intel_pm.c 227.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350
	DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 352
}

353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
368
static const int pessimal_latency_ns = 5000;
369

370 371 372
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

373
static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
			      enum pipe pipe, int plane)
{
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

424
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

439
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

455
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
472 473 474 475 476
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 478
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
479 480 481 482 483
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 485
};
static const struct intel_watermark_params pineview_cursor_wm = {
486 487 488 489 490
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 492
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493 494 495 496 497
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 499
};
static const struct intel_watermark_params g4x_wm_info = {
500 501 502 503 504
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
505 506
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
507 508 509 510 511
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
512 513
};
static const struct intel_watermark_params i965_cursor_wm_info = {
514 515 516 517 518
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params i945_wm_info = {
521 522 523 524 525
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params i915_wm_info = {
528 529 530 531 532
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
533
};
534
static const struct intel_watermark_params i830_a_wm_info = {
535 536 537 538 539
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
540
};
541 542 543 544 545 546 547
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
548
static const struct intel_watermark_params i845_wm_info = {
549 550 551 552 553
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
554 555 556 557 558 559
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
560
 * @cpp: bytes per pixel
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
576
					int fifo_size, int cpp,
577 578 579 580 581 582 583 584 585 586
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
587
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
602 603 604 605 606 607 608 609 610 611 612

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

613 614 615
	return wm_size;
}

616
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617
{
618
	struct intel_crtc *crtc, *enabled = NULL;
619

620
	for_each_intel_crtc(&dev_priv->drm, crtc) {
621
		if (intel_crtc_active(crtc)) {
622 623 624 625 626 627 628 629 630
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

631
static void pineview_update_wm(struct intel_crtc *unused_crtc)
632
{
633
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634
	struct intel_crtc *crtc;
635 636 637 638
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

639 640 641 642
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
643 644
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645
		intel_set_memory_cxsr(dev_priv, false);
646 647 648
		return;
	}

649
	crtc = single_enabled_crtc(dev_priv);
650
	if (crtc) {
651 652 653 654 655
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
656
		int clock = adjusted_mode->crtc_clock;
657 658 659 660

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
661
					cpp, latency->display_sr);
662 663
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
664
		reg |= FW_WM(wm, SR);
665 666 667 668 669 670
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->cursor_sr);
672 673
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
674
		reg |= FW_WM(wm, CURSOR_SR);
675 676 677 678 679
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
680
					cpp, latency->display_hpll_disable);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
683
		reg |= FW_WM(wm, HPLL_SR);
684 685 686 687 688
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
689
					cpp, latency->cursor_hpll_disable);
690 691
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
692
		reg |= FW_WM(wm, HPLL_CURSOR);
693 694 695
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

696
		intel_set_memory_cxsr(dev_priv, true);
697
	} else {
698
		intel_set_memory_cxsr(dev_priv, false);
699 700 701
	}
}

702
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703 704 705 706 707 708 709 710
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
711
	struct intel_crtc *crtc;
712
	const struct drm_display_mode *adjusted_mode;
713
	const struct drm_framebuffer *fb;
714
	int htotal, hdisplay, clock, cpp;
715 716 717
	int line_time_us, line_count;
	int entries, tlb_miss;

718
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
719
	if (!intel_crtc_active(crtc)) {
720 721 722 723 724
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

725 726
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729 730
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
764
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765 766 767 768 769 770 771 772
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
773
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774 775 776 777 778
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
779
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780 781 782 783 784 785 786 787 788 789 790 791
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

792
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793 794 795 796 797 798
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
799
	struct intel_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	const struct drm_framebuffer *fb;
802
	int hdisplay, htotal, cpp, clock;
803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

813
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
814 815
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
816
	clock = adjusted_mode->crtc_clock;
817
	htotal = adjusted_mode->crtc_htotal;
818 819
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
820

821
	line_time_us = max(htotal * 1000 / clock, 1);
822
	line_count = (latency_ns / line_time_us + 1000) / 1000;
823
	line_size = hdisplay * cpp;
824 825

	/* Use the minimum of the small and large buffer method for primary */
826
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
827 828 829 830 831 832
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
833
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834 835 836
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

837
	return g4x_check_srwm(dev_priv,
838 839 840 841
			      *display_wm, *cursor_wm,
			      display, cursor);
}

842 843 844
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

845 846 847 848 849 850 851 852 853 854 855 856
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

