fair.c 189.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

382 383 384 385 386 387
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
388

389 390 391
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
392 393 394 395
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
396 397
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
398

P
Peter Zijlstra 已提交
399
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400
{
P
Peter Zijlstra 已提交
401
	return &task_rq(p)->cfs;
402 403
}

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

418 419 420 421 422 423 424 425
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

440 441 442 443 444
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
445 446
#endif	/* CONFIG_FAIR_GROUP_SCHED */

447
static __always_inline
448
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449 450 451 452 453

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

454
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455
{
456
	s64 delta = (s64)(vruntime - max_vruntime);
457
	if (delta > 0)
458
		max_vruntime = vruntime;
459

460
	return max_vruntime;
461 462
}

463
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

472 473 474 475 476 477
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
490
		if (!cfs_rq->curr)
491 492 493 494 495
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

496
	/* ensure we never gain time by being placed backwards. */
497
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 499 500 501
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
502 503
}

504 505 506
/*
 * Enqueue an entity into the rb-tree:
 */
507
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
524
		if (entity_before(se, entry)) {
525 526 527 528 529 530 531 532 533 534 535
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
536
	if (leftmost)
I
Ingo Molnar 已提交
537
		cfs_rq->rb_leftmost = &se->run_node;
538 539 540 541 542

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

543
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544
{
P
Peter Zijlstra 已提交
545 546 547 548 549 550
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
551

552 553 554
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

555
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556
{
557 558 559 560 561 562
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
563 564
}

565 566 567 568 569 570 571 572 573 574 575
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
576
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577
{
578
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579

580 581
	if (!last)
		return NULL;
582 583

	return rb_entry(last, struct sched_entity, run_node);
584 585
}

586 587 588 589
/**************************************************************
 * Scheduling class statistics methods:
 */

590
int sched_proc_update_handler(struct ctl_table *table, int write,
591
		void __user *buffer, size_t *lenp,
592 593
		loff_t *ppos)
{
594
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595
	int factor = get_update_sysctl_factor();
596 597 598 599 600 601 602

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

603 604 605 606 607 608 609
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

610 611 612
	return 0;
}
#endif
613

614
/*
615
 * delta /= w
616
 */
617
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618
{
619
	if (unlikely(se->load.weight != NICE_0_LOAD))
620
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 622 623 624

	return delta;
}

625 626 627
/*
 * The idea is to set a period in which each task runs once.
 *
628
 * When there are too many tasks (sched_nr_latency) we have to stretch
629 630 631 632
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
633 634 635
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
636
	unsigned long nr_latency = sched_nr_latency;
637 638

	if (unlikely(nr_running > nr_latency)) {
639
		period = sysctl_sched_min_granularity;
640 641 642 643 644 645
		period *= nr_running;
	}

	return period;
}

646 647 648 649
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
650
 * s = p*P[w/rw]
651
 */
P
Peter Zijlstra 已提交
652
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653
{
M
Mike Galbraith 已提交
654
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655

M
Mike Galbraith 已提交
656
	for_each_sched_entity(se) {
L
Lin Ming 已提交
657
		struct load_weight *load;
658
		struct load_weight lw;
L
Lin Ming 已提交
659 660 661

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
662

M
Mike Galbraith 已提交
663
		if (unlikely(!se->on_rq)) {
664
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
665 666 667 668

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
669
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
670 671
	}
	return slice;
672 673
}

674
/*
A
Andrei Epure 已提交
675
 * We calculate the vruntime slice of a to-be-inserted task.
676
 *
677
 * vs = s/w
678
 */
679
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
680
{
681
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 683
}

684
#ifdef CONFIG_SMP
685 686
static unsigned long task_h_load(struct task_struct *p);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

706
/*
707
 * Update the current task's runtime statistics.
708
 */
709
static void update_curr(struct cfs_rq *cfs_rq)
710
{
711
	struct sched_entity *curr = cfs_rq->curr;
712
	u64 now = rq_clock_task(rq_of(cfs_rq));
713
	u64 delta_exec;
714 715 716 717

	if (unlikely(!curr))
		return;

718 719
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
720
		return;
721

I
Ingo Molnar 已提交
722
	curr->exec_start = now;
723

724 725 726 727 728 729 730 731 732
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

733 734 735
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

736
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737
		cpuacct_charge(curtask, delta_exec);
738
		account_group_exec_runtime(curtask, delta_exec);
739
	}
740 741

	account_cfs_rq_runtime(cfs_rq, delta_exec);
742 743 744
}

static inline void
745
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746
{
747
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 749 750 751 752
}

/*
 * Task is being enqueued - update stats:
 */
753
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 755 756 757 758
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
759
	if (se != cfs_rq->curr)
760
		update_stats_wait_start(cfs_rq, se);
761 762 763
}

static void
764
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765
{
766
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 769
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 772 773
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
774
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 776
	}
#endif
777
	schedstat_set(se->statistics.wait_start, 0);
778 779 780
}

static inline void
781
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 783 784 785 786
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
787
	if (se != cfs_rq->curr)
788
		update_stats_wait_end(cfs_rq, se);
789 790 791 792 793 794
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
795
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799
{
	/*
	 * We are starting a new run period:
	 */
800
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 802 803 804 805 806
}

/**************************************************
 * Scheduling class queueing methods:
 */

807 808
#ifdef CONFIG_NUMA_BALANCING
/*
809 810 811
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
812
 */
813 814
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815 816 817

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
818

819 820 821
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

867 868 869 870 871 872 873 874 875 876 877 878
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

879 880 881 882 883
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
884
	pid_t gid;
885 886 887
	struct list_head task_list;

	struct rcu_head rcu;
888
	nodemask_t active_nodes;
889
	unsigned long total_faults;
890
	unsigned long *faults_cpu;
891
	unsigned long faults[0];
892 893
};

894 895 896 897 898
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

899 900 901 902 903 904 905
static inline int task_faults_idx(int nid, int priv)
{
	return 2 * nid + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
906
	if (!p->numa_faults_memory)
907 908
		return 0;

909 910
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
911 912
}

913 914 915 916 917
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

918 919
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
920 921
}

922 923 924 925 926 927
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

928 929 930 931 932 933 934 935 936 937
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

938
	if (!p->numa_faults_memory)
939 940 941 942 943 944 945 946 947 948 949 950
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
951
	if (!p->numa_group || !p->numa_group->total_faults)
952 953
		return 0;

954
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
955 956
}

957
static unsigned long weighted_cpuload(const int cpu);
958 959 960 961 962
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

963
/* Cached statistics for all CPUs within a node */
964
struct numa_stats {
965
	unsigned long nr_running;
966
	unsigned long load;
967 968 969 970 971 972 973

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
974
};
975

976 977 978 979 980
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
981
	int cpu, cpus = 0;
982 983 984 985 986 987 988 989

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
990 991

		cpus++;
992 993
	}

994 995 996 997 998 999 1000 1001 1002 1003 1004
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1005 1006 1007 1008 1009
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1010 1011
struct task_numa_env {
	struct task_struct *p;
1012

1013 1014
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1015

1016
	struct numa_stats src_stats, dst_stats;
1017

1018
	int imbalance_pct;
1019 1020 1021

	struct task_struct *best_task;
	long best_imp;
1022 1023 1024
	int best_cpu;
};

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1044 1045
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1046 1047 1048 1049 1050 1051
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1052
	long imp = (groupimp > 0) ? groupimp : taskimp;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1071 1072
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1073
		 * in any group then look only at task weights.
1074
		 */
1075
		if (cur->numa_group == env->p->numa_group) {
1076 1077
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1078 1079 1080 1081 1082 1083
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1084
		} else {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1101
		}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1151 1152
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1162
		task_numa_compare(env, taskimp, groupimp);
1163 1164 1165
	}
}

1166 1167 1168 1169
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1170

1171
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1172
		.src_nid = task_node(p),
1173 1174 1175 1176 1177 1178

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1179 1180
	};
	struct sched_domain *sd;
1181
	unsigned long taskweight, groupweight;
1182
	int nid, ret;
1183
	long taskimp, groupimp;
1184

1185
	/*
1186 1187 1188 1189 1190 1191
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1192 1193
	 */
	rcu_read_lock();
1194
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1195 1196
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1197 1198
	rcu_read_unlock();

1199 1200 1201 1202 1203 1204 1205
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1206
		p->numa_preferred_nid = task_node(p);
1207 1208 1209
		return -EINVAL;
	}

1210 1211
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1212
	update_numa_stats(&env.src_stats, env.src_nid);
1213
	env.dst_nid = p->numa_preferred_nid;
1214 1215
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1216
	update_numa_stats(&env.dst_stats, env.dst_nid);
1217

1218 1219
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1220
		task_numa_find_cpu(&env, taskimp, groupimp);
1221 1222 1223

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1224 1225 1226
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1227

1228
			/* Only consider nodes where both task and groups benefit */
1229 1230 1231
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1232 1233
				continue;

1234 1235
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1236
			task_numa_find_cpu(&env, taskimp, groupimp);
1237 1238 1239
		}
	}

1240 1241 1242 1243
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1244 1245
	sched_setnuma(p, env.dst_nid);

1246 1247 1248 1249 1250 1251
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1252 1253 1254 1255 1256 1257 1258 1259
	if (env.best_task == NULL) {
		int ret = migrate_task_to(p, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
	put_task_struct(env.best_task);
	return ret;
1260 1261
}

1262 1263 1264
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1265
	/* This task has no NUMA fault statistics yet */
1266
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1267 1268
		return;

1269 1270 1271 1272
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
1273
	if (task_node(p) == p->numa_preferred_nid)
1274 1275 1276
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1277
	task_numa_migrate(p);
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1386 1387
static void task_numa_placement(struct task_struct *p)
{
1388 1389
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1390
	unsigned long fault_types[2] = { 0, 0 };
1391
	spinlock_t *group_lock = NULL;
1392

