_too_imbalanced(long src_load, long dst_load,
1099 1100 1101
				struct task_numa_env *env)
{
	long imb, old_imb;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1114 1115 1116 1117 1118 1119

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
1120 1121
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1122 1123 1124 1125 1126 1127 1128
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
1129 1130 1131
	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

1132 1133 1134
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

1135 1136
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;
1137 1138

	/* Would this change make things worse? */
1139
	return (imb > old_imb);
1140 1141
}

1142 1143 1144 1145 1146 1147
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1148 1149
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1150 1151 1152 1153
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1154
	struct task_group *tg;
1155
	long src_load, dst_load;
1156
	long load;
1157
	long imp = env->p->numa_group ? groupimp : taskimp;
1158
	long moveimp = imp;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1177 1178
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1179
		 * in any group then look only at task weights.
1180
		 */
1181
		if (cur->numa_group == env->p->numa_group) {
1182 1183
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1184 1185 1186 1187 1188 1189
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1190
		} else {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1202
		}
1203 1204
	}

1205
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1206 1207 1208 1209
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1210 1211
		if (env->src_stats.has_free_capacity &&
		    !env->dst_stats.has_free_capacity)
1212 1213 1214 1215 1216 1217
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1218 1219
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1220 1221 1222 1223 1224 1225
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1226 1227 1228 1229 1230 1231 1232 1233
	src_load = env->src_stats.load;
	dst_load = env->dst_stats.load;

	/* Calculate the effect of moving env->p from src to dst. */
	load = env->p->se.load.weight;
	tg = task_group(env->p);
	src_load += effective_load(tg, env->src_cpu, -load, -load);
	dst_load += effective_load(tg, env->dst_cpu, load, load);
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1252
	if (cur) {
1253 1254 1255 1256 1257
		/* Cur moves in the opposite direction. */
		load = cur->se.load.weight;
		tg = task_group(cur);
		src_load += effective_load(tg, env->src_cpu, load, load);
		dst_load += effective_load(tg, env->dst_cpu, -load, -load);
1258 1259
	}

1260
	if (load_too_imbalanced(src_load, dst_load, env))
1261 1262 1263 1264 1265 1266 1267 1268
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1269 1270
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1271 1272 1273 1274 1275 1276 1277 1278 1279
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1280
		task_numa_compare(env, taskimp, groupimp);
1281 1282 1283
	}
}

1284 1285 1286 1287
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1288

1289
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1290
		.src_nid = task_node(p),
1291 1292 1293 1294 1295 1296

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1297 1298
	};
	struct sched_domain *sd;
1299
	unsigned long taskweight, groupweight;
1300
	int nid, ret;
1301
	long taskimp, groupimp;
1302

1303
	/*
1304 1305 1306 1307 1308 1309
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1310 1311
	 */
	rcu_read_lock();
1312
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1313 1314
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1315 1316
	rcu_read_unlock();

1317 1318 1319 1320 1321 1322 1323
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1324
		p->numa_preferred_nid = task_node(p);
1325 1326 1327
		return -EINVAL;
	}

1328 1329
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1330
	update_numa_stats(&env.src_stats, env.src_nid);
1331
	env.dst_nid = p->numa_preferred_nid;
1332 1333
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1334
	update_numa_stats(&env.dst_stats, env.dst_nid);
1335

1336 1337
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1338 1339 1340

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1341 1342 1343
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1344

1345
			/* Only consider nodes where both task and groups benefit */
1346 1347 1348
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1349 1350
				continue;

1351 1352
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1353
			task_numa_find_cpu(&env, taskimp, groupimp);
1354 1355 1356
		}
	}

1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1378

1379 1380 1381 1382 1383 1384
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1385
	if (env.best_task == NULL) {
1386 1387 1388
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1389 1390 1391 1392
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1393 1394
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1395 1396
	put_task_struct(env.best_task);
	return ret;
1397 1398
}

1399 1400 1401
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1402 1403
	unsigned long interval = HZ;

1404
	/* This task has no NUMA fault statistics yet */
1405
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1406 1407
		return;

1408
	/* Periodically retry migrating the task to the preferred node */
1409 1410
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1411 1412

	/* Success if task is already running on preferred CPU */
1413
	if (task_node(p) == p->numa_preferred_nid)
1414 1415 1416
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1417
	task_numa_migrate(p);
1418 1419
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1452 1453 1454
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1455 1456 1457
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1458 1459
 */
#define NUMA_PERIOD_SLOTS 10
1460
#define NUMA_PERIOD_THRESHOLD 7
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1554 1555
static void task_numa_placement(struct task_struct *p)
{
1556 1557
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1558
	unsigned long fault_types[2] = { 0, 0 };
1559 1560
	unsigned long total_faults;
	u64 runtime, period;
1561
	spinlock_t *group_lock = NULL;
1562

1563
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1564 1565 1566
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1567
	p->numa_scan_period_max = task_scan_max(p);
1568

1569 1570 1571 1572
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1573 1574 1575
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1576
		spin_lock_irq(group_lock);
1577 1578
	}

1579 1580
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1581
		unsigned long faults = 0, group_faults = 0;
1582
		int priv, i;
1583

1584
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1585
			long diff, f_diff, f_weight;
1586

1587
			i = task_faults_idx(nid, priv);
1588

1589
			/* Decay existing window, copy faults since last scan */
1590
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1591 1592
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1604
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1605 1606
			p->numa_faults_buffer_cpu[i] = 0;

1607 1608
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1609
			faults += p->numa_faults_memory[i];
1610
			p->total_numa_faults += diff;
1611 1612
			if (p->numa_group) {
				/* safe because we can only change our own group */
1613
				p->numa_group->faults[i] += diff;
1614
				p->numa_group->faults_cpu[i] += f_diff;
1615 1616
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1617
			}
1618 1619
		}

1620 1621 1622 1623
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1624 1625 1626 1627 1628 1629 1630

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1631 1632
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1633
	if (p->numa_group) {
1634
		update_numa_active_node_mask(p->numa_group);
1635
		spin_unlock_irq(group_lock);
1636
		max_nid = max_group_nid;
1637 1638
	}

1639 1640 1641 1642 1643 1644 1645
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1646
	}
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1660 1661
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1662 1663 1664 1665 1666 1667 1668 1669 1670
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1671
				    4*nr_node_ids*sizeof(unsigned long);
1672 1673 1674 1675 1676 1677 1678 1679

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1680
		grp->gid = p->pid;
1681
		/* Second half of the array tracks nids where faults happen */
1682 1683
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1684

1685 1686
		node_set(task_node(current), grp->active_nodes);

1687
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1688
			grp->faults[i] = p->numa_faults_memory[i];
1689

1690
		grp->total_faults = p->total_numa_faults;
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1701
		goto no_join;
1702 1703 1704

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1705
		goto no_join;
1706 1707 1708

	my_grp = p->numa_group;
	if (grp == my_grp)
1709
		goto no_join;
1710 1711 1712 1713 1714 1715

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1716
		goto no_join;
1717 1718 1719 1720 1721

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1722
		goto no_join;
1723

1724 1725 1726 1727 1728 1729 1730
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1731

1732 1733 1734
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1735
	if (join && !get_numa_group(grp))
1736
		goto no_join;
1737 1738 1739 1740 1741 1742

	rcu_read_unlock();

	if (!join)
		return;

1743 1744
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1745

1746
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1747 1748
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1749
	}
1750 1751
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1752 1753 1754 1755 1756 1757

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1758
	spin_unlock_irq(&grp->lock);
1759 1760 1761 1762

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1763 1764 1765 1766 1767
	return;

no_join:
	rcu_read_unlock();
	return;
1768 1769 1770 1771 1772
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1773
	void *numa_faults = p->numa_faults_memory;
1774 1775
	unsigned long flags;
	int i;
1776 1777

	if (grp) {
1778
		spin_lock_irqsave(&grp->lock, flags);
1779
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1780
			grp->faults[i] -= p->numa_faults_memory[i];
1781
		grp->total_faults -= p->total_numa_faults;
1782

1783 1784
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1785
		spin_unlock_irqrestore(&grp->lock, flags);
1786 1787 1788 1789
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1790 1791
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1792 1793
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1794
	kfree(numa_faults);
1795 1796
}

1797 1798 1799
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1800
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1801 1802
{
	struct task_struct *p = current;
1803
	bool migrated = flags & TNF_MIGRATED;
1804
	int cpu_node = task_node(current);
1805
	int local = !!(flags & TNF_FAULT_LOCAL);
1806
	int priv;
1807

1808
	if (!numabalancing_enabled)
1809 1810
		return;

1811 1812 1813 1814
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1815 1816 1817 1818
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1819
	/* Allocate buffer to track faults on a per-node basis */
1820
	if (unlikely(!p->numa_faults_memory)) {
1821 1822
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1823

1824
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1825
		if (!p->numa_faults_memory)
1826
			return;
1827

1828
		BUG_ON(p->numa_faults_buffer_memory);
1829 1830 1831 1832 1833 1834
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1835 1836 1837
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1838
		p->total_numa_faults = 0;
1839
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1840
	}
1841

1842 1843 1844 1845 1846 1847 1848 1849
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1850
		if (!priv && !(flags & TNF_NO_GROUP))
1851
			task_numa_group(p, last_cpupid, flags, &priv);
1852 1853
	}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1865
	task_numa_placement(p);
1866

1867 1868 1869 1870 1871
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1872 1873
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1874 1875 1876
	if (migrated)
		p->numa_pages_migrated += pages;

1877 1878
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1879
	p->numa_faults_locality[local] += pages;
1880 1881
}

1882 1883 1884 1885 1886 1887
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1897
	struct vm_area_struct *vma;
1898
	unsigned long start, end;
1899
	unsigned long nr_pte_updates = 0;
1900
	long pages;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1916
	if (!mm->numa_next_scan) {
1917 1918
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1919 1920
	}

1921 1922 1923 1924 1925 1926 1927
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1928 1929 1930 1931
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1932

1933
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1934 1935 1936
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1937 1938 1939 1940 1941 1942
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1943 1944 1945 1946 1947
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1948

1949
	down_read(&mm->mmap_sem);
1950
	vma = find_vma(mm, start);
1951 1952
	if (!vma) {
		reset_ptenuma_scan(p);
1953
		start = 0;
1954 1955
		vma = mm->mmap;
	}
1956
	for (; vma; vma = vma->vm_next) {
1957
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1958 1959
			continue;