857
	I915_WRITE(DSPFW1,
858 859 860 861
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
862
	I915_WRITE(DSPFW2,
863 864 865
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
866
	I915_WRITE(DSPFW3,
867
		   FW_WM(wm->sr.cursor, CURSOR_SR));
868 869 870

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
871 872
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873
		I915_WRITE(DSPFW8_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
876
		I915_WRITE(DSPFW9_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
879
		I915_WRITE(DSPHOWM,
880 881 882 883 884 885 886 887 888 889
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890 891
	} else {
		I915_WRITE(DSPFW7,
892 893
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
894
		I915_WRITE(DSPHOWM,
895 896 897 898 899 900 901
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
902 903
	}

904 905 906 907 908 909
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

910
	POSTING_READ(DSPFW1);
911 912
}

913 914
#undef FW_WM_VLV

915 916 917 918 919 920
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

921 922 923 924
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
925
				   unsigned int cpp,
926 927 928 929 930
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931
	ret = (ret + 1) * horiz_pixels * cpp;
932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

937
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 939 940 941
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

963
	if (!state->base.visible)
964 965
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1005
		if (state->base.visible) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1021
		if (!state->base.visible) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061 1062
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
1063 1064
		const int sr_fifo_size =
			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1091
static void vlv_compute_wm(struct intel_crtc *crtc)
1092 1093
{
	struct drm_device *dev = crtc->base.dev;
1094
	struct drm_i915_private *dev_priv = to_i915(dev);
1095 1096
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
1097
	int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1098 1099 1100 1101
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1102
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1103
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1104 1105 1106

	wm_state->num_active_planes = 0;

1107
	vlv_compute_fifo(crtc);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1123
		if (!state->base.visible)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1164
					wm_state->wm[level].cursor;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1183
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1184 1185 1186 1187 1188 1189 1190
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1281 1282 1283 1284 1285 1286
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1287
	wm->level = to_i915(dev)->wm.max_level;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1306 1307 1308
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1327
static void vlv_update_wm(struct intel_crtc *crtc)
1328
{
1329
	struct drm_device *dev = crtc->base.dev;
1330
	struct drm_i915_private *dev_priv = to_i915(dev);
1331
	enum pipe pipe = crtc->pipe;
1332 1333
	struct vlv_wm_values wm = {};

1334
	vlv_compute_wm(crtc);
1335 1336
	vlv_merge_wm(dev, &wm);

1337 1338
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1339
		vlv_pipe_set_fifo_size(crtc);
1340
		return;
1341
	}
1342 1343 1344 1345 1346 1347 1348 1349 1350

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1351
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1352 1353
		intel_set_memory_cxsr(dev_priv, false);

1354
	/* FIXME should be part of crtc atomic commit */
1355
	vlv_pipe_set_fifo_size(crtc);
1356

1357
	vlv_write_wm_values(crtc, &wm);
1358 1359 1360 1361 1362 1363 1364

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1365
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1377 1378
}

1379 1380
#define single_plane_enabled(mask) is_power_of_2(mask)

1381
static void g4x_update_wm(struct intel_crtc *crtc)
1382
{
1383
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1384 1385 1386 1387
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1388
	bool cxsr_enabled;
1389

1390
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1391 1392
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1393
			    &planea_wm, &cursora_wm))
1394
		enabled |= 1 << PIPE_A;
1395

1396
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1397 1398
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399
			    &planeb_wm, &cursorb_wm))
1400
		enabled |= 1 << PIPE_B;
1401 1402

	if (single_plane_enabled(enabled) &&
1403
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1404 1405 1406
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1407
			     &plane_sr, &cursor_sr)) {
1408
		cxsr_enabled = true;
1409
	} else {
1410
		cxsr_enabled = false;
1411
		intel_set_memory_cxsr(dev_priv, false);
1412 1413
		plane_sr = cursor_sr = 0;
	}
1414

1415 1416
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 1418 1419 1420 1421
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1422 1423 1424 1425
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1426
	I915_WRITE(DSPFW2,
1427
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428
		   FW_WM(cursora_wm, CURSORA));
1429 1430
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1431
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432
		   FW_WM(cursor_sr, CURSOR_SR));
1433 1434 1435

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1436 1437
}

1438
static void i965_update_wm(struct intel_crtc *unused_crtc)
1439
{
1440
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1441
	struct intel_crtc *crtc;
1442 1443
	int srwm = 1;
	int cursor_sr = 16;
1444
	bool cxsr_enabled;
1445 1446