1393
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1394 1395 1396
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1397
	p->numa_scan_period_max = task_scan_max(p);
1398

1399 1400 1401 1402 1403 1404
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1405 1406
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1407
		unsigned long faults = 0, group_faults = 0;
1408
		int priv, i;
1409

1410
		for (priv = 0; priv < 2; priv++) {
1411
			long diff, f_diff;
1412

1413
			i = task_faults_idx(nid, priv);
1414
			diff = -p->numa_faults_memory[i];
1415
			f_diff = -p->numa_faults_cpu[i];
1416

1417
			/* Decay existing window, copy faults since last scan */
1418 1419 1420 1421
			p->numa_faults_memory[i] >>= 1;
			p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1422

1423 1424 1425 1426
			p->numa_faults_cpu[i] >>= 1;
			p->numa_faults_cpu[i] += p->numa_faults_buffer_cpu[i];
			p->numa_faults_buffer_cpu[i] = 0;

1427 1428
			faults += p->numa_faults_memory[i];
			diff += p->numa_faults_memory[i];
1429
			f_diff += p->numa_faults_cpu[i];
1430
			p->total_numa_faults += diff;
1431 1432
			if (p->numa_group) {
				/* safe because we can only change our own group */
1433
				p->numa_group->faults[i] += diff;
1434
				p->numa_group->faults_cpu[i] += f_diff;
1435 1436
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1437
			}
1438 1439
		}

1440 1441 1442 1443
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1444 1445 1446 1447 1448 1449 1450

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1451 1452
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1453
	if (p->numa_group) {
1454
		update_numa_active_node_mask(p->numa_group);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1468 1469
			}
		}
1470 1471

		spin_unlock(group_lock);
1472 1473
	}

1474
	/* Preferred node as the node with the most faults */
1475
	if (max_faults && max_nid != p->numa_preferred_nid) {
1476
		/* Update the preferred nid and migrate task if possible */
1477
		sched_setnuma(p, max_nid);
1478
		numa_migrate_preferred(p);
1479
	}
1480 1481
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1493 1494
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1504
				    4*nr_node_ids*sizeof(unsigned long);
1505 1506 1507 1508 1509 1510 1511 1512

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1513
		grp->gid = p->pid;
1514 1515
		/* Second half of the array tracks nids where faults happen */
		grp->faults_cpu = grp->faults + 2 * nr_node_ids;
1516

1517 1518
		node_set(task_node(current), grp->active_nodes);

1519
		for (i = 0; i < 4*nr_node_ids; i++)
1520
			grp->faults[i] = p->numa_faults_memory[i];
1521

1522
		grp->total_faults = p->total_numa_faults;
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1533
		goto no_join;
1534 1535 1536

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1537
		goto no_join;
1538 1539 1540

	my_grp = p->numa_group;
	if (grp == my_grp)
1541
		goto no_join;
1542 1543 1544 1545 1546 1547

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1548
		goto no_join;
1549 1550 1551 1552 1553

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1554
		goto no_join;
1555

1556 1557 1558 1559 1560 1561 1562
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1563

1564 1565 1566
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1567
	if (join && !get_numa_group(grp))
1568
		goto no_join;
1569 1570 1571 1572 1573 1574

	rcu_read_unlock();

	if (!join)
		return;

1575 1576
	double_lock(&my_grp->lock, &grp->lock);

1577
	for (i = 0; i < 4*nr_node_ids; i++) {
1578 1579
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1580
	}
1581 1582
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1594 1595 1596 1597 1598
	return;

no_join:
	rcu_read_unlock();
	return;
1599 1600 1601 1602 1603 1604
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1605
	void *numa_faults = p->numa_faults_memory;
1606 1607

	if (grp) {
1608
		spin_lock(&grp->lock);
1609
		for (i = 0; i < 4*nr_node_ids; i++)
1610
			grp->faults[i] -= p->numa_faults_memory[i];
1611
		grp->total_faults -= p->total_numa_faults;
1612

1613 1614 1615 1616 1617 1618 1619
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1620 1621
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1622 1623
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1624
	kfree(numa_faults);
1625 1626
}

1627 1628 1629
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1630
void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1631 1632
{
	struct task_struct *p = current;
1633
	bool migrated = flags & TNF_MIGRATED;
1634
	int this_node = task_node(current);
1635
	int priv;
1636

1637
	if (!numabalancing_enabled)
1638 1639
		return;

1640 1641 1642 1643
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1644 1645 1646 1647
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1648
	/* Allocate buffer to track faults on a per-node basis */
1649
	if (unlikely(!p->numa_faults_memory)) {
1650
		int size = sizeof(*p->numa_faults_memory) * 4 * nr_node_ids;
1651

1652
		/* numa_faults and numa_faults_buffer share the allocation */
1653 1654
		p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults_memory)
1655
			return;
1656

1657
		BUG_ON(p->numa_faults_buffer_memory);
1658 1659 1660
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1661
		p->total_numa_faults = 0;
1662
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1663
	}
1664

1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1673
		if (!priv && !(flags & TNF_NO_GROUP))
1674
			task_numa_group(p, last_cpupid, flags, &priv);
1675 1676
	}

1677
	task_numa_placement(p);
1678

1679 1680 1681 1682 1683
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1684 1685
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1686 1687 1688
	if (migrated)
		p->numa_pages_migrated += pages;

1689
	p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
1690
	p->numa_faults_buffer_cpu[task_faults_idx(this_node, priv)] += pages;
1691
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1692 1693
}

1694 1695 1696 1697 1698 1699
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1709
	struct vm_area_struct *vma;
1710
	unsigned long start, end;
1711
	unsigned long nr_pte_updates = 0;
1712
	long pages;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1728
	if (!mm->numa_next_scan) {
1729 1730
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1731 1732
	}

1733 1734 1735 1736 1737 1738 1739
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1740 1741 1742 1743
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1744

1745
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1746 1747 1748
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1749 1750 1751 1752 1753 1754
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1755 1756 1757 1758 1759
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1760

1761
	down_read(&mm->mmap_sem);
1762
	vma = find_vma(mm, start);
1763 1764
	if (!vma) {
		reset_ptenuma_scan(p);
1765
		start = 0;
1766 1767
		vma = mm->mmap;
	}
1768
	for (; vma; vma = vma->vm_next) {
1769
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1770 1771
			continue;

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1782 1783 1784 1785 1786 1787
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1788

1789 1790 1791 1792
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1793 1794 1795 1796 1797 1798 1799 1800 1801
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1802

1803 1804 1805 1806
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1807
	}
1808

1809
out:
1810
	/*
P
Peter Zijlstra 已提交
1811 1812 1813 1814
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1815 1816
	 */
	if (vma)
1817
		mm->numa_scan_offset = start;
1818 1819 1820
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1847
		if (!curr->node_stamp)
1848
			curr->numa_scan_period = task_scan_min(curr);
1849
		curr->node_stamp += period;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1861 1862 1863 1864 1865 1866 1867 1868

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1869 1870
#endif /* CONFIG_NUMA_BALANCING */

1871 1872 1873 1874
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1875
	if (!parent_entity(se))
1876
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1877
#ifdef CONFIG_SMP
1878 1879 1880 1881 1882 1883
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
1884
#endif
1885 1886 1887 1888 1889 1890 1891
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1892
	if (!parent_entity(se))
1893
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1894 1895
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1896
		list_del_init(&se->group_node);
1897
	}
1898 1899 1900
	cfs_rq->nr_running--;
}

1901 1902
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1903 1904 1905 1906 1907 1908 1909 1910 1911
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1912
	tg_weight = atomic_long_read(&tg->load_avg);
1913
	tg_weight -= cfs_rq->tg_load_contrib;
1914 1915 1916 1917 1918
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1919
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1920
{
1921
	long tg_weight, load, shares;
1922

1923
	tg_weight = calc_tg_weight(tg, cfs_rq);
1924
	load = cfs_rq->load.weight;
1925 1926

	shares = (tg->shares * load);
1927 1928
	if (tg_weight)
		shares /= tg_weight;
1929 1930 1931 1932 1933 1934 1935 1936 1937

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1938
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1939 1940 1941 1942
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1943 1944 1945
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1946 1947 1948 1949
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1950
		account_entity_dequeue(cfs_rq, se);
1951
	}
P
Peter Zijlstra 已提交
1952 1953 1954 1955 1956 1957 1958

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1959 1960
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1961
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1962 1963 1964
{
	struct task_group *tg;
	struct sched_entity *se;
1965
	long shares;
P
Peter Zijlstra 已提交
1966 1967 1968

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1969
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1970
		return;
1971 1972 1973 1974
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1975
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1976 1977 1978 1979

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1980
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1981 1982 1983 1984
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1985
#ifdef CONFIG_SMP
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2014 2015 2016 2017 2018 2019
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2040 2041
	}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2107 2108
	u64 delta, periods;
	u32 runnable_contrib;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2172
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2173
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2174 2175 2176 2177 2178 2179
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2180
		return 0;
2181 2182 2183

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2184 2185

	return decays;
2186 2187
}

2188 2189 2190 2191 2192
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2193
	long tg_contrib;
2194 2195 2196 2197

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2198 2199
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2200 2201 2202
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2215
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2216 2217 2218 2219 2220 2221 2222 2223 2224
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2225 2226 2227 2228
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2229 2230
	int runnable_avg;

2231 2232 2233
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2234 2235
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2265
}
2266 2267 2268
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2269 2270
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2271
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2272 2273
#endif

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2284 2285 2286 2287 2288
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2289 2290 2291
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2292
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2293 2294
		__update_group_entity_contrib(se);
	}
2295 2296 2297 2298

	return se->avg.load_avg_contrib - old_contrib;
}

2299 2300 2301 2302 2303 2304 2305 2306 2307
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2308 2309
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2310
/* Update a sched_entity's runnable average */
2311 2312
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2313
{
2314 2315
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2316
	u64 now;
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2328 2329 2330
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2331 2332 2333 2334

	if (!update_cfs_rq)
		return;