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1970 1971 1972 1973 1974 1975
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1976

1977 1978 1979 1980
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1981 1982 1983 1984 1985 1986 1987 1988 1989
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1990

1991 1992 1993
			start = end;
			if (pages <= 0)
				goto out;
1994 1995

			cond_resched();
1996
		} while (end != vma->vm_end);
1997
	}
1998

1999
out:
2000
	/*
P
Peter Zijlstra 已提交
2001 2002 2003 2004
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2005 2006
	 */
	if (vma)
2007
		mm->numa_scan_offset = start;
2008 2009 2010
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2037
		if (!curr->node_stamp)
2038
			curr->numa_scan_period = task_scan_min(curr);
2039
		curr->node_stamp += period;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2051 2052 2053 2054 2055 2056 2057 2058

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2059 2060
#endif /* CONFIG_NUMA_BALANCING */

2061 2062 2063 2064
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2065
	if (!parent_entity(se))
2066
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2067
#ifdef CONFIG_SMP
2068 2069 2070 2071 2072 2073
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2074
#endif
2075 2076 2077 2078 2079 2080 2081
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2082
	if (!parent_entity(se))
2083
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2084 2085
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2086
		list_del_init(&se->group_node);
2087
	}
2088 2089 2090
	cfs_rq->nr_running--;
}

2091 2092
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2093 2094 2095 2096 2097 2098 2099 2100 2101
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2102
	tg_weight = atomic_long_read(&tg->load_avg);
2103
	tg_weight -= cfs_rq->tg_load_contrib;
2104 2105 2106 2107 2108
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2109
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2110
{
2111
	long tg_weight, load, shares;
2112

2113
	tg_weight = calc_tg_weight(tg, cfs_rq);
2114
	load = cfs_rq->load.weight;
2115 2116

	shares = (tg->shares * load);
2117 2118
	if (tg_weight)
		shares /= tg_weight;
2119 2120 2121 2122 2123 2124 2125 2126 2127

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2128
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2129 2130 2131 2132
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2133 2134 2135
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2136 2137 2138 2139
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2140
		account_entity_dequeue(cfs_rq, se);
2141
	}
P
Peter Zijlstra 已提交
2142 2143 2144 2145 2146 2147 2148

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2149 2150
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2151
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2152 2153 2154
{
	struct task_group *tg;
	struct sched_entity *se;
2155
	long shares;
P
Peter Zijlstra 已提交
2156 2157 2158

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2159
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2160
		return;
2161 2162 2163 2164
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2165
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2166 2167 2168 2169

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2170
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2171 2172 2173 2174
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2175
#ifdef CONFIG_SMP
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2204 2205 2206 2207 2208 2209
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2230 2231
	}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2297 2298
	u64 delta, periods;
	u32 runnable_contrib;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2362
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2363
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2364 2365 2366 2367 2368 2369
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2370
		return 0;
2371 2372 2373

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2374 2375

	return decays;
2376 2377
}

2378 2379 2380 2381 2382
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2383
	long tg_contrib;
2384 2385 2386 2387

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2388 2389
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2390 2391 2392
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2405
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2406 2407 2408 2409 2410 2411 2412 2413 2414
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2415 2416 2417 2418
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2419 2420
	int runnable_avg;

2421 2422 2423
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2424 2425
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2455
}
2456 2457 2458 2459 2460 2461

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2462
#else /* CONFIG_FAIR_GROUP_SCHED */
2463 2464
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2465 2466
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2467
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2468
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2469
#endif /* CONFIG_FAIR_GROUP_SCHED */
2470

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2481 2482 2483 2484 2485
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2486 2487 2488
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2489
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2490 2491
		__update_group_entity_contrib(se);
	}
2492 2493 2494 2495

	return se->avg.load_avg_contrib - old_contrib;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2505 2506
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2507
/* Update a sched_entity's runnable average */
2508 2509
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2510
{
2511 2512
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2513
	u64 now;
2514

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2525 2526 2527
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2528 2529 2530 2531

	if (!update_cfs_rq)
		return;

2532 2533
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2534 2535 2536 2537 2538 2539 2540 2541
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2542
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2543
{
2544
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2545 2546 2547
	u64 decays;

	decays = now - cfs_rq->last_decay;
2548
	if (!decays && !force_update)
2549 2550
		return;

2551 2552 2553
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2554 2555
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2556

2557 2558 2559 2560 2561 2562
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2563 2564

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2565
}
2566

2567 2568
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2569 2570
						  struct sched_entity *se,
						  int wakeup)
2571
{
2572 2573 2574 2575
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2576 2577 2578 2579
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2580 2581
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2582
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2598 2599
		wakeup = 0;
	} else {
2600
		__synchronize_entity_decay(se);
2601 2602
	}

2603 2604
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2605
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2606 2607
		update_entity_load_avg(se, 0);
	}
2608

2609
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2610 2611
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2612 2613
}

2614 2615 2616 2617 2618
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2619
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2620 2621
						  struct sched_entity *se,
						  int sleep)
2622
{
2623
	update_entity_load_avg(se, 1);
2624 2625
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2626

2627
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2628 2629 2630 2631
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2632
}
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2654 2655
static int idle_balance(struct rq *this_rq);

2656 2657
#else /* CONFIG_SMP */

2658 2659
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2660
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2661
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2662 2663
					   struct sched_entity *se,
					   int wakeup) {}
2664
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2665 2666
					   struct sched_entity *se,
					   int sleep) {}
2667 2668
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2669 2670 2671 2672 2673 2674

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2675
#endif /* CONFIG_SMP */
2676

2677
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2678 2679
{
#ifdef CONFIG_SCHEDSTATS
2680 2681 2682 2683 2684
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2685
	if (se->statistics.sleep_start) {
2686
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2687 2688 2689 2690

		if ((s64)delta < 0)
			delta = 0;

2691 2692
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2693

2694
		se->statistics.sleep_start = 0;
2695
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2696

2697
		if (tsk) {
2698
			account_scheduler_latency(tsk, delta >> 10, 1);
2699 2700
			trace_sched_stat_sleep(tsk, delta);
		}
2701
	}
2702
	if (se->statistics.block_start) {
2703
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2704 2705 2706 2707

		if ((s64)delta < 0)
			delta = 0;

2708 2709
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2710

2711
		se->statistics.block_start = 0;
2712
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2713

2714
		if (tsk) {
2715
			if (tsk->in_iowait) {
2716 2717
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2718
				trace_sched_stat_iowait(tsk, delta);
2719 2720
			}

2721 2722
			trace_sched_stat_blocked(tsk, delta);

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2734
		}
2735 2736 2737 2738
	}
#endif
}

P
Peter Zijlstra 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2752 2753 2754
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2755
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2756

2757 2758 2759 2760 2761 2762
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2763
	if (initial && sched_feat(START_DEBIT))
2764
		vruntime += sched_vslice(cfs_rq, se);
2765

2766
	/* sleeps up to a single latency don't count. */
2767
	if (!initial) {
2768
		unsigned long thresh = sysctl_sched_latency;
2769

2770 2771 2772 2773 2774 2775
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2776

2777
		vruntime -= thresh;
2778 2779
	}

2780
	/* ensure we never gain time by being placed backwards. */
2781
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2782 2783
}

2784 2785
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2786
static void
2787
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2788
{
2789 2790
	/*
	 * Update the normalized vruntime before updating min_vruntime
2791
	 * through calling update_curr().
2792
	 */
2793
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2794 2795
		se->vruntime += cfs_rq->min_vruntime;

2796
	/*
2797
	 * Update run-time statistics of the 'current'.
2798
	 */
2799
	update_curr(cfs_rq);
2800
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2801 2802
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2803

2804
	if (flags & ENQUEUE_WAKEUP) {
2805
		place_entity(cfs_rq, se, 0);
2806
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2807
	}
2808

2809
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2810
	check_spread(cfs_rq, se);
2811 2812
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2813
	se->on_rq = 1;
2814

2815
	if (cfs_rq->nr_running == 1) {
2816
		list_add_leaf_cfs_rq(cfs_rq);
2817 2818
		check_enqueue_throttle(cfs_rq);
	}
2819 2820
}

2821
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2822
{
2823 2824
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2825
		if (cfs_rq->last != se)
2826
			break;
2827 2828

		cfs_rq->last = NULL;
2829 2830
	}
}
P
Peter Zijlstra 已提交
2831

2832 2833 2834 2835
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2836
		if (cfs_rq->next != se)
2837
			break;
2838 2839

		cfs_rq->next = NULL;
2840
	}
P
Peter Zijlstra 已提交
2841 2842
}

2843 2844 2845 2846
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2847
		if (cfs_rq->skip != se)
2848
			break;
2849 2850

		cfs_rq->skip = NULL;
2851 2852 2853
	}
}

P
Peter Zijlstra 已提交
2854 2855
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2856 2857 2858 2859 2860
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2861 2862 2863

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2864 2865
}

2866
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2867

2868
static void
2869
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2870
{
2871 2872 2873 2874
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2875
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2876

2877
	update_stats_dequeue(cfs_rq, se);
2878
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2879
#ifdef CONFIG_SCHEDSTATS
2880 2881 2882 2883
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2884
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2885
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2886
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2887
		}
2888
#endif
P
Peter Zijlstra 已提交
2889 2890
	}

P
Peter Zijlstra 已提交
2891
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2892

2893
	if (se != cfs_rq->curr)
2894
		__dequeue_entity(cfs_rq, se);
2895
	se->on_rq = 0;
2896
	account_entity_dequeue(cfs_rq, se);
2897 2898 2899 2900 2901 2902

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2903
	if (!(flags & DEQUEUE_SLEEP))
2904
		se->vruntime -= cfs_rq->min_vruntime;
2905

2906 2907 2908
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2909
	update_min_vruntime(cfs_rq);
2910
	update_cfs_shares(cfs_rq);
2911 2912 2913 2914 2915
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2916
static void
I
Ingo Molnar 已提交
2917
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2918
{
2919
	unsigned long ideal_runtime, delta_exec;
2920 2921
	struct sched_entity *se;
	s64 delta;
2922

P
Peter Zijlstra 已提交
2923
	ideal_runtime = sched_slice(cfs_rq, curr);
2924
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2925
	if (delta_exec > ideal_runtime) {
2926
		resched_curr(rq_of(cfs_rq));
2927 2928 2929 2930 2931
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2943 2944
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2945