	/* Calc sr entries for one plane configs */
1447
	crtc = single_enabled_crtc(dev_priv);
1448 1449 1450
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1451 1452 1453 1454
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1455
		int clock = adjusted_mode->crtc_clock;
1456
		int htotal = adjusted_mode->crtc_htotal;
1457 1458
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1459 1460 1461
		unsigned long line_time_us;
		int entries;

1462
		line_time_us = max(htotal * 1000 / clock, 1);
1463 1464 1465

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1466
			cpp * hdisplay;
1467 1468 1469 1470 1471 1472 1473 1474 1475
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476
			cpp * crtc->base.cursor->state->crtc_w;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1488
		cxsr_enabled = true;
1489
	} else {
1490
		cxsr_enabled = false;
1491
		/* Turn off self refresh if both pipes are enabled */
1492
		intel_set_memory_cxsr(dev_priv, false);
1493 1494 1495 1496 1497 1498
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1499 1500 1501 1502 1503 1504
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1505
	/* update cursor SR watermark */
1506
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1507 1508 1509

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1510 1511
}

1512 1513
#undef FW_WM

1514
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1515
{
1516
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1517 1518 1519 1520 1521 1522
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1523
	struct intel_crtc *crtc, *enabled = NULL;
1524

1525
	if (IS_I945GM(dev_priv))
1526
		wm_info = &i945_wm_info;
1527
	else if (!IS_GEN2(dev_priv))
1528 1529
		wm_info = &i915_wm_info;
	else
1530
		wm_info = &i830_a_wm_info;
1531

1532
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1533
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1534 1535 1536 1537 1538 1539 1540
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1541
		if (IS_GEN2(dev_priv))
1542
			cpp = 4;
1543 1544
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1545

1546
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547
					       wm_info, fifo_size, cpp,
1548
					       pessimal_latency_ns);
1549
		enabled = crtc;
1550
	} else {
1551
		planea_wm = fifo_size - wm_info->guard_size;
1552 1553 1554 1555
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1556
	if (IS_GEN2(dev_priv))
1557
		wm_info = &i830_bc_wm_info;
1558

1559
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1560
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1561 1562 1563 1564 1565 1566 1567
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1568
		if (IS_GEN2(dev_priv))
1569
			cpp = 4;
1570 1571
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1572

1573
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574
					       wm_info, fifo_size, cpp,
1575
					       pessimal_latency_ns);
1576 1577 1578 1579
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1580
	} else {
1581
		planeb_wm = fifo_size - wm_info->guard_size;
1582 1583 1584
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1585 1586 1587

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1588
	if (IS_I915GM(dev_priv) && enabled) {
1589
		struct drm_i915_gem_object *obj;
1590

1591
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1592 1593

		/* self-refresh seems busted with untiled */
1594
		if (!i915_gem_object_is_tiled(obj))
1595 1596 1597
			enabled = NULL;
	}

1598 1599 1600 1601 1602 1603
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1604
	intel_set_memory_cxsr(dev_priv, false);
1605 1606

	/* Calc sr entries for one plane configs */
1607
	if (HAS_FW_BLC(dev_priv) && enabled) {
1608 1609
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1610 1611 1612 1613
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1614
		int clock = adjusted_mode->crtc_clock;
1615
		int htotal = adjusted_mode->crtc_htotal;
1616 1617
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1618 1619 1620
		unsigned long line_time_us;
		int entries;

1621
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1622
			cpp = 4;
1623 1624
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1625

1626
		line_time_us = max(htotal * 1000 / clock, 1);
1627 1628 1629

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1630
			cpp * hdisplay;
1631 1632 1633 1634 1635 1636
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1637
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1638 1639
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1640
		else
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1657 1658
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1659 1660
}

1661
static void i845_update_wm(struct intel_crtc *unused_crtc)
1662
{
1663
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1664
	struct intel_crtc *crtc;
1665
	const struct drm_display_mode *adjusted_mode;
1666 1667 1668
	uint32_t fwater_lo;
	int planea_wm;

1669
	crtc = single_enabled_crtc(dev_priv);
1670 1671 1672
	if (crtc == NULL)
		return;

1673
	adjusted_mode = &crtc->config->base.adjusted_mode;
1674
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675
				       &i845_wm_info,
1676
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1677
				       4, pessimal_latency_ns);
1678 1679 1680 1681 1682 1683 1684 1685
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1686
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1687
{
1688
	uint32_t pixel_rate;
1689

1690
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1691 1692 1693 1694

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1695
	if (pipe_config->pch_pfit.enabled) {
1696
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1697 1698 1699 1700
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1701 1702 1703 1704 1705 1706 1707 1708