2335 2336
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2337 2338 2339 2340 2341 2342 2343 2344
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2345
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2346
{
2347
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2348 2349 2350
	u64 decays;

	decays = now - cfs_rq->last_decay;
2351
	if (!decays && !force_update)
2352 2353
		return;

2354 2355 2356
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2357 2358
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2359

2360 2361 2362 2363 2364 2365
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2366 2367

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2368
}
2369 2370 2371

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2372
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2373
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2374
}
2375 2376 2377

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2378 2379
						  struct sched_entity *se,
						  int wakeup)
2380
{
2381 2382 2383 2384
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2385 2386 2387 2388
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2389 2390
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2391
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2407 2408
		wakeup = 0;
	} else {
2409
		__synchronize_entity_decay(se);
2410 2411
	}

2412 2413
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2414
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2415 2416
		update_entity_load_avg(se, 0);
	}
2417

2418
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2419 2420
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2421 2422
}

2423 2424 2425 2426 2427
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2428
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2429 2430
						  struct sched_entity *se,
						  int sleep)
2431
{
2432
	update_entity_load_avg(se, 1);
2433 2434
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2435

2436
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2437 2438 2439 2440
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2441
}
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2463
#else
2464 2465
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2466
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2467
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2468 2469
					   struct sched_entity *se,
					   int wakeup) {}
2470
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2471 2472
					   struct sched_entity *se,
					   int sleep) {}
2473 2474
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2475 2476
#endif

2477
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2478 2479
{
#ifdef CONFIG_SCHEDSTATS
2480 2481 2482 2483 2484
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2485
	if (se->statistics.sleep_start) {
2486
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2487 2488 2489 2490

		if ((s64)delta < 0)
			delta = 0;

2491 2492
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2493

2494
		se->statistics.sleep_start = 0;
2495
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2496

2497
		if (tsk) {
2498
			account_scheduler_latency(tsk, delta >> 10, 1);
2499 2500
			trace_sched_stat_sleep(tsk, delta);
		}
2501
	}
2502
	if (se->statistics.block_start) {
2503
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2504 2505 2506 2507

		if ((s64)delta < 0)
			delta = 0;

2508 2509
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2510

2511
		se->statistics.block_start = 0;
2512
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2513

2514
		if (tsk) {
2515
			if (tsk->in_iowait) {
2516 2517
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2518
				trace_sched_stat_iowait(tsk, delta);
2519 2520
			}

2521 2522
			trace_sched_stat_blocked(tsk, delta);

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2534
		}
2535 2536 2537 2538
	}
#endif
}

P
Peter Zijlstra 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2552 2553 2554
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2555
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2556

2557 2558 2559 2560 2561 2562
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2563
	if (initial && sched_feat(START_DEBIT))
2564
		vruntime += sched_vslice(cfs_rq, se);
2565

2566
	/* sleeps up to a single latency don't count. */
2567
	if (!initial) {
2568
		unsigned long thresh = sysctl_sched_latency;
2569

2570 2571 2572 2573 2574 2575
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2576

2577
		vruntime -= thresh;
2578 2579
	}

2580
	/* ensure we never gain time by being placed backwards. */
2581
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2582 2583
}

2584 2585
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2586
static void
2587
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2588
{
2589 2590
	/*
	 * Update the normalized vruntime before updating min_vruntime
2591
	 * through calling update_curr().
2592
	 */
2593
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2594 2595
		se->vruntime += cfs_rq->min_vruntime;

2596
	/*
2597
	 * Update run-time statistics of the 'current'.
2598
	 */
2599
	update_curr(cfs_rq);
2600
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2601 2602
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2603

2604
	if (flags & ENQUEUE_WAKEUP) {
2605
		place_entity(cfs_rq, se, 0);
2606
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2607
	}
2608

2609
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2610
	check_spread(cfs_rq, se);
2611 2612
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2613
	se->on_rq = 1;
2614

2615
	if (cfs_rq->nr_running == 1) {
2616
		list_add_leaf_cfs_rq(cfs_rq);
2617 2618
		check_enqueue_throttle(cfs_rq);
	}
2619 2620
}

2621
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2622
{
2623 2624 2625 2626 2627 2628 2629 2630
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2654 2655
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2656 2657 2658 2659 2660
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2661 2662 2663

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2664 2665
}

2666
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2667

2668
static void
2669
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2670
{
2671 2672 2673 2674
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2675
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2676

2677
	update_stats_dequeue(cfs_rq, se);
2678
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2679
#ifdef CONFIG_SCHEDSTATS
2680 2681 2682 2683
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2684
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2685
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2686
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2687
		}
2688
#endif
P
Peter Zijlstra 已提交
2689 2690
	}

P
Peter Zijlstra 已提交
2691
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2692

2693
	if (se != cfs_rq->curr)
2694
		__dequeue_entity(cfs_rq, se);
2695
	se->on_rq = 0;
2696
	account_entity_dequeue(cfs_rq, se);
2697 2698 2699 2700 2701 2702

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2703
	if (!(flags & DEQUEUE_SLEEP))
2704
		se->vruntime -= cfs_rq->min_vruntime;
2705

2706 2707 2708
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2709
	update_min_vruntime(cfs_rq);
2710
	update_cfs_shares(cfs_rq);
2711 2712 2713 2714 2715
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2716
static void
I
Ingo Molnar 已提交
2717
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2718
{
2719
	unsigned long ideal_runtime, delta_exec;
2720 2721
	struct sched_entity *se;
	s64 delta;
2722

P
Peter Zijlstra 已提交
2723
	ideal_runtime = sched_slice(cfs_rq, curr);
2724
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2725
	if (delta_exec > ideal_runtime) {
2726
		resched_task(rq_of(cfs_rq)->curr);
2727 2728 2729 2730 2731
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2743 2744
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2745

2746 2747
	if (delta < 0)
		return;
2748

2749 2750
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2751 2752
}

2753
static void
2754
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2755
{
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2767
	update_stats_curr_start(cfs_rq, se);
2768
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2769 2770 2771 2772 2773 2774
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2775
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2776
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2777 2778 2779
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2780
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2781 2782
}

2783 2784 2785
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2786 2787 2788 2789 2790 2791 2792
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2793
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2794
{
2795
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2796
	struct sched_entity *left = se;
2797

2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2807

2808 2809 2810 2811 2812 2813
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2814 2815 2816 2817 2818 2819
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2820
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2821 2822

	return se;
2823 2824
}

2825 2826
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2827
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2828 2829 2830 2831 2832 2833
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2834
		update_curr(cfs_rq);
2835

2836 2837 2838
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2839
	check_spread(cfs_rq, prev);
2840
	if (prev->on_rq) {
2841
		update_stats_wait_start(cfs_rq, prev);
2842 2843
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2844
		/* in !on_rq case, update occurred at dequeue */
2845
		update_entity_load_avg(prev, 1);
2846
	}
2847
	cfs_rq->curr = NULL;
2848 2849
}

P
Peter Zijlstra 已提交
2850 2851
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2852 2853
{
	/*
2854
	 * Update run-time statistics of the 'current'.
2855
	 */
2856
	update_curr(cfs_rq);
2857

2858 2859 2860
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2861
	update_entity_load_avg(curr, 1);
2862
	update_cfs_rq_blocked_load(cfs_rq, 1);
2863
	update_cfs_shares(cfs_rq);
2864

P
Peter Zijlstra 已提交
2865 2866 2867 2868 2869
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2870 2871 2872 2873
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2882
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2883
		check_preempt_tick(cfs_rq, curr);
2884 2885
}

2886 2887 2888 2889 2890 2891

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2892 2893

#ifdef HAVE_JUMP_LABEL
2894
static struct static_key __cfs_bandwidth_used;
2895 2896 2897

static inline bool cfs_bandwidth_used(void)
{
2898
	return static_key_false(&__cfs_bandwidth_used);
2899 2900
}

2901
void cfs_bandwidth_usage_inc(void)
2902
{
2903 2904 2905 2906 2907 2908
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
2909 2910 2911 2912 2913 2914 2915
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

2916 2917
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
2918 2919
#endif /* HAVE_JUMP_LABEL */

2920 2921 2922 2923 2924 2925 2926 2927
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2928 2929 2930 2931 2932 2933

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2934 2935 2936 2937 2938 2939 2940
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2941
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2953 2954 2955 2956 2957
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2958 2959 2960 2961 2962 2963
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2964
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2965 2966
}

2967 2968
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2969 2970 2971
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2972
	u64 amount = 0, min_amount, expires;
2973 2974 2975 2976 2977 2978 2979

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2980
	else {
P
Paul Turner 已提交
2981 2982 2983 2984 2985 2986 2987 2988
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2989
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2990
		}
2991 2992 2993 2994 2995 2996

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2997
	}
P
Paul Turner 已提交
2998
	expires = cfs_b->runtime_expires;
2999 3000 3001
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3002 3003 3004 3005 3006 3007 3008
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3009 3010

	return cfs_rq->runtime_remaining > 0;
3011 3012
}

P
Paul Turner 已提交
3013 3014 3015 3016 3017
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3018
{
P
Paul Turner 已提交
3019 3020 3021
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3022
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3023 3024
		return;

P
Paul Turner 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3046
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3047 3048
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3049
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3050 3051 3052
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3053 3054
		return;

3055 3056 3057 3058 3059 3060
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3061 3062
}

3063
static __always_inline
3064
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3065
{
3066
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3067 3068 3069 3070 3071
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3072 3073
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3074
	return cfs_bandwidth_used() && cfs_rq->throttled;
3075 3076
}