2946 2947
	if (delta < 0)
		return;
2948

2949
	if (delta > ideal_runtime)
2950
		resched_curr(rq_of(cfs_rq));
2951 2952
}

2953
static void
2954
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955
{
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2967
	update_stats_curr_start(cfs_rq, se);
2968
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2969 2970 2971 2972 2973 2974
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2975
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2976
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2977 2978 2979
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2980
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2981 2982
}

2983 2984 2985
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2986 2987 2988 2989 2990 2991 2992
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2993 2994
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2995
{
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3007

3008 3009 3010 3011 3012
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3023 3024 3025
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3026

3027 3028 3029 3030 3031 3032
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3033 3034 3035 3036 3037 3038
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3039
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3040 3041

	return se;
3042 3043
}

3044
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3045

3046
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3047 3048 3049 3050 3051 3052
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3053
		update_curr(cfs_rq);
3054

3055 3056 3057
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3058
	check_spread(cfs_rq, prev);
3059
	if (prev->on_rq) {
3060
		update_stats_wait_start(cfs_rq, prev);
3061 3062
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3063
		/* in !on_rq case, update occurred at dequeue */
3064
		update_entity_load_avg(prev, 1);
3065
	}
3066
	cfs_rq->curr = NULL;
3067 3068
}

P
Peter Zijlstra 已提交
3069 3070
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3071 3072
{
	/*
3073
	 * Update run-time statistics of the 'current'.
3074
	 */
3075
	update_curr(cfs_rq);
3076

3077 3078 3079
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3080
	update_entity_load_avg(curr, 1);
3081
	update_cfs_rq_blocked_load(cfs_rq, 1);
3082
	update_cfs_shares(cfs_rq);
3083

P
Peter Zijlstra 已提交
3084 3085 3086 3087 3088
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3089
	if (queued) {
3090
		resched_curr(rq_of(cfs_rq));
3091 3092
		return;
	}
P
Peter Zijlstra 已提交
3093 3094 3095 3096 3097 3098 3099 3100
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3101
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3102
		check_preempt_tick(cfs_rq, curr);
3103 3104
}

3105 3106 3107 3108 3109 3110

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3111 3112

#ifdef HAVE_JUMP_LABEL
3113
static struct static_key __cfs_bandwidth_used;
3114 3115 3116

static inline bool cfs_bandwidth_used(void)
{
3117
	return static_key_false(&__cfs_bandwidth_used);
3118 3119
}

3120
void cfs_bandwidth_usage_inc(void)
3121
{
3122 3123 3124 3125 3126 3127
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3128 3129 3130 3131 3132 3133 3134
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3135 3136
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3137 3138
#endif /* HAVE_JUMP_LABEL */

3139 3140 3141 3142 3143 3144 3145 3146
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3147 3148 3149 3150 3151 3152

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3153 3154 3155 3156 3157 3158 3159
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3160
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3172 3173 3174 3175 3176
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3177 3178 3179 3180 3181 3182
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3183
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3184 3185
}

3186 3187
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3188 3189 3190
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3191
	u64 amount = 0, min_amount, expires;
3192 3193 3194 3195 3196 3197 3198

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3199
	else {
P
Paul Turner 已提交
3200 3201 3202 3203 3204 3205 3206 3207
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3208
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3209
		}
3210 3211 3212 3213 3214 3215

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3216
	}
P
Paul Turner 已提交
3217
	expires = cfs_b->runtime_expires;
3218 3219 3220
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3221 3222 3223 3224 3225 3226 3227
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3228 3229

	return cfs_rq->runtime_remaining > 0;
3230 3231
}

P
Paul Turner 已提交
3232 3233 3234 3235 3236
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3237
{
P
Paul Turner 已提交
3238 3239 3240
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3241
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3242 3243
		return;

P
Paul Turner 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3253 3254 3255
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3256 3257
	 */

3258
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3259 3260 3261 3262 3263 3264 3265 3266
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3267
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3268 3269
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3270
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3271 3272 3273
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3274 3275
		return;

3276 3277 3278 3279 3280
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3281
		resched_curr(rq_of(cfs_rq));
3282 3283
}

3284
static __always_inline
3285
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3286
{
3287
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3288 3289 3290 3291 3292
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3293 3294
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3295
	return cfs_bandwidth_used() && cfs_rq->throttled;
3296 3297
}

3298 3299 3300
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3301
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3330
		/* adjust cfs_rq_clock_task() */
3331
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3332
					     cfs_rq->throttled_clock_task;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3344 3345
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3346
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3347 3348 3349 3350 3351
	cfs_rq->throttle_count++;

	return 0;
}

3352
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3353 3354 3355 3356 3357 3358 3359 3360
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3361
	/* freeze hierarchy runnable averages while throttled */
3362 3363 3364
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3382
		sub_nr_running(rq, task_delta);
3383 3384

	cfs_rq->throttled = 1;
3385
	cfs_rq->throttled_clock = rq_clock(rq);
3386
	raw_spin_lock(&cfs_b->lock);
3387 3388 3389 3390 3391
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3392
	if (!cfs_b->timer_active)
3393
		__start_cfs_bandwidth(cfs_b, false);
3394 3395 3396
	raw_spin_unlock(&cfs_b->lock);
}

3397
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3398 3399 3400 3401 3402 3403 3404
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3405
	se = cfs_rq->tg->se[cpu_of(rq)];
3406 3407

	cfs_rq->throttled = 0;
3408 3409 3410

	update_rq_clock(rq);

3411
	raw_spin_lock(&cfs_b->lock);
3412
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3413 3414 3415
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3416 3417 3418
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3437
		add_nr_running(rq, task_delta);
3438 3439 3440

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3441
		resched_curr(rq);
3442 3443 3444 3445 3446 3447
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3448 3449
	u64 runtime;
	u64 starting_runtime = remaining;
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3480
	return starting_runtime - remaining;
3481 3482
}

3483 3484 3485 3486 3487 3488 3489 3490
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3491
	u64 runtime, runtime_expires;
3492
	int throttled;
3493 3494 3495

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3496
		goto out_deactivate;
3497

3498
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3499
	cfs_b->nr_periods += overrun;
3500

3501 3502 3503 3504 3505 3506
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3507

3508 3509 3510 3511 3512 3513 3514
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3515 3516
	__refill_cfs_bandwidth_runtime(cfs_b);

3517 3518 3519
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3520
		return 0;
3521 3522
	}

3523 3524 3525
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3526 3527 3528
	runtime_expires = cfs_b->runtime_expires;

	/*
3529 3530 3531 3532 3533
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3534
	 */
3535 3536
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3537 3538 3539 3540 3541 3542 3543
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3544 3545

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3546
	}
3547

3548 3549 3550 3551 3552 3553 3554
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3555

3556 3557 3558 3559 3560
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3561
}
3562

3563 3564 3565 3566 3567 3568 3569
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3570 3571 3572 3573 3574 3575 3576
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3633 3634 3635
	if (!cfs_bandwidth_used())
		return;

3636
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3652 3653 3654
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3655
		return;
3656
	}
3657

3658
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3659
		runtime = cfs_b->runtime;
3660

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3671
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3672 3673 3674
	raw_spin_unlock(&cfs_b->lock);
}

3675 3676 3677 3678 3679 3680 3681
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3682 3683 3684
	if (!cfs_bandwidth_used())
		return;

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3700
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3701
{
3702
	if (!cfs_bandwidth_used())
3703
		return false;
3704

3705
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3706
		return false;
3707 3708 3709 3710 3711 3712

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3713
		return true;
3714 3715

	throttle_cfs_rq(cfs_rq);
3716
	return true;
3717
}
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3736
	raw_spin_lock(&cfs_b->lock);
3737 3738 3739 3740 3741 3742 3743 3744 3745
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3746
	raw_spin_unlock(&cfs_b->lock);
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3772
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3773 3774 3775 3776 3777 3778 3779
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3780 3781 3782
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3783
		raw_spin_unlock(&cfs_b->lock);
3784
		cpu_relax();
3785 3786
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3787
		if (!force && cfs_b->timer_active)
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

3814
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
3826
		cfs_rq->runtime_remaining = 1;
3827 3828 3829 3830 3831 3832
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

3833 3834 3835 3836 3837 3838
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3839 3840
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3841
	return rq_clock_task(rq_of(cfs_rq));
3842 3843
}

3844
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3845
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3846
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3847
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3848 3849 3850 3851 3852

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3864 3865 3866 3867 3868

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3869 3870
#endif

3871 3872 3873 3874 3875
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3876
static inline void update_runtime_enabled(struct rq *rq) {}
3877
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3878 3879 3880

#endif /* CONFIG_CFS_BANDWIDTH */

3881 3882 3883 3884
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3885 3886 3887 3888 3889 3890 3891 3892
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3893
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3894 3895 3896 3897 3898 3899
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
3900
				resched_curr(rq);
P
Peter Zijlstra 已提交
3901 3902 3903 3904 3905 3906 3907
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3908
		if (rq->curr != p)
3909
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3910

3911
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3912 3913
	}
}
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3924
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3925 3926 3927 3928 3929
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3930
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3931 3932 3933 3934
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3935 3936 3937 3938

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3939 3940
#endif

3941 3942 3943 3944 3945
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3946
static void
3947
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3948 3949
{
	struct cfs_rq *cfs_rq;
3950
	struct sched_entity *se = &p->se;
3951 3952

	for_each_sched_entity(se) {
3953
		if (se->on_rq)
3954 3955
			break;
		cfs_rq = cfs_rq_of(se);
3956
		enqueue_entity(cfs_rq, se, flags);
3957 3958 3959 3960 3961 3962 3963 3964 3965

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3966
		cfs_rq->h_nr_running++;
3967

3968
		flags = ENQUEUE_WAKEUP;
3969
	}
P
Peter Zijlstra 已提交
3970

P
Peter Zijlstra 已提交
3971
	for_each_sched_entity(se) {
3972
		cfs_rq = cfs_rq_of(se);
3973
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3974

3975 3976 3977
		if (cfs_rq_throttled(cfs_rq))
			break;

3978
		update_cfs_shares(cfs_rq);
3979
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3980 3981
	}

3982 3983
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3984
		add_nr_running(rq, 1);
3985
	}
3986
	hrtick_update(rq);
3987 3988
}

3989 3990
static void set_next_buddy(struct sched_entity *se);