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1709 1710 1711
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1712 1713 1714 1715 1716 1717 1718
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1719
/* latency must be in 0.1us units. */
1720
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1721 1722 1723
{
	uint64_t ret;

1724 1725 1726
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1727
	ret = (uint64_t) pixel_rate * cpp * latency;
1728 1729 1730 1731 1732
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1733
/* latency must be in 0.1us units. */
1734
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1735
			       uint32_t horiz_pixels, uint8_t cpp,
1736 1737 1738 1739
			       uint32_t latency)
{
	uint32_t ret;

1740 1741
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1742 1743
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1744

1745
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1746
	ret = (ret + 1) * horiz_pixels * cpp;
1747 1748 1749 1750
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1751
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1752
			   uint8_t cpp)
1753
{
1754 1755 1756 1757 1758 1759
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1760
	if (WARN_ON(!cpp))
1761 1762 1763 1764
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1765
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1766 1767
}

1768
struct ilk_wm_maximums {
1769 1770 1771 1772 1773 1774
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1775 1776 1777 1778
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1779
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1780
				   const struct intel_plane_state *pstate,
1781 1782
				   uint32_t mem_value,
				   bool is_lp)
1783
{
1784 1785
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1786 1787
	uint32_t method1, method2;

1788
	if (!cstate->base.active || !pstate->base.visible)
1789 1790
		return 0;

1791
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1792 1793 1794 1795

	if (!is_lp)
		return method1;

1796 1797
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1798
				 drm_rect_width(&pstate->base.dst),
1799
				 cpp, mem_value);
1800 1801

	return min(method1, method2);
1802 1803
}

1804 1805 1806 1807
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1808
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1809
				   const struct intel_plane_state *pstate,
1810 1811
				   uint32_t mem_value)
{
1812 1813
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1814 1815
	uint32_t method1, method2;

1816
	if (!cstate->base.active || !pstate->base.visible)
1817 1818
		return 0;

1819
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1820 1821
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1822
				 drm_rect_width(&pstate->base.dst),
1823
				 cpp, mem_value);
1824 1825 1826
	return min(method1, method2);
}

1827 1828 1829 1830
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1831
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1832
				   const struct intel_plane_state *pstate,
1833 1834
				   uint32_t mem_value)
{
1835 1836 1837 1838 1839 1840
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1841
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1842

1843
	if (!cstate->base.active)
1844 1845
		return 0;

1846 1847
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1848
			      width, cpp, mem_value);
1849 1850
}

1851
/* Only for WM_LP. */
1852
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1853
				   const struct intel_plane_state *pstate,
1854
				   uint32_t pri_val)
1855
{
1856 1857
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1858

1859
	if (!cstate->base.active || !pstate->base.visible)
1860 1861
		return 0;

1862
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1863 1864
}

1865 1866
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1867
{
1868
	if (INTEL_GEN(dev_priv) >= 8)
1869
		return 3072;
1870
	else if (INTEL_GEN(dev_priv) >= 7)
1871 1872 1873 1874 1875
		return 768;
	else
		return 512;
}

1876 1877 1878
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1879
{
1880
	if (INTEL_GEN(dev_priv) >= 8)
1881 1882
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1883
	else if (INTEL_GEN(dev_priv) >= 7)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1894 1895
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1896
{
1897
	if (INTEL_GEN(dev_priv) >= 7)
1898 1899 1900 1901 1902
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1903
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1904
{
1905
	if (INTEL_GEN(dev_priv) >= 8)
1906 1907 1908 1909 1910
		return 31;
	else
		return 15;
}

1911 1912 1913
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1914
				     const struct intel_wm_config *config,
1915 1916 1917
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1918 1919
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1920 1921

	/* if sprites aren't enabled, sprites get nothing */
1922
	if (is_sprite && !config->sprites_enabled)
1923 1924 1925
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1926
	if (level == 0 || config->num_pipes_active > 1) {
1927
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1928 1929 1930 1931 1932 1933

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1934
		if (INTEL_GEN(dev_priv) <= 6)
1935 1936 1937
			fifo_size /= 2;
	}

1938
	if (config->sprites_enabled) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1950
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1951 1952 1953 1954
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1955 1956
				      int level,
				      const struct intel_wm_config *config)
1957 1958
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1959
	if (level > 0 && config->num_pipes_active > 1)
1960 1961 1962
		return 64;