3077 3078 3079
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3080
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3109
		/* adjust cfs_rq_clock_task() */
3110
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3111
					     cfs_rq->throttled_clock_task;
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3123 3124
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3125
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3126 3127 3128 3129 3130
	cfs_rq->throttle_count++;

	return 0;
}

3131
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3132 3133 3134 3135 3136 3137 3138 3139
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3140
	/* freeze hierarchy runnable averages while throttled */
3141 3142 3143
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3164
	cfs_rq->throttled_clock = rq_clock(rq);
3165 3166
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3167 3168
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3169 3170 3171
	raw_spin_unlock(&cfs_b->lock);
}

3172
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3173 3174 3175 3176 3177 3178 3179
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3180
	se = cfs_rq->tg->se[cpu_of(rq)];
3181 3182

	cfs_rq->throttled = 0;
3183 3184 3185

	update_rq_clock(rq);

3186
	raw_spin_lock(&cfs_b->lock);
3187
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3188 3189 3190
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3191 3192 3193
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3257 3258 3259 3260 3261 3262 3263 3264
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3265 3266
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3267 3268 3269 3270 3271 3272

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3273 3274 3275
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3276
	cfs_b->nr_periods += overrun;
3277

P
Paul Turner 已提交
3278 3279 3280 3281
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3282 3283 3284 3285 3286 3287 3288
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3289 3290
	__refill_cfs_bandwidth_runtime(cfs_b);

3291 3292 3293 3294 3295 3296
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3297 3298 3299
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3334 3335 3336 3337 3338 3339 3340
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3341

3342 3343 3344 3345 3346 3347 3348
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3349 3350 3351 3352 3353 3354 3355
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3412 3413 3414
	if (!cfs_bandwidth_used())
		return;

3415
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3431 3432 3433
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3434
		return;
3435
	}
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3455 3456 3457 3458 3459 3460 3461
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3462 3463 3464
	if (!cfs_bandwidth_used())
		return;

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3482 3483 3484
	if (!cfs_bandwidth_used())
		return;

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3557 3558 3559
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3560
		raw_spin_unlock(&cfs_b->lock);
3561
		cpu_relax();
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3578
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3599 3600
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3601
	return rq_clock_task(rq_of(cfs_rq));
3602 3603
}

3604
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3605 3606
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3607
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3608 3609 3610 3611 3612

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3624 3625 3626 3627 3628

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3629 3630
#endif

3631 3632 3633 3634 3635
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3636
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3637 3638 3639

#endif /* CONFIG_CFS_BANDWIDTH */

3640 3641 3642 3643
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3644 3645 3646 3647 3648 3649 3650 3651
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3652
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3667
		if (rq->curr != p)
3668
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3669

3670
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3671 3672
	}
}
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3683
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3684 3685 3686 3687 3688
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3689
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3690 3691 3692 3693
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3694 3695 3696 3697

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3698 3699
#endif

3700 3701 3702 3703 3704
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3705
static void
3706
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3707 3708
{
	struct cfs_rq *cfs_rq;
3709
	struct sched_entity *se = &p->se;
3710 3711

	for_each_sched_entity(se) {
3712
		if (se->on_rq)
3713 3714
			break;
		cfs_rq = cfs_rq_of(se);
3715
		enqueue_entity(cfs_rq, se, flags);
3716 3717 3718 3719 3720 3721 3722 3723 3724

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3725
		cfs_rq->h_nr_running++;
3726

3727
		flags = ENQUEUE_WAKEUP;
3728
	}
P
Peter Zijlstra 已提交
3729

P
Peter Zijlstra 已提交
3730
	for_each_sched_entity(se) {
3731
		cfs_rq = cfs_rq_of(se);
3732
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3733

3734 3735 3736
		if (cfs_rq_throttled(cfs_rq))
			break;

3737
		update_cfs_shares(cfs_rq);
3738
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3739 3740
	}

3741 3742
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3743
		inc_nr_running(rq);
3744
	}
3745
	hrtick_update(rq);
3746 3747
}

3748 3749
static void set_next_buddy(struct sched_entity *se);

3750 3751 3752 3753 3754
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3755
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3756 3757
{
	struct cfs_rq *cfs_rq;
3758
	struct sched_entity *se = &p->se;
3759
	int task_sleep = flags & DEQUEUE_SLEEP;
3760 3761 3762

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3763
		dequeue_entity(cfs_rq, se, flags);
3764 3765 3766 3767 3768 3769 3770 3771 3772

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3773
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3774

3775
		/* Don't dequeue parent if it has other entities besides us */
3776 3777 3778 3779 3780 3781 3782
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3783 3784 3785

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3786
			break;
3787
		}
3788
		flags |= DEQUEUE_SLEEP;
3789
	}
P
Peter Zijlstra 已提交
3790

P
Peter Zijlstra 已提交
3791
	for_each_sched_entity(se) {
3792
		cfs_rq = cfs_rq_of(se);
3793
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3794

3795 3796 3797
		if (cfs_rq_throttled(cfs_rq))
			break;

3798
		update_cfs_shares(cfs_rq);
3799
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3800 3801
	}

3802
	if (!se) {
3803
		dec_nr_running(rq);
3804 3805
		update_rq_runnable_avg(rq, 1);
	}
3806
	hrtick_update(rq);
3807 3808
}

3809
#ifdef CONFIG_SMP
3810 3811 3812
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3813
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3858
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3859 3860

	if (nr_running)
3861
		return load_avg / nr_running;
3862 3863 3864 3865

	return 0;
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3883

3884
static void task_waking_fair(struct task_struct *p)
3885 3886 3887
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3888 3889 3890 3891
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3892

3893 3894 3895 3896 3897 3898 3899 3900
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3901

3902
	se->vruntime -= min_vruntime;
3903
	record_wakee(p);
3904 3905
}

3906
#ifdef CONFIG_FAIR_GROUP_SCHED
3907 3908 3909 3910 3911 3912
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3956
 */
P
Peter Zijlstra 已提交
3957
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3958
{
P
Peter Zijlstra 已提交
3959
	struct sched_entity *se = tg->se[cpu];
3960

3961
	if (!tg->parent)	/* the trivial, non-cgroup case */
3962 3963
		return wl;

P
Peter Zijlstra 已提交
3964
	for_each_sched_entity(se) {
3965
		long w, W;
P
Peter Zijlstra 已提交
3966

3967
		tg = se->my_q->tg;
3968

3969 3970 3971 3972
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3973

3974 3975 3976 3977
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3978

3979 3980 3981 3982 3983
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3984 3985
		else
			wl = tg->shares;
3986

3987 3988 3989 3990 3991
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3992 3993
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3994 3995 3996 3997

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3998
		wl -= se->load.weight;
3999 4000 4001 4002 4003 4004 4005 4006

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4007 4008
		wg = 0;
	}
4009

P
Peter Zijlstra 已提交
4010
	return wl;
4011 4012
}
#else
P
Peter Zijlstra 已提交
4013

4014
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4015
{
4016
	return wl;
4017
}
P
Peter Zijlstra 已提交
4018

4019 4020
#endif

4021 4022
static int wake_wide(struct task_struct *p)
{
4023
	int factor = this_cpu_read(sd_llc_size);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4043
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4044
{
4045
	s64 this_load, load;
4046
	int idx, this_cpu, prev_cpu;
4047
	unsigned long tl_per_task;
4048
	struct task_group *tg;
4049
	unsigned long weight;
4050
	int balanced;
4051

4052 4053 4054 4055 4056 4057 4058
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4059 4060 4061 4062 4063
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4064

4065 4066 4067 4068 4069
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4070 4071 4072 4073
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4074
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4075 4076
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4077

4078 4079
	tg = task_group(p);
	weight = p->se.load.weight;
4080

4081 4082
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4083 4084 4085
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4086 4087 4088 4089
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4090 4091
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4105

4106
	/*
I
Ingo Molnar 已提交
4107 4108 4109
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4110
	 */
4111 4112
	if (sync && balanced)
		return 1;
4113

4114
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4115 4116
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4117 4118 4119
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4120 4121 4122 4123 4124
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4125
		schedstat_inc(sd, ttwu_move_affine);
4126
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4127 4128 4129 4130 4131 4132

		return 1;
	}
	return 0;
}

4133 4134 4135 4136 4137
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4138
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4139
		  int this_cpu, int sd_flag)
4140
{
4141
	struct sched_group *idlest = NULL, *group = sd->groups;
4142
	unsigned long min_load = ULONG_MAX, this_load = 0;
4143
	int load_idx = sd->forkexec_idx;
4144
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4145

4146 4147 4148
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4149 4150 4151 4152
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4153

4154 4155
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4156
					tsk_cpus_allowed(p)))
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4176
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4202
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4203 4204 4205 4206 4207
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4208 4209 4210
		}
	}

4211 4212
	return idlest;
}
4213

4214 4215 4216
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4217
static int select_idle_sibling(struct task_struct *p, int target)
4218
{
4219
	struct sched_domain *sd;
4220
	struct sched_group *sg;
4221
	int i = task_cpu(p);
4222

4223 4224
	if (idle_cpu(target))
		return target;
4225 4226

	/*
4227
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4228
	 */
4229 4230
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4231 4232

	/*
4233
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4234
	 */
4235
	sd = rcu_dereference(per_cpu(sd_llc, target));
4236
	for_each_lower_domain(sd) {
4237 4238 4239 4240 4241 4242 4243
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4244
				if (i == target || !idle_cpu(i))
4245 4246
					goto next;
			}
4247

4248 4249 4250 4251 4252 4253 4254 4255
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4256 4257 4258
	return target;
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4270
static int
4271
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4272
{
4273
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4274 4275
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4276
	int want_affine = 0;
4277
	int sync = wake_flags & WF_SYNC;
4278

4279
	if (p->nr_cpus_allowed == 1)
4280 4281
		return prev_cpu;