3991 3992 3993 3994 3995
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3996
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3997 3998
{
	struct cfs_rq *cfs_rq;
3999
	struct sched_entity *se = &p->se;
4000
	int task_sleep = flags & DEQUEUE_SLEEP;
4001 4002 4003

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4004
		dequeue_entity(cfs_rq, se, flags);
4005 4006 4007 4008 4009 4010 4011 4012 4013

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4014
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4015

4016
		/* Don't dequeue parent if it has other entities besides us */
4017 4018 4019 4020 4021 4022 4023
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4024 4025 4026

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4027
			break;
4028
		}
4029
		flags |= DEQUEUE_SLEEP;
4030
	}
P
Peter Zijlstra 已提交
4031

P
Peter Zijlstra 已提交
4032
	for_each_sched_entity(se) {
4033
		cfs_rq = cfs_rq_of(se);
4034
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4035

4036 4037 4038
		if (cfs_rq_throttled(cfs_rq))
			break;

4039
		update_cfs_shares(cfs_rq);
4040
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4041 4042
	}

4043
	if (!se) {
4044
		sub_nr_running(rq, 1);
4045 4046
		update_rq_runnable_avg(rq, 1);
	}
4047
	hrtick_update(rq);
4048 4049
}

4050
#ifdef CONFIG_SMP
4051 4052 4053
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4054
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4090
static unsigned long capacity_of(int cpu)
4091
{
4092
	return cpu_rq(cpu)->cpu_capacity;
4093 4094 4095 4096 4097 4098
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4099
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4100 4101

	if (nr_running)
4102
		return load_avg / nr_running;
4103 4104 4105 4106

	return 0;
}

4107 4108 4109 4110 4111 4112 4113
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4114
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4115
		current->wakee_flips >>= 1;
4116 4117 4118 4119 4120 4121 4122 4123
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4124

4125
static void task_waking_fair(struct task_struct *p)
4126 4127 4128
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4129 4130 4131 4132
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4133

4134 4135 4136 4137 4138 4139 4140 4141
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4142

4143
	se->vruntime -= min_vruntime;
4144
	record_wakee(p);
4145 4146
}

4147
#ifdef CONFIG_FAIR_GROUP_SCHED
4148 4149 4150 4151 4152 4153
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4197
 */
P
Peter Zijlstra 已提交
4198
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4199
{
P
Peter Zijlstra 已提交
4200
	struct sched_entity *se = tg->se[cpu];
4201

4202
	if (!tg->parent)	/* the trivial, non-cgroup case */
4203 4204
		return wl;

P
Peter Zijlstra 已提交
4205
	for_each_sched_entity(se) {
4206
		long w, W;
P
Peter Zijlstra 已提交
4207

4208
		tg = se->my_q->tg;
4209

4210 4211 4212 4213
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4214

4215 4216 4217 4218
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4219

4220 4221 4222 4223 4224
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4225 4226
		else
			wl = tg->shares;
4227

4228 4229 4230 4231 4232
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4233 4234
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4235 4236 4237 4238

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4239
		wl -= se->load.weight;
4240 4241 4242 4243 4244 4245 4246 4247

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4248 4249
		wg = 0;
	}
4250

P
Peter Zijlstra 已提交
4251
	return wl;
4252 4253
}
#else
P
Peter Zijlstra 已提交
4254

4255
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4256
{
4257
	return wl;
4258
}
P
Peter Zijlstra 已提交
4259

4260 4261
#endif

4262 4263
static int wake_wide(struct task_struct *p)
{
4264
	int factor = this_cpu_read(sd_llc_size);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4284
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4285
{
4286
	s64 this_load, load;
4287
	int idx, this_cpu, prev_cpu;
4288
	unsigned long tl_per_task;
4289
	struct task_group *tg;
4290
	unsigned long weight;
4291
	int balanced;
4292

4293 4294 4295 4296 4297 4298 4299
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4300 4301 4302 4303 4304
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4305

4306 4307 4308 4309 4310
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4311 4312 4313 4314
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4315
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4316 4317
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4318

4319 4320
	tg = task_group(p);
	weight = p->se.load.weight;
4321

4322 4323
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4324 4325 4326
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4327 4328 4329 4330
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4331 4332
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4333 4334

		this_eff_load = 100;
4335
		this_eff_load *= capacity_of(prev_cpu);
4336 4337 4338 4339
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4340
		prev_eff_load *= capacity_of(this_cpu);
4341 4342 4343 4344 4345
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4346

4347
	/*
I
Ingo Molnar 已提交
4348 4349 4350
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4351
	 */
4352 4353
	if (sync && balanced)
		return 1;
4354

4355
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4356 4357
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4358 4359 4360
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4361 4362 4363 4364 4365
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4366
		schedstat_inc(sd, ttwu_move_affine);
4367
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4368 4369 4370 4371 4372 4373

		return 1;
	}
	return 0;
}

4374 4375 4376 4377 4378
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4379
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4380
		  int this_cpu, int sd_flag)
4381
{
4382
	struct sched_group *idlest = NULL, *group = sd->groups;
4383
	unsigned long min_load = ULONG_MAX, this_load = 0;
4384
	int load_idx = sd->forkexec_idx;
4385
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4386

4387 4388 4389
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4390 4391 4392 4393
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4394

4395 4396
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4397
					tsk_cpus_allowed(p)))
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4416
		/* Adjust by relative CPU capacity of the group */
4417
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4443
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4444 4445 4446 4447 4448
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4449 4450 4451
		}
	}

4452 4453
	return idlest;
}
4454

4455 4456 4457
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4458
static int select_idle_sibling(struct task_struct *p, int target)
4459
{
4460
	struct sched_domain *sd;
4461
	struct sched_group *sg;
4462
	int i = task_cpu(p);
4463

4464 4465
	if (idle_cpu(target))
		return target;
4466 4467

	/*
4468
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4469
	 */
4470 4471
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4472 4473

	/*
4474
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4475
	 */
4476
	sd = rcu_dereference(per_cpu(sd_llc, target));
4477
	for_each_lower_domain(sd) {
4478 4479 4480 4481 4482 4483 4484
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4485
				if (i == target || !idle_cpu(i))
4486 4487
					goto next;
			}
4488

4489 4490 4491 4492 4493 4494 4495 4496
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4497 4498 4499
	return target;
}

4500
/*
4501 4502 4503
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4504
 *
4505 4506
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4507
 *
4508
 * Returns the target cpu number.
4509 4510 4511
 *
 * preempt must be disabled.
 */
4512
static int
4513
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4514
{
4515
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4516 4517
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4518
	int want_affine = 0;
4519
	int sync = wake_flags & WF_SYNC;
4520

4521
	if (p->nr_cpus_allowed == 1)
4522 4523
		return prev_cpu;

4524
	if (sd_flag & SD_BALANCE_WAKE) {
4525
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4526 4527 4528
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4529

4530
	rcu_read_lock();
4531
	for_each_domain(cpu, tmp) {
4532 4533 4534
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4535
		/*
4536 4537
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4538
		 */
4539 4540 4541
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4542
			break;
4543
		}
4544

4545
		if (tmp->flags & sd_flag)
4546 4547 4548
			sd = tmp;
	}

4549 4550
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4551

4552
	if (sd_flag & SD_BALANCE_WAKE) {
4553 4554
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4555
	}
4556

4557 4558
	while (sd) {
		struct sched_group *group;
4559
		int weight;
4560

4561
		if (!(sd->flags & sd_flag)) {
4562 4563 4564
			sd = sd->child;
			continue;
		}
4565

4566
		group = find_idlest_group(sd, p, cpu, sd_flag);
4567 4568 4569 4570
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4571

4572
		new_cpu = find_idlest_cpu(group, p, cpu);
4573 4574 4575 4576
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4577
		}
4578 4579 4580

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4581
		weight = sd->span_weight;
4582 4583
		sd = NULL;
		for_each_domain(cpu, tmp) {
4584
			if (weight <= tmp->span_weight)
4585
				break;
4586
			if (tmp->flags & sd_flag)
4587 4588 4589
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4590
	}
4591 4592
unlock:
	rcu_read_unlock();
4593

4594
	return new_cpu;
4595
}
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4617 4618
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4619
	}
4620 4621 4622

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4623
}
4624 4625
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4626 4627
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4628 4629 4630 4631
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4632 4633
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4643
	 */
4644
	return calc_delta_fair(gran, se);
4645 4646
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4669
	gran = wakeup_gran(curr, se);
4670 4671 4672 4673 4674 4675
	if (vdiff > gran)
		return 1;

	return 0;
}

4676 4677
static void set_last_buddy(struct sched_entity *se)
{
4678 4679 4680 4681 4682
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4683 4684 4685 4686
}

static void set_next_buddy(struct sched_entity *se)
{
4687 4688 4689 4690 4691
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4692 4693
}

4694 4695
static void set_skip_buddy(struct sched_entity *se)
{
4696 4697
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4698 4699
}

4700 4701 4702
/*
 * Preempt the current task with a newly woken task if needed:
 */
4703
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4704 4705
{
	struct task_struct *curr = rq->curr;
4706
	struct sched_entity *se = &curr->se, *pse = &p->se;
4707
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4708
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4709
	int next_buddy_marked = 0;
4710

I
Ingo Molnar 已提交
4711 4712 4713
	if (unlikely(se == pse))
		return;

4714
	/*
4715
	 * This is possible from callers such as move_task(), in which we
4716 4717 4718 4719 4720 4721 4722
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4723
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4724
		set_next_buddy(pse);
4725 4726
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4727

4728 4729 4730
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4731 4732 4733 4734 4735 4736
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4737 4738 4739 4740
	 */
	if (test_tsk_need_resched(curr))
		return;

4741 4742 4743 4744 4745
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4746
	/*
4747 4748
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4749
	 */
4750
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4751
		return;
4752

4753
	find_matching_se(&se, &pse);
4754
	update_curr(cfs_rq_of(se));
4755
	BUG_ON(!pse);
4756 4757 4758 4759 4760 4761 4762
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4763
		goto preempt;
4764
	}
4765

4766
	return;
4767

4768
preempt:
4769
	resched_curr(rq);
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4784 4785
}

4786 4787
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4788 4789 4790
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4791
	struct task_struct *p;
4792
	int new_tasks;
4793

4794
again:
4795 4796
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4797
		goto idle;
4798

4799
	if (prev->sched_class != &fair_sched_class)
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4871