	/* otherwise just report max that registers can hold */
1963
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1964 1965
}

1966
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1967 1968 1969
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1970
				    struct ilk_wm_maximums *max)
1971
{
1972 1973 1974
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1975
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1976 1977
}

1978
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1979 1980 1981
					int level,
					struct ilk_wm_maximums *max)
{
1982 1983 1984 1985
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1986 1987
}

1988
static bool ilk_validate_wm_level(int level,
1989
				  const struct ilk_wm_maximums *max,
1990
				  struct intel_wm_level *result)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2029
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2030
				 const struct intel_crtc *intel_crtc,
2031
				 int level,
2032
				 struct intel_crtc_state *cstate,
2033 2034 2035
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2036
				 struct intel_wm_level *result)
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2061 2062 2063
	result->enable = true;
}

2064
static uint32_t
2065
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2066
{
2067 2068
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2069 2070
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2071
	u32 linetime, ips_linetime;
2072

2073 2074 2075 2076
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2077
	if (WARN_ON(intel_state->cdclk == 0))
2078
		return 0;
2079

2080 2081 2082
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2083 2084 2085
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2086
					 intel_state->cdclk);
2087

2088 2089
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2090 2091
}

2092 2093
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2094
{
2095
	if (IS_GEN9(dev_priv)) {
2096
		uint32_t val;
2097
		int ret, i;
2098
		int level, max_level = ilk_wm_max_level(dev_priv);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2154
		/*
2155 2156
		 * WaWmMemoryReadLatency:skl
		 *
2157
		 * punit doesn't take into account the read latency so we need
2158 2159
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2160
		 */
2161 2162 2163 2164 2165
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2166
				wm[level] += 2;
2167
			}
2168 2169
		}

2170
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2171 2172 2173 2174 2175
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2176 2177 2178 2179
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2180
	} else if (INTEL_GEN(dev_priv) >= 6) {
2181 2182 2183 2184 2185 2186
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2187
	} else if (INTEL_GEN(dev_priv) >= 5) {
2188 2189 2190 2191 2192 2193
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2194 2195 2196
	}
}

2197 2198
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2199 2200
{
	/* ILK sprite LP0 latency is 1300 ns */
2201
	if (IS_GEN5(dev_priv))
2202 2203 2204
		wm[0] = 13;
}

2205 2206
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2207 2208
{
	/* ILK cursor LP0 latency is 1300 ns */
2209
	if (IS_GEN5(dev_priv))
2210 2211 2212
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2213
	if (IS_IVYBRIDGE(dev_priv))
2214 2215 2216
		wm[3] *= 2;
}

2217
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2218 2219
{
	/* how many WM levels are we expecting */
2220
	if (INTEL_GEN(dev_priv) >= 9)
2221
		return 7;
2222
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2223
		return 4;
2224
	else if (INTEL_GEN(dev_priv) >= 6)
2225
		return 3;
2226
	else
2227 2228
		return 2;
}
2229

2230
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2231
				   const char *name,
2232
				   const uint16_t wm[8])
2233
{
2234
	int level, max_level = ilk_wm_max_level(dev_priv);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2245 2246 2247 2248
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2249
		if (IS_GEN9(dev_priv))
2250 2251
			latency *= 10;
		else if (level > 0)
2252 2253 2254 2255 2256 2257 2258 2259
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2260 2261 2262
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2263
	int level, max_level = ilk_wm_max_level(dev_priv);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2275
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2291 2292 2293
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2294 2295
}

2296
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2297
{
2298
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2299 2300 2301 2302 2303 2304

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2305
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2306
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2307

2308 2309 2310
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2311

2312
	if (IS_GEN6(dev_priv))
2313
		snb_wm_latency_quirk(dev_priv);
2314 2315
}

2316
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2317
{
2318
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2319
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2345
/* Compute new watermarks for the pipe */
2346
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2347
{
2348 2349
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2350
	struct intel_pipe_wm *pipe_wm;
2351
	struct drm_device *dev = state->dev;
2352
	const struct drm_i915_private *dev_priv = to_i915(dev);
2353
	struct intel_plane *intel_plane;
2354
	struct intel_plane_state *pristate = NULL;
2355
	struct intel_plane_state *sprstate = NULL;
2356
	struct intel_plane_state *curstate = NULL;
2357
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2358
	struct ilk_wm_maximums max;
2359

2360
	pipe_wm = &cstate->wm.ilk.optimal;
2361

2362
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2363 2364 2365 2366 2367 2368
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2369 2370