4282
	if (sd_flag & SD_BALANCE_WAKE) {
4283
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4284 4285 4286
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4287

4288
	rcu_read_lock();
4289
	for_each_domain(cpu, tmp) {
4290 4291 4292
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4293
		/*
4294 4295
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4296
		 */
4297 4298 4299
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4300
			break;
4301
		}
4302

4303
		if (tmp->flags & sd_flag)
4304 4305 4306
			sd = tmp;
	}

4307
	if (affine_sd) {
4308
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4309 4310 4311 4312
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4313
	}
4314

4315 4316
	while (sd) {
		struct sched_group *group;
4317
		int weight;
4318

4319
		if (!(sd->flags & sd_flag)) {
4320 4321 4322
			sd = sd->child;
			continue;
		}
4323

4324
		group = find_idlest_group(sd, p, cpu, sd_flag);
4325 4326 4327 4328
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4329

4330
		new_cpu = find_idlest_cpu(group, p, cpu);
4331 4332 4333 4334
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4335
		}
4336 4337 4338

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4339
		weight = sd->span_weight;
4340 4341
		sd = NULL;
		for_each_domain(cpu, tmp) {
4342
			if (weight <= tmp->span_weight)
4343
				break;
4344
			if (tmp->flags & sd_flag)
4345 4346 4347
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4348
	}
4349 4350
unlock:
	rcu_read_unlock();
4351

4352
	return new_cpu;
4353
}
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4375 4376
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4377
	}
4378
}
4379 4380
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4381 4382
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4383 4384 4385 4386
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4387 4388
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4398
	 */
4399
	return calc_delta_fair(gran, se);
4400 4401
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4424
	gran = wakeup_gran(curr, se);
4425 4426 4427 4428 4429 4430
	if (vdiff > gran)
		return 1;

	return 0;
}

4431 4432
static void set_last_buddy(struct sched_entity *se)
{
4433 4434 4435 4436 4437
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4438 4439 4440 4441
}

static void set_next_buddy(struct sched_entity *se)
{
4442 4443 4444 4445 4446
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4447 4448
}

4449 4450
static void set_skip_buddy(struct sched_entity *se)
{
4451 4452
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4453 4454
}

4455 4456 4457
/*
 * Preempt the current task with a newly woken task if needed:
 */
4458
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4459 4460
{
	struct task_struct *curr = rq->curr;
4461
	struct sched_entity *se = &curr->se, *pse = &p->se;
4462
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4463
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4464
	int next_buddy_marked = 0;
4465

I
Ingo Molnar 已提交
4466 4467 4468
	if (unlikely(se == pse))
		return;

4469
	/*
4470
	 * This is possible from callers such as move_task(), in which we
4471 4472 4473 4474 4475 4476 4477
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4478
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4479
		set_next_buddy(pse);
4480 4481
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4482

4483 4484 4485
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4486 4487 4488 4489 4490 4491
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4492 4493 4494 4495
	 */
	if (test_tsk_need_resched(curr))
		return;

4496 4497 4498 4499 4500
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4501
	/*
4502 4503
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4504
	 */
4505
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4506
		return;
4507

4508
	find_matching_se(&se, &pse);
4509
	update_curr(cfs_rq_of(se));
4510
	BUG_ON(!pse);
4511 4512 4513 4514 4515 4516 4517
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4518
		goto preempt;
4519
	}
4520

4521
	return;
4522

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4539 4540
}

4541
static struct task_struct *pick_next_task_fair(struct rq *rq)
4542
{
P
Peter Zijlstra 已提交
4543
	struct task_struct *p;
4544 4545 4546
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4547
	if (!cfs_rq->nr_running)
4548 4549 4550
		return NULL;

	do {
4551
		se = pick_next_entity(cfs_rq);
4552
		set_next_entity(cfs_rq, se);
4553 4554 4555
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4556
	p = task_of(se);
4557 4558
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4559 4560

	return p;
4561 4562 4563 4564 4565
}

/*
 * Account for a descheduled task:
 */
4566
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4567 4568 4569 4570 4571 4572
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4573
		put_prev_entity(cfs_rq, se);
4574 4575 4576
	}
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4602 4603 4604 4605 4606 4607
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4608 4609 4610 4611 4612
	}

	set_skip_buddy(se);
}

4613 4614 4615 4616
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4617 4618
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4629
#ifdef CONFIG_SMP
4630
/**************************************************
P
Peter Zijlstra 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4747

4748 4749
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4750 4751
enum fbq_type { regular, remote, all };

4752
#define LBF_ALL_PINNED	0x01
4753
#define LBF_NEED_BREAK	0x02
4754 4755
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4756 4757 4758 4759 4760

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4761
	int			src_cpu;
4762 4763 4764 4765

	int			dst_cpu;
	struct rq		*dst_rq;

4766 4767
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4768
	enum cpu_idle_type	idle;
4769
	long			imbalance;
4770 4771 4772
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4773
	unsigned int		flags;
4774 4775 4776 4777

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4778 4779

	enum fbq_type		fbq_type;
4780 4781
};

4782
/*
4783
 * move_task - move a task from one runqueue to another runqueue.
4784 4785
 * Both runqueues must be locked.
 */
4786
static void move_task(struct task_struct *p, struct lb_env *env)
4787
{
4788 4789 4790 4791
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4792 4793
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4826 4827 4828 4829 4830 4831
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

4832
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4833 4834 4835 4836 4837 4838 4839
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4840
	if (src_nid == dst_nid)
4841 4842
		return false;

4843 4844 4845 4846
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

4847 4848 4849
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4850 4851 4852 4853
		return true;

	return false;
}
4854 4855 4856 4857 4858 4859 4860 4861 4862


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

4863
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4864 4865 4866 4867 4868
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4869
	if (src_nid == dst_nid)
4870 4871
		return false;

4872 4873 4874 4875
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

4876 4877 4878
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
4879 4880 4881 4882 4883
		return true;

	return false;
}

4884 4885 4886 4887 4888 4889
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4890 4891 4892 4893 4894 4895

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4896 4897
#endif

4898 4899 4900 4901
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
4902
int can_migrate_task(struct task_struct *p, struct lb_env *env)
4903 4904 4905 4906
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
4907
	 * 1) throttled_lb_pair, or
4908
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4909 4910
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
4911
	 */
4912 4913 4914
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

4915
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4916
		int cpu;
4917

4918
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4919

4920 4921
		env->flags |= LBF_SOME_PINNED;

4922 4923 4924 4925 4926 4927 4928 4929
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
4930
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4931 4932
			return 0;

4933 4934 4935
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4936
				env->flags |= LBF_DST_PINNED;
4937 4938 4939
				env->new_dst_cpu = cpu;
				break;
			}
4940
		}
4941

4942 4943
		return 0;
	}
4944 4945

	/* Record that we found atleast one task that could run on dst_cpu */
4946
	env->flags &= ~LBF_ALL_PINNED;
4947

4948
	if (task_running(env->src_rq, p)) {
4949
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4950 4951 4952 4953 4954
		return 0;
	}

	/*
	 * Aggressive migration if:
4955 4956 4957
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
4958
	 */
4959
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4960 4961
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

4973
	if (!tsk_cache_hot ||
4974
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4975

4976
		if (tsk_cache_hot) {
4977
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4978
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4979
		}
Z
Zhang Hang 已提交
4980

4981 4982 4983
		return 1;
	}

Z
Zhang Hang 已提交
4984 4985
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4986 4987
}

4988 4989 4990 4991 4992 4993 4994
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4995
static int move_one_task(struct lb_env *env)
4996 4997 4998
{
	struct task_struct *p, *n;

4999 5000 5001
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5002

5003 5004 5005 5006 5007 5008 5009 5010
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5011 5012 5013 5014
	}
	return 0;
}

5015 5016
static const unsigned int sched_nr_migrate_break = 32;

5017
/*
5018
 * move_tasks tries to move up to imbalance weighted load from busiest to
5019 5020 5021 5022 5023 5024
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5025
{
5026 5027
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5028 5029
	unsigned long load;
	int pulled = 0;
5030

5031
	if (env->imbalance <= 0)
5032
		return 0;
5033

5034 5035
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5036

5037 5038
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5039
		if (env->loop > env->loop_max)
5040
			break;
5041 5042

		/* take a breather every nr_migrate tasks */
5043
		if (env->loop > env->loop_break) {
5044
			env->loop_break += sched_nr_migrate_break;
5045
			env->flags |= LBF_NEED_BREAK;
5046
			break;
5047
		}
5048

5049
		if (!can_migrate_task(p, env))
5050 5051 5052
			goto next;

		load = task_h_load(p);
5053

5054
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5055 5056
			goto next;

5057
		if ((load / 2) > env->imbalance)
5058
			goto next;
5059

5060
		move_task(p, env);
5061
		pulled++;
5062
		env->imbalance -= load;
5063 5064

#ifdef CONFIG_PREEMPT
5065 5066 5067 5068 5069
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5070
		if (env->idle == CPU_NEWLY_IDLE)
5071
			break;
5072 5073
#endif

5074 5075 5076 5077
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5078
		if (env->imbalance <= 0)
5079
			break;
5080 5081 5082

		continue;
next:
5083
		list_move_tail(&p->se.group_node, tasks);
5084
	}
5085

5086
	/*
5087 5088 5089
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5090
	 */
5091
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5092

5093
	return pulled;
5094 5095
}

P
Peter Zijlstra 已提交
5096
#ifdef CONFIG_FAIR_GROUP_SCHED
5097 5098 5099
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5100
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5101
{
5102 5103
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5104

5105 5106 5107
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5108

5109
	update_cfs_rq_blocked_load(cfs_rq, 1);
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5125
		struct rq *rq = rq_of(cfs_rq);
5126 5127
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5128 5129
}

5130
static void update_blocked_averages(int cpu)
5131 5132
{
	struct rq *rq = cpu_rq(cpu);
5133 5134
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5135