4872
	if (!cfs_rq->nr_running)
4873
		goto idle;
4874

4875
	put_prev_task(rq, prev);
4876

4877
	do {
4878
		se = pick_next_entity(cfs_rq, NULL);
4879
		set_next_entity(cfs_rq, se);
4880 4881 4882
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4883
	p = task_of(se);
4884

4885 4886
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4887 4888

	return p;
4889 4890

idle:
4891
	new_tasks = idle_balance(rq);
4892 4893 4894 4895 4896
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4897
	if (new_tasks < 0)
4898 4899
		return RETRY_TASK;

4900
	if (new_tasks > 0)
4901 4902 4903
		goto again;

	return NULL;
4904 4905 4906 4907 4908
}

/*
 * Account for a descheduled task:
 */
4909
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4910 4911 4912 4913 4914 4915
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4916
		put_prev_entity(cfs_rq, se);
4917 4918 4919
	}
}

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4945 4946 4947 4948 4949 4950
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4951 4952 4953 4954 4955
	}

	set_skip_buddy(se);
}

4956 4957 4958 4959
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4960 4961
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4972
#ifdef CONFIG_SMP
4973
/**************************************************
P
Peter Zijlstra 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
4997
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
4998 4999 5000 5001 5002 5003
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5004
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5090

5091 5092
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5093 5094
enum fbq_type { regular, remote, all };

5095
#define LBF_ALL_PINNED	0x01
5096
#define LBF_NEED_BREAK	0x02
5097 5098
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5099 5100 5101 5102 5103

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5104
	int			src_cpu;
5105 5106 5107 5108

	int			dst_cpu;
	struct rq		*dst_rq;

5109 5110
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5111
	enum cpu_idle_type	idle;
5112
	long			imbalance;
5113 5114 5115
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5116
	unsigned int		flags;
5117 5118 5119 5120

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5121 5122

	enum fbq_type		fbq_type;
5123 5124
};

5125
/*
5126
 * move_task - move a task from one runqueue to another runqueue.
5127 5128
 * Both runqueues must be locked.
 */
5129
static void move_task(struct task_struct *p, struct lb_env *env)
5130
{
5131 5132 5133 5134
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5135 5136
}

5137 5138 5139
/*
 * Is this task likely cache-hot:
 */
5140
static int task_hot(struct task_struct *p, struct lb_env *env)
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5153
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5154 5155 5156 5157 5158 5159 5160 5161 5162
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5163
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5164 5165 5166 5167

	return delta < (s64)sysctl_sched_migration_cost;
}

5168 5169 5170 5171
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5172
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5173 5174
	int src_nid, dst_nid;

5175
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5176 5177 5178 5179 5180 5181 5182
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5183
	if (src_nid == dst_nid)
5184 5185
		return false;

5186 5187 5188 5189
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5190

5191 5192 5193
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5194

5195 5196 5197 5198 5199
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5200 5201
		return true;

5202
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5203
}
5204 5205 5206 5207


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5208
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5209 5210 5211 5212 5213
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5214
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5215 5216 5217 5218 5219
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5220
	if (src_nid == dst_nid)
5221 5222
		return false;

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5235 5236 5237 5238
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5239
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5240 5241
}

5242 5243 5244 5245 5246 5247
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5248 5249 5250 5251 5252 5253

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5254 5255
#endif

5256 5257 5258 5259
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5260
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5261 5262 5263 5264
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5265
	 * 1) throttled_lb_pair, or
5266
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5267 5268
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5269
	 */
5270 5271 5272
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5273
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5274
		int cpu;
5275

5276
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5277

5278 5279
		env->flags |= LBF_SOME_PINNED;

5280 5281 5282 5283 5284 5285 5286 5287
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5288
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5289 5290
			return 0;

5291 5292 5293
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5294
				env->flags |= LBF_DST_PINNED;
5295 5296 5297
				env->new_dst_cpu = cpu;
				break;
			}
5298
		}
5299

5300 5301
		return 0;
	}
5302 5303

	/* Record that we found atleast one task that could run on dst_cpu */
5304
	env->flags &= ~LBF_ALL_PINNED;
5305

5306
	if (task_running(env->src_rq, p)) {
5307
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5308 5309 5310 5311 5312
		return 0;
	}

	/*
	 * Aggressive migration if:
5313 5314 5315
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5316
	 */
5317
	tsk_cache_hot = task_hot(p, env);
5318 5319
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5331
	if (!tsk_cache_hot ||
5332
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5333

5334
		if (tsk_cache_hot) {
5335
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5336
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5337
		}
Z
Zhang Hang 已提交
5338

5339 5340 5341
		return 1;
	}

Z
Zhang Hang 已提交
5342 5343
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5344 5345
}

5346 5347 5348 5349 5350 5351 5352
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5353
static int move_one_task(struct lb_env *env)
5354 5355 5356
{
	struct task_struct *p, *n;

5357 5358 5359
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5360

5361 5362 5363 5364 5365 5366 5367 5368
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5369 5370 5371 5372
	}
	return 0;
}

5373 5374
static const unsigned int sched_nr_migrate_break = 32;

5375
/*
5376
 * move_tasks tries to move up to imbalance weighted load from busiest to
5377 5378 5379 5380 5381 5382
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5383
{
5384 5385
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5386 5387
	unsigned long load;
	int pulled = 0;
5388

5389
	if (env->imbalance <= 0)
5390
		return 0;
5391

5392 5393
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5394

5395 5396
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5397
		if (env->loop > env->loop_max)
5398
			break;
5399 5400

		/* take a breather every nr_migrate tasks */
5401
		if (env->loop > env->loop_break) {
5402
			env->loop_break += sched_nr_migrate_break;
5403
			env->flags |= LBF_NEED_BREAK;
5404
			break;
5405
		}
5406

5407
		if (!can_migrate_task(p, env))
5408 5409 5410
			goto next;

		load = task_h_load(p);
5411

5412
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5413 5414
			goto next;

5415
		if ((load / 2) > env->imbalance)
5416
			goto next;
5417

5418
		move_task(p, env);
5419
		pulled++;
5420
		env->imbalance -= load;
5421 5422

#ifdef CONFIG_PREEMPT
5423 5424 5425 5426 5427
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5428
		if (env->idle == CPU_NEWLY_IDLE)
5429
			break;
5430 5431
#endif

5432 5433 5434 5435
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5436
		if (env->imbalance <= 0)
5437
			break;
5438 5439 5440

		continue;
next:
5441
		list_move_tail(&p->se.group_node, tasks);
5442
	}
5443

5444
	/*
5445 5446 5447
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5448
	 */
5449
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5450

5451
	return pulled;
5452 5453
}

P
Peter Zijlstra 已提交
5454
#ifdef CONFIG_FAIR_GROUP_SCHED
5455 5456 5457
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5458
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5459
{
5460 5461
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5462

5463 5464 5465
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5466

5467
	update_cfs_rq_blocked_load(cfs_rq, 1);
5468

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5483
		struct rq *rq = rq_of(cfs_rq);
5484 5485
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5486 5487
}

5488
static void update_blocked_averages(int cpu)
5489 5490
{
	struct rq *rq = cpu_rq(cpu);
5491 5492
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5493

5494 5495
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5496 5497 5498 5499
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5500
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5501 5502 5503 5504 5505 5506
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5507
	}
5508 5509

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5510 5511
}

5512
/*
5513
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5514 5515 5516
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5517
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5518
{
5519 5520
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5521
	unsigned long now = jiffies;
5522
	unsigned long load;
5523

5524
	if (cfs_rq->last_h_load_update == now)
5525 5526
		return;

5527 5528 5529 5530 5531 5532 5533
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5534

5535
	if (!se) {
5536
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5548 5549
}

5550
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5551
{
5552
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5553

5554
	update_cfs_rq_h_load(cfs_rq);
5555 5556
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5557 5558
}
#else
5559
static inline void update_blocked_averages(int cpu)
5560 5561 5562
{
}

5563
static unsigned long task_h_load(struct task_struct *p)
5564
{
5565
	return p->se.avg.load_avg_contrib;
5566
}
P
Peter Zijlstra 已提交
5567
#endif
5568 5569 5570 5571 5572 5573 5574 5575 5576

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5577
	unsigned long load_per_task;
5578
	unsigned long group_capacity;
5579
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5580
	unsigned int group_capacity_factor;
5581 5582
	unsigned int idle_cpus;
	unsigned int group_weight;
5583
	int group_imb; /* Is there an imbalance in the group ? */
5584
	int group_has_free_capacity;
5585 5586 5587 5588
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5589 5590
};

J
Joonsoo Kim 已提交
5591 5592 5593 5594 5595 5596 5597 5598
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5599
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5600 5601 5602
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5603
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5604 5605
};

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5618
		.total_capacity = 0UL,
5619 5620 5621 5622 5623 5624
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5625 5626 5627
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5628
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5629 5630
 *
 * Return: The load index.
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5653
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5654
{
5655
	return SCHED_CAPACITY_SCALE;
5656 5657
}

5658
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5659
{
5660
	return default_scale_capacity(sd, cpu);
5661 5662
}

5663
static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5664
{
5665
	unsigned long weight = sd->span_weight;
5666 5667 5668 5669 5670 5671 5672
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

5673
unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5674
{
5675
	return default_scale_smt_capacity(sd, cpu);
5676 5677
}

5678
static unsigned long scale_rt_capacity(int cpu)
5679 5680
{
	struct rq *rq = cpu_rq(cpu);
5681
	u64 total, available, age_stamp, avg;
5682
	s64 delta;
5683

5684 5685 5686 5687 5688 5689 5690
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5691 5692 5693 5694 5695
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5696

5697
	if (unlikely(total < avg)) {
5698
		/* Ensures that capacity won't end up being negative */
5699 5700
		available = 0;
	} else {
5701
		available = total - avg;
5702
	}
5703

5704 5705
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5706

5707
	total >>= SCHED_CAPACITY_SHIFT;
5708 5709 5710 5711

	return div_u64(available, total);
}

5712
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5713
{
5714
	unsigned long weight = sd->span_weight;
5715
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5716 5717
	struct sched_group *sdg = sd->groups;

5718 5719
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
		if (sched_feat(ARCH_CAPACITY))
5720
			capacity *= arch_scale_smt_capacity(sd, cpu);
5721
		else
5722
			capacity *= default_scale_smt_capacity(sd, cpu);
5723

5724
		capacity >>= SCHED_CAPACITY_SHIFT;
5725 5726
	}

5727
	sdg->sgc->capacity_orig = capacity;
5728

5729
	if (sched_feat(ARCH_CAPACITY))
5730
		capacity *= arch_scale_freq_capacity(sd, cpu);
5731
	else
5732
		capacity *= default_scale_capacity(sd, cpu);
5733

5734
	capacity >>= SCHED_CAPACITY_SHIFT;
5735

5736
	capacity *= scale_rt_capacity(cpu);
5737
	capacity >>= SCHED_CAPACITY_SHIFT;
5738

5739 5740
	if (!capacity)
		capacity = 1;
5741

5742 5743
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
5744 5745
}

5746
void update_group_capacity(struct sched_domain *sd, int cpu)
5747 5748 5749
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5750
	unsigned long capacity, capacity_orig;
5751 5752 5753 5754
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
5755
	sdg->sgc->next_update = jiffies + interval;
5756 5757

	if (!child) {
5758
		update_cpu_capacity(sd, cpu);
5759 5760 5761
		return;
	}

5762
	capacity_orig = capacity = 0;
5763

P
Peter Zijlstra 已提交
5764 5765 5766 5767 5768 5769
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5770
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5771
			struct sched_group_capacity *sgc;
5772
			struct rq *rq = cpu_rq(cpu);
5773

5774
			/*
5775
			 * build_sched_domains() -> init_sched_groups_capacity()
5776 5777 5778
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
5779 5780
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
5781
			 *
5782
			 * This avoids capacity/capacity_orig from being 0 and
5783 5784
			 * causing divide-by-zero issues on boot.
			 *
5785
			 * Runtime updates will correct capacity_orig.
5786 5787
			 */
			if (unlikely(!rq->sd)) {
5788 5789
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
5790 5791
				continue;
			}
5792

5793 5794 5795
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
5796
		}
P
Peter Zijlstra 已提交
5797 5798 5799 5800 5801 5802 5803 5804
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5805 5806
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
5807 5808 5809
			group = group->next;
		} while (group != child->groups);
	}
5810

5811 5812
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
5813 5814
}

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5826
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5827
	 */
5828
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5829 5830 5831
		return 0;

	/*
5832
	 * If ~90% of the cpu_capacity is still there, we're good.
5833
	 */
5834
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5835 5836 5837 5838 5839
		return 1;

	return 0;
}

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5856 5857
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5858 5859
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5860
 * update_sd_pick_busiest(). And calculate_imbalance() and
5861
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5862 5863 5864 5865 5866 5867 5868
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5869
static inline int sg_imbalanced(struct sched_group *group)
5870
{
5871
	return group->sgc->imbalance;
5872 5873
}

5874
/*
5875
 * Compute the group capacity factor.
5876
 *
5877
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5878
 * first dividing out the smt factor and computing the actual number of cores
5879
 * and limit unit capacity with that.
5880
 */
5881
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5882
{
5883
	unsigned int capacity_factor, smt, cpus;
5884
	unsigned int capacity, capacity_orig;
5885

5886 5887
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
5888
	cpus = group->group_weight;
5889

5890
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5891
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5892
	capacity_factor = cpus / smt; /* cores */
5893

5894
	capacity_factor = min_t(unsigned,
5895
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5896 5897
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
5898

5899
	return capacity_factor;
5900 5901
}

5902 5903
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5904
 * @env: The load balancing environment.
5905 5906 5907 5908 5909
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5910 5911
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5912 5913
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
5914
{
5915
	unsigned long load;
5916
	int i;
5917

5918 5919
	memset(sgs, 0, sizeof(*sgs));

5920
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5921 5922 5923
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5924
		if (local_group)
5925
			load = target_load(i, load_idx);
5926
		else
5927 5928 5929
			load = source_load(i, load_idx);

		sgs->group_load += load;
5930
		sgs->sum_nr_running += rq->nr_running;
5931 5932 5933 5934

		if (rq->nr_running > 1)
			*overload = true;

5935 5936 5937 5938
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5939
		sgs->sum_weighted_load += weighted_cpuload(i);
5940 5941
		if (idle_cpu(i))
			sgs->idle_cpus++;
5942 5943
	}

5944 5945
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
5946
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5947

5948
	if (sgs->sum_nr_running)
5949
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5950

5951
	sgs->group_weight = group->group_weight;
5952

5953
	sgs->group_imb = sg_imbalanced(group);
5954
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
5955

5956
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
5957
		sgs->group_has_free_capacity = 1;
5958 5959
}

5960 5961
/**
 * update_sd_pick_busiest - return 1 on busiest group
5962
 * @env: The load balancing environment.
5963 5964
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5965
 * @sgs: sched_group statistics
5966 5967 5968
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5969 5970 5971
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5972
 */
5973
static bool update_sd_pick_busiest(struct lb_env *env,
5974 5975
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5976
				   struct sg_lb_stats *sgs)
5977
{
J
Joonsoo Kim 已提交
5978
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5979 5980
		return false;

5981
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5992 5993
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6034
/**
6035
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6036
 * @env: The load balancing environment.
6037 6038
 * @sds: variable to hold the statistics for this sched_domain.
 */
6039
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6040
{
6041 6042
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6043
	struct sg_lb_stats tmp_sgs;
6044
	int load_idx, prefer_sibling = 0;
6045
	bool overload = false;
6046 6047 6048 6049

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6050
	load_idx = get_sd_load_idx(env->sd, env->idle);
6051 6052

	do {
J
Joonsoo Kim 已提交
6053
		struct sg_lb_stats *sgs = &tmp_sgs;
6054 6055
		int local_group;

6056
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6057 6058 6059
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6060 6061

			if (env->idle != CPU_NEWLY_IDLE ||
6062 6063
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6064
		}
6065

6066 6067
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6068

6069 6070 6071
		if (local_group)
			goto next_group;

6072 6073
		/*
		 * In case the child domain prefers tasks go to siblings
6074
		 * first, lower the sg capacity factor to one so that we'll try
6075 6076
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6077
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6078 6079 6080
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6081
		 */
6082
		if (prefer_sibling && sds->local &&
6083
		    sds->local_stat.group_has_free_capacity)
6084
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6085

6086
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6087
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6088
			sds->busiest_stat = *sgs;
6089 6090
		}

6091 6092 6093
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6094
		sds->total_capacity += sgs->group_capacity;
6095

6096
		sg = sg->next;
6097
	} while (sg != env->sd->groups);
6098 6099 6100

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6101 6102 6103 6104 6105 6106 6107

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6127
 * Return: 1 when packing is required and a task should be moved to
6128 6129
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6130
 * @env: The load balancing environment.
6131 6132
 * @sds: Statistics of the sched_domain which is to be packed
 */
6133
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6134 6135 6136
{
	int busiest_cpu;

6137
	if (!(env->sd->flags & SD_ASYM_PACKING))
6138 6139 6140 6141 6142 6143
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6144
	if (env->dst_cpu > busiest_cpu)
6145 6146
		return 0;

6147
	env->imbalance = DIV_ROUND_CLOSEST(
6148
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6149
		SCHED_CAPACITY_SCALE);
6150

6151
	return 1;
6152 6153 6154 6155 6156 6157
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6158
 * @env: The load balancing environment.
6159 6160
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6161 6162
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6163
{
6164
	unsigned long tmp, capa_now = 0, capa_move = 0;
6165
	unsigned int imbn = 2;
6166
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6167
	struct sg_lb_stats *local, *busiest;
6168

J
Joonsoo Kim 已提交
6169 6170
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6171

J
Joonsoo Kim 已提交
6172 6173 6174 6175
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6176

J
Joonsoo Kim 已提交
6177
	scaled_busy_load_per_task =
6178
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6179
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6180

6181 6182
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6183
		env->imbalance = busiest->load_per_task;
6184 6185 6186 6187 6188
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6189
	 * however we may be able to increase total CPU capacity used by
6190 6191 6192
	 * moving them.
	 */

6193
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6194
			min(busiest->load_per_task, busiest->avg_load);
6195
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6196
			min(local->load_per_task, local->avg_load);
6197
	capa_now /= SCHED_CAPACITY_SCALE;
6198 6199

	/* Amount of load we'd subtract */
6200
	if (busiest->avg_load > scaled_busy_load_per_task) {
6201
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6202
			    min(busiest->load_per_task,
6203
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6204
	}
6205 6206

	/* Amount of load we'd add */
6207
	if (busiest->avg_load * busiest->group_capacity <
6208
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6209 6210
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6211
	} else {
6212
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6213
		      local->group_capacity;
J
Joonsoo Kim 已提交
6214
	}
6215
	capa_move += local->group_capacity *
6216
		    min(local->load_per_task, local->avg_load + tmp);
6217
	capa_move /= SCHED_CAPACITY_SCALE;
6218 6219

	/* Move if we gain throughput */
6220
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6221
		env->imbalance = busiest->load_per_task;
6222 6223 6224 6225 6226
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6227
 * @env: load balance environment
6228 6229
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6230
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6231
{
6232
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6233 6234 6235 6236
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6237

J
Joonsoo Kim 已提交
6238
	if (busiest->group_imb) {
6239 6240 6241 6242
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6243 6244
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6245 6246
	}

6247 6248 6249
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6250
	 * its cpu_capacity, while calculating max_load..)
6251
	 */
6252 6253
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6254 6255
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6256 6257
	}

J
Joonsoo Kim 已提交
6258
	if (!busiest->group_imb) {
6259 6260
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6261 6262
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6263
		 */
J
Joonsoo Kim 已提交
6264
		load_above_capacity =
6265
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6266

6267
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6268
		load_above_capacity /= busiest->group_capacity;
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6279
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6280 6281

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6282
	env->imbalance = min(
6283 6284
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6285
	) / SCHED_CAPACITY_SCALE;
6286 6287 6288

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6289
	 * there is no guarantee that any tasks will be moved so we'll have
6290 6291 6292
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6293
	if (env->imbalance < busiest->load_per_task)
6294
		return fix_small_imbalance(env, sds);
6295
}
6296

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6309
 * @env: The load balancing environment.
6310
 *
6311
 * Return:	- The busiest group if imbalance exists.
6312 6313 6314 6315
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6316
static struct sched_group *find_busiest_group(struct lb_env *env)
6317
{
J
Joonsoo Kim 已提交
6318
	struct sg_lb_stats *local, *busiest;
6319 6320
	struct sd_lb_stats sds;