5136 5137
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5138 5139 5140 5141
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5142
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5143 5144 5145 5146 5147 5148
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5149
	}
5150 5151

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5152 5153
}

5154
/*
5155
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5156 5157 5158
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5159
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5160
{
5161 5162
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5163
	unsigned long now = jiffies;
5164
	unsigned long load;
5165

5166
	if (cfs_rq->last_h_load_update == now)
5167 5168
		return;

5169 5170 5171 5172 5173 5174 5175
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5176

5177
	if (!se) {
5178
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5190 5191
}

5192
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5193
{
5194
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5195

5196
	update_cfs_rq_h_load(cfs_rq);
5197 5198
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5199 5200
}
#else
5201
static inline void update_blocked_averages(int cpu)
5202 5203 5204
{
}

5205
static unsigned long task_h_load(struct task_struct *p)
5206
{
5207
	return p->se.avg.load_avg_contrib;
5208
}
P
Peter Zijlstra 已提交
5209
#endif
5210 5211 5212 5213 5214 5215 5216 5217 5218

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5219
	unsigned long load_per_task;
5220
	unsigned long group_power;
5221 5222 5223 5224
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5225
	int group_imb; /* Is there an imbalance in the group ? */
5226
	int group_has_capacity; /* Is there extra capacity in the group? */
5227 5228 5229 5230
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5231 5232
};

J
Joonsoo Kim 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5245
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5246 5247
};

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5267 5268 5269
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5270
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5271 5272
 *
 * Return: The load index.
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5295
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5296
{
5297
	return SCHED_POWER_SCALE;
5298 5299 5300 5301 5302 5303 5304
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5305
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5306
{
5307
	unsigned long weight = sd->span_weight;
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5320
static unsigned long scale_rt_power(int cpu)
5321 5322
{
	struct rq *rq = cpu_rq(cpu);
5323
	u64 total, available, age_stamp, avg;
5324

5325 5326 5327 5328 5329 5330 5331
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5332
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5333

5334
	if (unlikely(total < avg)) {
5335 5336 5337
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5338
		available = total - avg;
5339
	}
5340

5341 5342
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5343

5344
	total >>= SCHED_POWER_SHIFT;
5345 5346 5347 5348 5349 5350

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5351
	unsigned long weight = sd->span_weight;
5352
	unsigned long power = SCHED_POWER_SCALE;
5353 5354 5355 5356 5357 5358 5359 5360
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5361
		power >>= SCHED_POWER_SHIFT;
5362 5363
	}

5364
	sdg->sgp->power_orig = power;
5365 5366 5367 5368 5369 5370

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5371
	power >>= SCHED_POWER_SHIFT;
5372

5373
	power *= scale_rt_power(cpu);
5374
	power >>= SCHED_POWER_SHIFT;
5375 5376 5377 5378

	if (!power)
		power = 1;

5379
	cpu_rq(cpu)->cpu_power = power;
5380
	sdg->sgp->power = power;
5381 5382
}

5383
void update_group_power(struct sched_domain *sd, int cpu)
5384 5385 5386
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5387
	unsigned long power, power_orig;
5388 5389 5390 5391 5392
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5393 5394 5395 5396 5397 5398

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5399
	power_orig = power = 0;
5400

P
Peter Zijlstra 已提交
5401 5402 5403 5404 5405 5406
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5407
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5408 5409
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5429

5430 5431 5432
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5433
		}
P
Peter Zijlstra 已提交
5434 5435 5436 5437 5438 5439 5440 5441
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5442
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5443 5444 5445 5446
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5447

5448 5449
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5450 5451
}

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5463
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5464
	 */
P
Peter Zijlstra 已提交
5465
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5466 5467 5468 5469 5470
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5471
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5472 5473 5474 5475 5476
		return 1;

	return 0;
}

5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5493 5494
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5495 5496
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5497
 * update_sd_pick_busiest(). And calculate_imbalance() and
5498
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5499 5500 5501 5502 5503 5504 5505
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5506
static inline int sg_imbalanced(struct sched_group *group)
5507
{
5508
	return group->sgp->imbalance;
5509 5510
}

5511 5512 5513
/*
 * Compute the group capacity.
 *
5514 5515 5516
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5517 5518 5519
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5520 5521 5522 5523 5524 5525
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5526

5527 5528 5529
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5530

5531
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5532 5533 5534 5535 5536 5537
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5538 5539
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5540
 * @env: The load balancing environment.
5541 5542 5543 5544 5545
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5546 5547
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5548
			int local_group, struct sg_lb_stats *sgs)
5549
{
5550
	unsigned long load;
5551
	int i;
5552

5553 5554
	memset(sgs, 0, sizeof(*sgs));

5555
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5556 5557 5558
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5559
		if (local_group)
5560
			load = target_load(i, load_idx);
5561
		else
5562 5563 5564
			load = source_load(i, load_idx);

		sgs->group_load += load;
5565
		sgs->sum_nr_running += rq->nr_running;
5566 5567 5568 5569
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5570
		sgs->sum_weighted_load += weighted_cpuload(i);
5571 5572
		if (idle_cpu(i))
			sgs->idle_cpus++;
5573 5574 5575
	}

	/* Adjust by relative CPU power of the group */
5576 5577
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5578

5579
	if (sgs->sum_nr_running)
5580
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5581

5582
	sgs->group_weight = group->group_weight;
5583

5584 5585 5586
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5587 5588
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5589 5590
}

5591 5592
/**
 * update_sd_pick_busiest - return 1 on busiest group
5593
 * @env: The load balancing environment.
5594 5595
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5596
 * @sgs: sched_group statistics
5597 5598 5599
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5600 5601 5602
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5603
 */
5604
static bool update_sd_pick_busiest(struct lb_env *env,
5605 5606
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5607
				   struct sg_lb_stats *sgs)
5608
{
J
Joonsoo Kim 已提交
5609
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5623 5624
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5665
/**
5666
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5667
 * @env: The load balancing environment.
5668 5669
 * @sds: variable to hold the statistics for this sched_domain.
 */
5670
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5671
{
5672 5673
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5674
	struct sg_lb_stats tmp_sgs;
5675 5676 5677 5678 5679
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5680
	load_idx = get_sd_load_idx(env->sd, env->idle);
5681 5682

	do {
J
Joonsoo Kim 已提交
5683
		struct sg_lb_stats *sgs = &tmp_sgs;
5684 5685
		int local_group;

5686
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5687 5688 5689
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5690 5691 5692 5693

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5694
		}
5695

J
Joonsoo Kim 已提交
5696
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5697

5698 5699 5700
		if (local_group)
			goto next_group;

5701 5702
		/*
		 * In case the child domain prefers tasks go to siblings
5703
		 * first, lower the sg capacity to one so that we'll try
5704 5705 5706 5707 5708 5709
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5710
		 */
5711 5712
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5713
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5714

5715
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5716
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5717
			sds->busiest_stat = *sgs;
5718 5719
		}

5720 5721 5722 5723 5724
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5725
		sg = sg->next;
5726
	} while (sg != env->sd->groups);
5727 5728 5729

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5749
 * Return: 1 when packing is required and a task should be moved to
5750 5751
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5752
 * @env: The load balancing environment.
5753 5754
 * @sds: Statistics of the sched_domain which is to be packed
 */
5755
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5756 5757 5758
{
	int busiest_cpu;

5759
	if (!(env->sd->flags & SD_ASYM_PACKING))
5760 5761 5762 5763 5764 5765
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5766
	if (env->dst_cpu > busiest_cpu)
5767 5768
		return 0;

5769
	env->imbalance = DIV_ROUND_CLOSEST(
5770 5771
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5772

5773
	return 1;
5774 5775 5776 5777 5778 5779
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5780
 * @env: The load balancing environment.
5781 5782
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5783 5784
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5785 5786 5787
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5788
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5789
	struct sg_lb_stats *local, *busiest;
5790

J
Joonsoo Kim 已提交
5791 5792
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5793

J
Joonsoo Kim 已提交
5794 5795 5796 5797
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5798

J
Joonsoo Kim 已提交
5799 5800
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5801
		busiest->group_power;
J
Joonsoo Kim 已提交
5802

5803 5804
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5805
		env->imbalance = busiest->load_per_task;
5806 5807 5808 5809 5810 5811 5812 5813 5814
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5815
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5816
			min(busiest->load_per_task, busiest->avg_load);
5817
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5818
			min(local->load_per_task, local->avg_load);
5819
	pwr_now /= SCHED_POWER_SCALE;
5820 5821

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5822
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5823
		busiest->group_power;
J
Joonsoo Kim 已提交
5824
	if (busiest->avg_load > tmp) {
5825
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5826 5827 5828
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5829 5830

	/* Amount of load we'd add */
5831
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5832
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5833 5834
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5835 5836
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5837
		      local->group_power;
J
Joonsoo Kim 已提交
5838
	}
5839 5840
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5841
	pwr_move /= SCHED_POWER_SCALE;
5842 5843 5844

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5845
		env->imbalance = busiest->load_per_task;
5846 5847 5848 5849 5850
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5851
 * @env: load balance environment
5852 5853
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5854
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5855
{
5856
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5857 5858 5859 5860
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5861

J
Joonsoo Kim 已提交
5862
	if (busiest->group_imb) {
5863 5864 5865 5866
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5867 5868
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5869 5870
	}

5871 5872 5873 5874 5875
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
5876 5877
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
5878 5879
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
5880 5881
	}

J
Joonsoo Kim 已提交
5882
	if (!busiest->group_imb) {
5883 5884
		/*
		 * Don't want to pull so many tasks that a group would go idle.
5885 5886
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
5887
		 */
J
Joonsoo Kim 已提交
5888 5889
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
5890

5891
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5892
		load_above_capacity /= busiest->group_power;
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
5903
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5904 5905