6321
	init_sd_lb_stats(&sds);
6322 6323 6324 6325 6326

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6327
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6328 6329
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6330

6331 6332
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6333 6334
		return sds.busiest;

6335
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6336
	if (!sds.busiest || busiest->sum_nr_running == 0)
6337 6338
		goto out_balanced;

6339 6340
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6341

P
Peter Zijlstra 已提交
6342 6343
	/*
	 * If the busiest group is imbalanced the below checks don't
6344
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6345 6346
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6347
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6348 6349
		goto force_balance;

6350
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6351 6352
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6353 6354
		goto force_balance;

6355 6356 6357 6358
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6359
	if (local->avg_load >= busiest->avg_load)
6360 6361
		goto out_balanced;

6362 6363 6364 6365
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6366
	if (local->avg_load >= sds.avg_load)
6367 6368
		goto out_balanced;

6369
	if (env->idle == CPU_IDLE) {
6370 6371 6372 6373 6374 6375
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6376 6377
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6378
			goto out_balanced;
6379 6380 6381 6382 6383
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6384 6385
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6386
			goto out_balanced;
6387
	}
6388

6389
force_balance:
6390
	/* Looks like there is an imbalance. Compute it */
6391
	calculate_imbalance(env, &sds);
6392 6393 6394
	return sds.busiest;

out_balanced:
6395
	env->imbalance = 0;
6396 6397 6398 6399 6400 6401
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6402
static struct rq *find_busiest_queue(struct lb_env *env,
6403
				     struct sched_group *group)
6404 6405
{
	struct rq *busiest = NULL, *rq;
6406
	unsigned long busiest_load = 0, busiest_capacity = 1;
6407 6408
	int i;

6409
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6410
		unsigned long capacity, capacity_factor, wl;
6411 6412 6413 6414
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6415

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6438
		capacity = capacity_of(i);
6439
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6440 6441
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6442

6443
		wl = weighted_cpuload(i);
6444

6445 6446
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6447
		 * which is not scaled with the cpu capacity.
6448
		 */
6449
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6450 6451
			continue;

6452 6453
		/*
		 * For the load comparisons with the other cpu's, consider
6454 6455 6456
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6457
		 *
6458
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6459
		 * multiplication to rid ourselves of the division works out
6460 6461
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6462
		 */
6463
		if (wl * busiest_capacity > busiest_load * capacity) {
6464
			busiest_load = wl;
6465
			busiest_capacity = capacity;
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6480
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6481

6482
static int need_active_balance(struct lb_env *env)
6483
{
6484 6485 6486
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6487 6488 6489 6490 6491 6492

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6493
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6494
			return 1;
6495 6496 6497 6498 6499
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6500 6501
static int active_load_balance_cpu_stop(void *data);

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6533
	return balance_cpu == env->dst_cpu;
6534 6535
}

6536 6537 6538 6539 6540 6541
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6542
			int *continue_balancing)
6543
{
6544
	int ld_moved, cur_ld_moved, active_balance = 0;
6545
	struct sched_domain *sd_parent = sd->parent;
6546 6547 6548
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6549
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6550

6551 6552
	struct lb_env env = {
		.sd		= sd,
6553 6554
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6555
		.dst_grpmask    = sched_group_cpus(sd->groups),
6556
		.idle		= idle,
6557
		.loop_break	= sched_nr_migrate_break,
6558
		.cpus		= cpus,
6559
		.fbq_type	= all,
6560 6561
	};

6562 6563 6564 6565
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6566
	if (idle == CPU_NEWLY_IDLE)
6567 6568
		env.dst_grpmask = NULL;

6569 6570 6571 6572 6573
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6574 6575
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6576
		goto out_balanced;
6577
	}
6578

6579
	group = find_busiest_group(&env);
6580 6581 6582 6583 6584
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6585
	busiest = find_busiest_queue(&env, group);
6586 6587 6588 6589 6590
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6591
	BUG_ON(busiest == env.dst_rq);
6592

6593
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6594 6595 6596 6597 6598 6599 6600 6601 6602

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6603
		env.flags |= LBF_ALL_PINNED;
6604 6605 6606
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6607

6608
more_balance:
6609
		local_irq_save(flags);
6610
		double_rq_lock(env.dst_rq, busiest);
6611 6612 6613 6614 6615 6616 6617

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6618
		double_rq_unlock(env.dst_rq, busiest);
6619 6620 6621 6622 6623
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6624 6625 6626
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6627 6628 6629 6630 6631
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6651
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6652

6653 6654 6655
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6656
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6657
			env.dst_cpu	 = env.new_dst_cpu;
6658
			env.flags	&= ~LBF_DST_PINNED;
6659 6660
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6661

6662 6663 6664 6665 6666 6667
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6668

6669 6670 6671 6672
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6673
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6674 6675 6676 6677 6678 6679 6680

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6681
		/* All tasks on this runqueue were pinned by CPU affinity */
6682
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6683
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6684 6685 6686
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6687
				goto redo;
6688
			}
6689 6690 6691 6692 6693 6694
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6695 6696 6697 6698 6699 6700 6701 6702
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6703

6704
		if (need_active_balance(&env)) {
6705 6706
			raw_spin_lock_irqsave(&busiest->lock, flags);

6707 6708 6709
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6710 6711
			 */
			if (!cpumask_test_cpu(this_cpu,
6712
					tsk_cpus_allowed(busiest->curr))) {
6713 6714
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6715
				env.flags |= LBF_ALL_PINNED;
6716 6717 6718
				goto out_one_pinned;
			}

6719 6720 6721 6722 6723
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6724 6725 6726 6727 6728 6729
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6730

6731
			if (active_balance) {
6732 6733 6734
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6735
			}
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6769
	if (((env.flags & LBF_ALL_PINNED) &&
6770
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6771 6772 6773
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6774
	ld_moved = 0;
6775 6776 6777 6778
out:
	return ld_moved;
}

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

6806 6807 6808 6809
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6810
static int idle_balance(struct rq *this_rq)
6811
{
6812 6813
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
6814 6815
	struct sched_domain *sd;
	int pulled_task = 0;
6816
	u64 curr_cost = 0;
6817

6818
	idle_enter_fair(this_rq);
6819

6820 6821 6822 6823 6824 6825
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6826 6827
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
6828 6829 6830 6831 6832 6833
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

6834
		goto out;
6835
	}
6836

6837 6838 6839 6840 6841
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6842
	update_blocked_averages(this_cpu);
6843
	rcu_read_lock();
6844
	for_each_domain(this_cpu, sd) {
6845
		int continue_balancing = 1;
6846
		u64 t0, domain_cost;
6847 6848 6849 6850

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6851 6852
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
6853
			break;
6854
		}
6855

6856
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6857 6858
			t0 = sched_clock_cpu(this_cpu);

6859
			pulled_task = load_balance(this_cpu, this_rq,
6860 6861
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6862 6863 6864 6865 6866 6867

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6868
		}
6869

6870
		update_next_balance(sd, 0, &next_balance);
6871 6872 6873 6874 6875 6876

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6877 6878
			break;
	}
6879
	rcu_read_unlock();
6880 6881 6882

	raw_spin_lock(&this_rq->lock);

6883 6884 6885
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6886
	/*
6887 6888 6889
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6890
	 */
6891
	if (this_rq->cfs.h_nr_running && !pulled_task)
6892
		pulled_task = 1;
6893

6894 6895 6896
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
6897
		this_rq->next_balance = next_balance;
6898

6899
	/* Is there a task of a high priority class? */
6900
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6901 6902 6903 6904
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6905
		this_rq->idle_stamp = 0;
6906
	}
6907

6908
	return pulled_task;
6909 6910 6911
}

/*
6912 6913 6914 6915
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6916
 */
6917
static int active_load_balance_cpu_stop(void *data)
6918
{
6919 6920
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6921
	int target_cpu = busiest_rq->push_cpu;
6922
	struct rq *target_rq = cpu_rq(target_cpu);
6923
	struct sched_domain *sd;
6924 6925 6926 6927 6928 6929 6930

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6931 6932 6933

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6934
		goto out_unlock;
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6947
	rcu_read_lock();
6948 6949 6950 6951 6952 6953 6954
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6955 6956
		struct lb_env env = {
			.sd		= sd,
6957 6958 6959 6960
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6961 6962 6963
			.idle		= CPU_IDLE,
		};

6964 6965
		schedstat_inc(sd, alb_count);

6966
		if (move_one_task(&env))
6967 6968 6969 6970
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6971
	rcu_read_unlock();
6972
	double_unlock_balance(busiest_rq, target_rq);
6973 6974 6975 6976
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6977 6978
}

6979 6980 6981 6982 6983
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6984
#ifdef CONFIG_NO_HZ_COMMON
6985 6986 6987 6988 6989 6990
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6991
static struct {
6992
	cpumask_var_t idle_cpus_mask;
6993
	atomic_t nr_cpus;
6994 6995
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6996

6997
static inline int find_new_ilb(void)
6998
{
6999
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7000

7001 7002 7003 7004
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7005 7006
}

7007 7008 7009 7010 7011
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7012
static void nohz_balancer_kick(void)
7013 7014 7015 7016 7017
{
	int ilb_cpu;

	nohz.next_balance++;

7018
	ilb_cpu = find_new_ilb();
7019

7020 7021
	if (ilb_cpu >= nr_cpu_ids)
		return;
7022

7023
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7024 7025 7026 7027 7028 7029 7030 7031
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7032 7033 7034
	return;
}

7035
static inline void nohz_balance_exit_idle(int cpu)
7036 7037
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7038 7039 7040 7041 7042 7043 7044
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7045 7046 7047 7048
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7049 7050 7051
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7052
	int cpu = smp_processor_id();
7053 7054

	rcu_read_lock();
7055
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7056 7057 7058 7059 7060

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7061
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7062
unlock:
7063 7064 7065 7066 7067 7068
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7069
	int cpu = smp_processor_id();
7070 7071

	rcu_read_lock();
7072
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7073 7074 7075 7076 7077

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7078
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7079
unlock:
7080 7081 7082
	rcu_read_unlock();
}

7083
/*
7084
 * This routine will record that the cpu is going idle with tick stopped.
7085
 * This info will be used in performing idle load balancing in the future.
7086
 */
7087
void nohz_balance_enter_idle(int cpu)
7088
{
7089 7090 7091 7092 7093 7094
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7095 7096
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7097

7098 7099 7100 7101 7102 7103
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7104 7105 7106
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7107
}
7108

7109
static int sched_ilb_notifier(struct notifier_block *nfb,
7110 7111 7112 7113
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7114
		nohz_balance_exit_idle(smp_processor_id());
7115 7116 7117 7118 7119
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7120 7121 7122 7123
#endif

static DEFINE_SPINLOCK(balancing);

7124 7125 7126 7127
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7128
void update_max_interval(void)
7129 7130 7131 7132
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7133 7134 7135 7136
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7137
 * Balancing parameters are set up in init_sched_domains.
7138
 */
7139
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7140
{
7141
	int continue_balancing = 1;
7142
	int cpu = rq->cpu;
7143
	unsigned long interval;
7144
	struct sched_domain *sd;
7145 7146 7147
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7148 7149
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7150

7151
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7152

7153
	rcu_read_lock();
7154
	for_each_domain(cpu, sd) {
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7167 7168 7169
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7181
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7182 7183 7184 7185 7186 7187 7188 7189

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7190
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7191
				/*
7192
				 * The LBF_DST_PINNED logic could have changed
7193 7194
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7195
				 */
7196
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7197 7198
			}
			sd->last_balance = jiffies;
7199
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7200 7201 7202 7203 7204 7205 7206 7207
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7208 7209
	}
	if (need_decay) {
7210
		/*
7211 7212
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7213
		 */
7214 7215
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7216
	}
7217
	rcu_read_unlock();
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7228
#ifdef CONFIG_NO_HZ_COMMON
7229
/*
7230
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7231 7232
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7233
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7234
{
7235
	int this_cpu = this_rq->cpu;
7236 7237 7238
	struct rq *rq;
	int balance_cpu;

7239 7240 7241
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7242 7243

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7244
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7245 7246 7247 7248 7249 7250 7251
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7252
		if (need_resched())
7253 7254
			break;

V
Vincent Guittot 已提交
7255 7256
		rq = cpu_rq(balance_cpu);

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7268 7269 7270 7271 7272

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7273 7274
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7275 7276 7277
}

/*
7278 7279 7280 7281
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7282
 *     busy cpu's exceeding the group's capacity.
7283 7284
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7285
 */
7286
static inline int nohz_kick_needed(struct rq *rq)
7287 7288
{
	unsigned long now = jiffies;
7289
	struct sched_domain *sd;
7290
	struct sched_group_capacity *sgc;
7291
	int nr_busy, cpu = rq->cpu;
7292

7293
	if (unlikely(rq->idle_balance))
7294 7295
		return 0;

7296 7297 7298 7299
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7300
	set_cpu_sd_state_busy();
7301
	nohz_balance_exit_idle(cpu);
7302 7303 7304 7305 7306 7307 7308

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7309 7310

	if (time_before(now, nohz.next_balance))
7311 7312
		return 0;

7313 7314
	if (rq->nr_running >= 2)
		goto need_kick;
7315

7316
	rcu_read_lock();
7317
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7318

7319
	if (sd) {
7320 7321
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7322

7323
		if (nr_busy > 1)
7324
			goto need_kick_unlock;
7325
	}
7326 7327 7328 7329 7330 7331 7332

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7333
	rcu_read_unlock();
7334
	return 0;
7335 7336 7337

need_kick_unlock:
	rcu_read_unlock();
7338 7339
need_kick:
	return 1;
7340 7341
}
#else
7342
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7343 7344 7345 7346 7347 7348
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7349 7350
static void run_rebalance_domains(struct softirq_action *h)
{
7351
	struct rq *this_rq = this_rq();
7352
	enum cpu_idle_type idle = this_rq->idle_balance ?
7353 7354
						CPU_IDLE : CPU_NOT_IDLE;

7355
	rebalance_domains(this_rq, idle);
7356 7357

	/*
7358
	 * If this cpu has a pending nohz_balance_kick, then do the
7359 7360 7361
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7362
	nohz_idle_balance(this_rq, idle);
7363 7364 7365 7366 7367
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7368
void trigger_load_balance(struct rq *rq)
7369 7370
{
	/* Don't need to rebalance while attached to NULL domain */
7371 7372 7373 7374
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7375
		raise_softirq(SCHED_SOFTIRQ);
7376
#ifdef CONFIG_NO_HZ_COMMON
7377
	if (nohz_kick_needed(rq))
7378
		nohz_balancer_kick();
7379
#endif
7380 7381
}

7382 7383 7384
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7385 7386

	update_runtime_enabled(rq);
7387 7388 7389 7390 7391
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7392 7393 7394

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7395 7396
}

7397
#endif /* CONFIG_SMP */
7398

7399 7400 7401
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7402
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7403 7404 7405 7406 7407 7408
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7409
		entity_tick(cfs_rq, se, queued);
7410
	}
7411

7412
	if (numabalancing_enabled)
7413
		task_tick_numa(rq, curr);
7414

7415
	update_rq_runnable_avg(rq, 1);
7416 7417 7418
}

/*
P
Peter Zijlstra 已提交
7419 7420 7421
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7422
 */
P
Peter Zijlstra 已提交
7423
static void task_fork_fair(struct task_struct *p)
7424
{
7425 7426
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7427
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7428 7429 7430
	struct rq *rq = this_rq();
	unsigned long flags;

7431
	raw_spin_lock_irqsave(&rq->lock, flags);
7432

7433 7434
	update_rq_clock(rq);

7435 7436 7437
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7438 7439 7440 7441 7442 7443 7444 7445 7446
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7447

7448
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7449

7450 7451
	if (curr)
		se->vruntime = curr->vruntime;
7452
	place_entity(cfs_rq, se, 1);
7453

P
Peter Zijlstra 已提交
7454
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7455
		/*
7456 7457 7458
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7459
		swap(curr->vruntime, se->vruntime);
7460
		resched_curr(rq);
7461
	}
7462

7463 7464
	se->vruntime -= cfs_rq->min_vruntime;

7465
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7466 7467
}

7468 7469 7470 7471
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7472 7473
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7474
{
P
Peter Zijlstra 已提交
7475 7476 7477
	if (!p->se.on_rq)
		return;

7478 7479 7480 7481 7482
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7483
	if (rq->curr == p) {
7484
		if (p->prio > oldprio)
7485
			resched_curr(rq);
7486
	} else
7487
		check_preempt_curr(rq, p, 0);
7488 7489
}

P
Peter Zijlstra 已提交
7490 7491 7492 7493 7494 7495
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7496
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7497 7498 7499
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7500 7501
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7502 7503
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7504
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7505 7506 7507 7508 7509 7510 7511
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7512

7513
#ifdef CONFIG_SMP
7514 7515 7516 7517 7518
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7519 7520 7521
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7522 7523
	}
#endif
P
Peter Zijlstra 已提交
7524 7525
}

7526 7527 7528
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7529
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7530
{
7531 7532 7533 7534 7535 7536 7537 7538 7539
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7540 7541
		return;

7542 7543 7544 7545 7546
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7547
	if (rq->curr == p)
7548
		resched_curr(rq);
7549
	else
7550
		check_preempt_curr(rq, p, 0);
7551 7552
}

7553 7554 7555 7556 7557 7558 7559 7560 7561
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7562 7563 7564 7565 7566 7567 7568
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7569 7570
}

7571 7572 7573 7574 7575 7576 7577
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7578
#ifdef CONFIG_SMP
7579
	atomic64_set(&cfs_rq->decay_counter, 1);
7580
	atomic_long_set(&cfs_rq->removed_load, 0);
7581
#endif
7582 7583
}

P
Peter Zijlstra 已提交
7584
#ifdef CONFIG_FAIR_GROUP_SCHED
7585
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7586
{
P
Peter Zijlstra 已提交
7587
	struct sched_entity *se = &p->se;
7588
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7589

7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7603 7604 7605 7606 7607 7608
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7609 7610
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7611 7612 7613 7614
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7615
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7616 7617
		on_rq = 1;

7618
	if (!on_rq)
P
Peter Zijlstra 已提交
7619
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7620
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7621
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7622
	if (!on_rq) {
P
Peter Zijlstra 已提交
7623 7624
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7625 7626 7627 7628 7629 7630
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7631 7632
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7633 7634
#endif
	}
P
Peter Zijlstra 已提交
7635
}
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7728
	if (!parent) {
7729
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7730 7731
		se->depth = 0;
	} else {
7732
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7733 7734
		se->depth = parent->depth + 1;
	}
7735 7736

	se->my_q = cfs_rq;
7737 7738
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7769 7770 7771

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7772
		for_each_sched_entity(se)
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7794

7795
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7796 7797 7798 7799 7800 7801 7802 7803 7804
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7805
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7806 7807 7808 7809

	return rr_interval;
}

7810 7811 7812
/*
 * All the scheduling class methods:
 */
7813
const struct sched_class fair_sched_class = {
7814
	.next			= &idle_sched_class,
7815 7816 7817
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7818
	.yield_to_task		= yield_to_task_fair,
7819

I
Ingo Molnar 已提交
7820
	.check_preempt_curr	= check_preempt_wakeup,
7821 7822 7823 7824

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7825
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7826
	.select_task_rq		= select_task_rq_fair,
7827
	.migrate_task_rq	= migrate_task_rq_fair,
7828

7829 7830
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7831 7832

	.task_waking		= task_waking_fair,
7833
#endif
7834

7835
	.set_curr_task          = set_curr_task_fair,
7836
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7837
	.task_fork		= task_fork_fair,
7838 7839

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7840
	.switched_from		= switched_from_fair,
7841
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7842

7843 7844
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7845
#ifdef CONFIG_FAIR_GROUP_SCHED
7846
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7847
#endif
7848 7849 7850
};

#ifdef CONFIG_SCHED_DEBUG
7851
void print_cfs_stats(struct seq_file *m, int cpu)
7852 7853 7854
{
	struct cfs_rq *cfs_rq;

7855
	rcu_read_lock();
7856
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7857
		print_cfs_rq(m, cpu, cfs_rq);
7858
	rcu_read_unlock();
7859 7860
}
#endif
7861 7862 7863 7864 7865 7866

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7867
#ifdef CONFIG_NO_HZ_COMMON
7868
	nohz.next_balance = jiffies;
7869
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7870
	cpu_notifier(sched_ilb_notifier, 0);
7871 7872 7873 7874
#endif
#endif /* SMP */

}