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
5906
	env->imbalance = min(
5907 5908
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
5909
	) / SCHED_POWER_SCALE;
5910 5911 5912

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
5913
	 * there is no guarantee that any tasks will be moved so we'll have
5914 5915 5916
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
5917
	if (env->imbalance < busiest->load_per_task)
5918
		return fix_small_imbalance(env, sds);
5919
}
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
5933
 * @env: The load balancing environment.
5934
 *
5935
 * Return:	- The busiest group if imbalance exists.
5936 5937 5938 5939
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
5940
static struct sched_group *find_busiest_group(struct lb_env *env)
5941
{
J
Joonsoo Kim 已提交
5942
	struct sg_lb_stats *local, *busiest;
5943 5944
	struct sd_lb_stats sds;

5945
	init_sd_lb_stats(&sds);
5946 5947 5948 5949 5950

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
5951
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
5952 5953
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
5954

5955 5956
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
5957 5958
		return sds.busiest;

5959
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
5960
	if (!sds.busiest || busiest->sum_nr_running == 0)
5961 5962
		goto out_balanced;

5963
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5964

P
Peter Zijlstra 已提交
5965 5966
	/*
	 * If the busiest group is imbalanced the below checks don't
5967
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
5968 5969
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
5970
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
5971 5972
		goto force_balance;

5973
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
5974 5975
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
5976 5977
		goto force_balance;

5978 5979 5980 5981
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
5982
	if (local->avg_load >= busiest->avg_load)
5983 5984
		goto out_balanced;

5985 5986 5987 5988
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
5989
	if (local->avg_load >= sds.avg_load)
5990 5991
		goto out_balanced;

5992
	if (env->idle == CPU_IDLE) {
5993 5994 5995 5996 5997 5998
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
5999 6000
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6001
			goto out_balanced;
6002 6003 6004 6005 6006
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6007 6008
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6009
			goto out_balanced;
6010
	}
6011

6012
force_balance:
6013
	/* Looks like there is an imbalance. Compute it */
6014
	calculate_imbalance(env, &sds);
6015 6016 6017
	return sds.busiest;

out_balanced:
6018
	env->imbalance = 0;
6019 6020 6021 6022 6023 6024
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6025
static struct rq *find_busiest_queue(struct lb_env *env,
6026
				     struct sched_group *group)
6027 6028
{
	struct rq *busiest = NULL, *rq;
6029
	unsigned long busiest_load = 0, busiest_power = 1;
6030 6031
	int i;

6032
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6033 6034 6035 6036 6037
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6038

6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6063
		if (!capacity)
6064
			capacity = fix_small_capacity(env->sd, group);
6065

6066
		wl = weighted_cpuload(i);
6067

6068 6069 6070 6071
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6072
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6073 6074
			continue;

6075 6076 6077 6078 6079
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6080 6081 6082 6083 6084
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6085
		 */
6086 6087 6088
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6103
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6104

6105
static int need_active_balance(struct lb_env *env)
6106
{
6107 6108 6109
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6110 6111 6112 6113 6114 6115

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6116
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6117
			return 1;
6118 6119 6120 6121 6122
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6123 6124
static int active_load_balance_cpu_stop(void *data);

6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6156
	return balance_cpu == env->dst_cpu;
6157 6158
}

6159 6160 6161 6162 6163 6164
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6165
			int *continue_balancing)
6166
{
6167
	int ld_moved, cur_ld_moved, active_balance = 0;
6168
	struct sched_domain *sd_parent = sd->parent;
6169 6170 6171
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6172
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6173

6174 6175
	struct lb_env env = {
		.sd		= sd,
6176 6177
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6178
		.dst_grpmask    = sched_group_cpus(sd->groups),
6179
		.idle		= idle,
6180
		.loop_break	= sched_nr_migrate_break,
6181
		.cpus		= cpus,
6182
		.fbq_type	= all,
6183 6184
	};

6185 6186 6187 6188
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6189
	if (idle == CPU_NEWLY_IDLE)
6190 6191
		env.dst_grpmask = NULL;

6192 6193 6194 6195 6196
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6197 6198
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6199
		goto out_balanced;
6200
	}
6201

6202
	group = find_busiest_group(&env);
6203 6204 6205 6206 6207
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6208
	busiest = find_busiest_queue(&env, group);
6209 6210 6211 6212 6213
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6214
	BUG_ON(busiest == env.dst_rq);
6215

6216
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6217 6218 6219 6220 6221 6222 6223 6224 6225

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6226
		env.flags |= LBF_ALL_PINNED;
6227 6228 6229
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6230

6231
more_balance:
6232
		local_irq_save(flags);
6233
		double_rq_lock(env.dst_rq, busiest);
6234 6235 6236 6237 6238 6239 6240

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6241
		double_rq_unlock(env.dst_rq, busiest);
6242 6243 6244 6245 6246
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6247 6248 6249
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6250 6251 6252 6253 6254
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6274
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6275

6276 6277 6278
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6279
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6280
			env.dst_cpu	 = env.new_dst_cpu;
6281
			env.flags	&= ~LBF_DST_PINNED;
6282 6283
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6284

6285 6286 6287 6288 6289 6290
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6291

6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6304
		/* All tasks on this runqueue were pinned by CPU affinity */
6305
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6306
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6307 6308 6309
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6310
				goto redo;
6311
			}
6312 6313 6314 6315 6316 6317
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6318 6319 6320 6321 6322 6323 6324 6325
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6326

6327
		if (need_active_balance(&env)) {
6328 6329
			raw_spin_lock_irqsave(&busiest->lock, flags);

6330 6331 6332
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6333 6334
			 */
			if (!cpumask_test_cpu(this_cpu,
6335
					tsk_cpus_allowed(busiest->curr))) {
6336 6337
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6338
				env.flags |= LBF_ALL_PINNED;
6339 6340 6341
				goto out_one_pinned;
			}

6342 6343 6344 6345 6346
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6347 6348 6349 6350 6351 6352
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6353

6354
			if (active_balance) {
6355 6356 6357
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6358
			}
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6392
	if (((env.flags & LBF_ALL_PINNED) &&
6393
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6394 6395 6396
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6397
	ld_moved = 0;
6398 6399 6400 6401 6402 6403 6404 6405
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6406
void idle_balance(int this_cpu, struct rq *this_rq)
6407 6408 6409 6410
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6411
	u64 curr_cost = 0;
6412

6413
	this_rq->idle_stamp = rq_clock(this_rq);
6414 6415 6416 6417

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6418 6419 6420 6421 6422
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6423
	update_blocked_averages(this_cpu);
6424
	rcu_read_lock();
6425 6426
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6427
		int continue_balancing = 1;
6428
		u64 t0, domain_cost;
6429 6430 6431 6432

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6433 6434 6435
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6436
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6437 6438
			t0 = sched_clock_cpu(this_cpu);

6439
			/* If we've pulled tasks over stop searching: */
6440
			pulled_task = load_balance(this_cpu, this_rq,
6441 6442
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6443 6444 6445 6446 6447 6448

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6449
		}
6450 6451 6452 6453

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6454 6455
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6456
			break;
N
Nikhil Rao 已提交
6457
		}
6458
	}
6459
	rcu_read_unlock();
6460 6461 6462

	raw_spin_lock(&this_rq->lock);

6463 6464 6465 6466 6467 6468 6469
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6470 6471 6472

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6473 6474 6475
}

/*
6476 6477 6478 6479
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6480
 */
6481
static int active_load_balance_cpu_stop(void *data)
6482
{
6483 6484
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6485
	int target_cpu = busiest_rq->push_cpu;
6486
	struct rq *target_rq = cpu_rq(target_cpu);
6487
	struct sched_domain *sd;
6488 6489 6490 6491 6492 6493 6494

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6495 6496 6497

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6498
		goto out_unlock;
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6511
	rcu_read_lock();
6512 6513 6514 6515 6516 6517 6518
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6519 6520
		struct lb_env env = {
			.sd		= sd,
6521 6522 6523 6524
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6525 6526 6527
			.idle		= CPU_IDLE,
		};

6528 6529
		schedstat_inc(sd, alb_count);

6530
		if (move_one_task(&env))
6531 6532 6533 6534
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6535
	rcu_read_unlock();
6536
	double_unlock_balance(busiest_rq, target_rq);
6537 6538 6539 6540
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6541 6542
}

6543
#ifdef CONFIG_NO_HZ_COMMON
6544 6545 6546 6547 6548 6549
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6550
static struct {
6551
	cpumask_var_t idle_cpus_mask;
6552
	atomic_t nr_cpus;
6553 6554
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6555

6556
static inline int find_new_ilb(void)
6557
{
6558
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6559

6560 6561 6562 6563
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6564 6565
}

6566 6567 6568 6569 6570
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6571
static void nohz_balancer_kick(void)
6572 6573 6574 6575 6576
{
	int ilb_cpu;

	nohz.next_balance++;

6577
	ilb_cpu = find_new_ilb();
6578

6579 6580
	if (ilb_cpu >= nr_cpu_ids)
		return;
6581

6582
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6583 6584 6585 6586 6587 6588 6589 6590
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6591 6592 6593
	return;
}

6594
static inline void nohz_balance_exit_idle(int cpu)
6595 6596 6597 6598 6599 6600 6601 6602
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6603 6604 6605
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6606
	int cpu = smp_processor_id();
6607 6608

	rcu_read_lock();
6609
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6610 6611 6612 6613 6614

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6615
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6616
unlock:
6617 6618 6619 6620 6621 6622
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6623
	int cpu = smp_processor_id();
6624 6625

	rcu_read_lock();
6626
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6627 6628 6629 6630 6631

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6632
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6633
unlock:
6634 6635 6636
	rcu_read_unlock();
}

6637
/*
6638
 * This routine will record that the cpu is going idle with tick stopped.
6639
 * This info will be used in performing idle load balancing in the future.
6640
 */
6641
void nohz_balance_enter_idle(int cpu)
6642
{
6643 6644 6645 6646 6647 6648
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6649 6650
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6651

6652 6653 6654
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6655
}
6656

6657
static int sched_ilb_notifier(struct notifier_block *nfb,
6658 6659 6660 6661
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6662
		nohz_balance_exit_idle(smp_processor_id());
6663 6664 6665 6666 6667
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6668 6669 6670 6671
#endif

static DEFINE_SPINLOCK(balancing);

6672 6673 6674 6675
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6676
void update_max_interval(void)
6677 6678 6679 6680
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6681 6682 6683 6684
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6685
 * Balancing parameters are set up in init_sched_domains.
6686
 */
6687
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6688
{
6689
	int continue_balancing = 1;
6690
	int cpu = rq->cpu;
6691
	unsigned long interval;
6692
	struct sched_domain *sd;
6693 6694 6695
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6696 6697
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6698

6699
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6700

6701
	rcu_read_lock();
6702
	for_each_domain(cpu, sd) {
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6715 6716 6717
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6729 6730 6731 6732 6733 6734
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6735
		interval = clamp(interval, 1UL, max_load_balance_interval);
6736 6737 6738 6739 6740 6741 6742 6743 6744

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6745
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6746
				/*
6747
				 * The LBF_DST_PINNED logic could have changed
6748 6749
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6750
				 */
6751
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6762 6763
	}
	if (need_decay) {
6764
		/*
6765 6766
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6767
		 */
6768 6769
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6770
	}
6771
	rcu_read_unlock();
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6782
#ifdef CONFIG_NO_HZ_COMMON
6783
/*
6784
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6785 6786
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6787
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6788
{
6789
	int this_cpu = this_rq->cpu;
6790 6791 6792
	struct rq *rq;
	int balance_cpu;

6793 6794 6795
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6796 6797

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6798
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6799 6800 6801 6802 6803 6804 6805
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6806
		if (need_resched())
6807 6808
			break;

V
Vincent Guittot 已提交
6809 6810 6811 6812 6813 6814
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6815

6816
		rebalance_domains(rq, CPU_IDLE);
6817 6818 6819 6820 6821

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6822 6823
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6824 6825 6826
}

/*
6827 6828 6829 6830 6831 6832 6833
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6834
 */
6835
static inline int nohz_kick_needed(struct rq *rq)
6836 6837
{
	unsigned long now = jiffies;
6838
	struct sched_domain *sd;
6839
	struct sched_group_power *sgp;
6840
	int nr_busy, cpu = rq->cpu;
6841

6842
	if (unlikely(rq->idle_balance))
6843 6844
		return 0;

6845 6846 6847 6848
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6849
	set_cpu_sd_state_busy();
6850
	nohz_balance_exit_idle(cpu);
6851 6852 6853 6854 6855 6856 6857

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6858 6859

	if (time_before(now, nohz.next_balance))
6860 6861
		return 0;

6862 6863
	if (rq->nr_running >= 2)
		goto need_kick;
6864

6865
	rcu_read_lock();
6866
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6867

6868 6869 6870
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
6871

6872
		if (nr_busy > 1)
6873
			goto need_kick_unlock;
6874
	}
6875 6876 6877 6878 6879 6880 6881

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

6882
	rcu_read_unlock();
6883
	return 0;
6884 6885 6886

need_kick_unlock:
	rcu_read_unlock();
6887 6888
need_kick:
	return 1;
6889 6890
}
#else
6891
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
6892 6893 6894 6895 6896 6897
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
6898 6899
static void run_rebalance_domains(struct softirq_action *h)
{
6900
	struct rq *this_rq = this_rq();
6901
	enum cpu_idle_type idle = this_rq->idle_balance ?
6902 6903
						CPU_IDLE : CPU_NOT_IDLE;

6904
	rebalance_domains(this_rq, idle);
6905 6906

	/*
6907
	 * If this cpu has a pending nohz_balance_kick, then do the
6908 6909 6910
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
6911
	nohz_idle_balance(this_rq, idle);
6912 6913
}

6914
static inline int on_null_domain(struct rq *rq)
6915
{
6916
	return !rcu_dereference_sched(rq->sd);
6917 6918 6919 6920 6921
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
6922
void trigger_load_balance(struct rq *rq)
6923 6924
{
	/* Don't need to rebalance while attached to NULL domain */
6925 6926 6927 6928
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
6929
		raise_softirq(SCHED_SOFTIRQ);
6930
#ifdef CONFIG_NO_HZ_COMMON
6931
	if (nohz_kick_needed(rq))
6932
		nohz_balancer_kick();
6933
#endif
6934 6935
}

6936 6937 6938 6939 6940 6941 6942 6943
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
6944 6945 6946

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
6947 6948
}

6949
#endif /* CONFIG_SMP */
6950

6951 6952 6953
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
6954
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6955 6956 6957 6958 6959 6960
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
6961
		entity_tick(cfs_rq, se, queued);
6962
	}
6963

6964
	if (numabalancing_enabled)
6965
		task_tick_numa(rq, curr);
6966

6967
	update_rq_runnable_avg(rq, 1);
6968 6969 6970
}

/*
P
Peter Zijlstra 已提交
6971 6972 6973
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
6974
 */
P
Peter Zijlstra 已提交
6975
static void task_fork_fair(struct task_struct *p)
6976
{
6977 6978
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
6979
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
6980 6981 6982
	struct rq *rq = this_rq();
	unsigned long flags;

6983
	raw_spin_lock_irqsave(&rq->lock, flags);
6984

6985 6986
	update_rq_clock(rq);

6987 6988 6989
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

6990 6991 6992 6993 6994 6995 6996 6997 6998
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
6999

7000
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7001

7002 7003
	if (curr)
		se->vruntime = curr->vruntime;
7004
	place_entity(cfs_rq, se, 1);
7005

P
Peter Zijlstra 已提交
7006
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7007
		/*
7008 7009 7010
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7011
		swap(curr->vruntime, se->vruntime);
7012
		resched_task(rq->curr);
7013
	}
7014

7015 7016
	se->vruntime -= cfs_rq->min_vruntime;

7017
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7018 7019
}

7020 7021 7022 7023
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7024 7025
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7026
{
P
Peter Zijlstra 已提交
7027 7028 7029
	if (!p->se.on_rq)
		return;

7030 7031 7032 7033 7034
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7035
	if (rq->curr == p) {
7036 7037 7038
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7039
		check_preempt_curr(rq, p, 0);
7040 7041
}

P
Peter Zijlstra 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7064

7065
#ifdef CONFIG_SMP
7066 7067 7068 7069 7070
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7071 7072 7073
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7074 7075
	}
#endif
P
Peter Zijlstra 已提交
7076 7077
}

7078 7079 7080
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7081
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7082
{
P
Peter Zijlstra 已提交
7083 7084 7085
	if (!p->se.on_rq)
		return;

7086 7087 7088 7089 7090
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7091
	if (rq->curr == p)
7092 7093
		resched_task(rq->curr);
	else
7094
		check_preempt_curr(rq, p, 0);
7095 7096
}

7097 7098 7099 7100 7101 7102 7103 7104 7105
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7106 7107 7108 7109 7110 7111 7112
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7113 7114
}

7115 7116 7117 7118 7119 7120 7121
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7122
#ifdef CONFIG_SMP
7123
	atomic64_set(&cfs_rq->decay_counter, 1);
7124
	atomic_long_set(&cfs_rq->removed_load, 0);
7125
#endif
7126 7127
}

P
Peter Zijlstra 已提交
7128
#ifdef CONFIG_FAIR_GROUP_SCHED
7129
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7130
{
7131
	struct cfs_rq *cfs_rq;
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7145 7146 7147 7148 7149 7150
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7151 7152
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7153 7154 7155 7156
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7157
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7158 7159
		on_rq = 1;

7160 7161 7162
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
7176
}
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
7275 7276
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7307 7308 7309

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7310
		for_each_sched_entity(se)
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7332

7333
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7334 7335 7336 7337 7338 7339 7340 7341 7342
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7343
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7344 7345 7346 7347

	return rr_interval;
}

7348 7349 7350
/*
 * All the scheduling class methods:
 */
7351
const struct sched_class fair_sched_class = {
7352
	.next			= &idle_sched_class,
7353 7354 7355
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7356
	.yield_to_task		= yield_to_task_fair,
7357

I
Ingo Molnar 已提交
7358
	.check_preempt_curr	= check_preempt_wakeup,
7359 7360 7361 7362

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7363
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7364
	.select_task_rq		= select_task_rq_fair,
7365
	.migrate_task_rq	= migrate_task_rq_fair,
7366

7367 7368
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7369 7370

	.task_waking		= task_waking_fair,
7371
#endif
7372

7373
	.set_curr_task          = set_curr_task_fair,
7374
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7375
	.task_fork		= task_fork_fair,
7376 7377

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7378
	.switched_from		= switched_from_fair,
7379
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7380

7381 7382
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7383
#ifdef CONFIG_FAIR_GROUP_SCHED
7384
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7385
#endif
7386 7387 7388
};

#ifdef CONFIG_SCHED_DEBUG
7389
void print_cfs_stats(struct seq_file *m, int cpu)
7390 7391 7392
{
	struct cfs_rq *cfs_rq;

7393
	rcu_read_lock();
7394
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7395
		print_cfs_rq(m, cpu, cfs_rq);
7396
	rcu_read_unlock();
7397 7398
}
#endif
7399 7400 7401 7402 7403 7404

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7405
#ifdef CONFIG_NO_HZ_COMMON
7406
	nohz.next_balance = jiffies;
7407
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7408
	cpu_notifier(sched_ilb_notifier, 0);
7409 7410 7411 7412
#endif
#endif /* SMP */

}