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2371
			pristate = ps;
2372
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2373
			sprstate = ps;
2374
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2375
			curstate = ps;
2376 2377
	}

2378
	pipe_wm->pipe_enabled = cstate->base.active;
2379
	if (sprstate) {
2380 2381 2382 2383
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2384 2385
	}

2386 2387
	usable_level = max_level;

2388
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2389
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2390
		usable_level = 1;
2391 2392

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2393
	if (pipe_wm->sprites_scaled)
2394
		usable_level = 0;
2395

2396
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2397 2398 2399 2400
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2401

2402
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2403
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2404

2405
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2406
		return -EINVAL;
2407

2408
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2409 2410

	for (level = 1; level <= max_level; level++) {
2411
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2412

2413
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2414
				     pristate, sprstate, curstate, wm);
2415 2416 2417 2418 2419 2420

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2421 2422 2423 2424 2425 2426
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2427
			usable_level = level;
2428 2429
	}

2430
	return 0;
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2442
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2443
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2444
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2445 2446 2447 2448 2449 2450

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2451
	*a = newstate->wm.ilk.optimal;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2480
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2481 2482 2483 2484 2485
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2495 2496
	ret_wm->enable = true;

2497
	for_each_intel_crtc(dev, intel_crtc) {
2498
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2499 2500 2501 2502
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2503

2504 2505 2506 2507 2508
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2509
		if (!wm->enable)
2510
			ret_wm->enable = false;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2523
			 const struct intel_wm_config *config,
2524
			 const struct ilk_wm_maximums *max,
2525 2526
			 struct intel_pipe_wm *merged)
{
2527
	struct drm_i915_private *dev_priv = to_i915(dev);
2528
	int level, max_level = ilk_wm_max_level(dev_priv);
2529
	int last_enabled_level = max_level;
2530

2531
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2532
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2533
	    config->num_pipes_active > 1)
2534
		last_enabled_level = 0;
2535

2536
	/* ILK: FBC WM must be disabled always */
2537
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2538 2539 2540 2541 2542 2543 2544

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2545 2546 2547 2548 2549
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2550 2551 2552 2553 2554 2555

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2556 2557
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2558 2559 2560
			wm->fbc_val = 0;
		}
	}
2561 2562 2563 2564 2565 2566 2567

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2568
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2569
	    intel_fbc_is_active(dev_priv)) {
2570 2571 2572 2573 2574 2575
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2576 2577
}

2578 2579 2580 2581 2582 2583
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2584 2585 2586
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2587
	struct drm_i915_private *dev_priv = to_i915(dev);
2588

2589
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2590 2591 2592 2593 2594
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2595
static void ilk_compute_wm_results(struct drm_device *dev,
2596
				   const struct intel_pipe_wm *merged,
2597
				   enum intel_ddb_partitioning partitioning,
2598
				   struct ilk_wm_values *results)
2599
{
2600
	struct drm_i915_private *dev_priv = to_i915(dev);
2601 2602
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2603

2604
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2605
	results->partitioning = partitioning;
2606

2607
	/* LP1+ register values */
2608
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2609
		const struct intel_wm_level *r;
2610

2611
		level = ilk_wm_lp_to_level(wm_lp, merged);
2612

2613
		r = &merged->wm[level];
2614

2615 2616 2617 2618 2619
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2620
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2621 2622 2623
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2624 2625 2626
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2627
		if (INTEL_GEN(dev_priv) >= 8)
2628 2629 2630 2631 2632 2633
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2634 2635 2636 2637
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2638
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2639 2640 2641 2642
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2643
	}
2644

2645
	/* LP0 register values */
2646
	for_each_intel_crtc(dev, intel_crtc) {
2647
		enum pipe pipe = intel_crtc->pipe;
2648 2649
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2650 2651 2652 2653

		if (WARN_ON(!r->enable))
			continue;

2654
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2655

2656 2657 2658 2659
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2660 2661 2662
	}
}

2663 2664
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2665
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2666 2667
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2668
{
2669
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2670
	int level1 = 0, level2 = 0;
2671

2672 2673 2674 2675 2676
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2677 2678
	}

2679 2680
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2681 2682 2683
			return r2;
		else
			return r1;
2684
	} else if (level1 > level2) {
2685 2686 2687 2688 2689 2690
		return r1;
	} else {
		return r2;
	}
}

2691 2692 2693 2694 2695 2696 2697 2698
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2699
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2700 2701
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2702 2703 2704 2705 2706
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2707
	for_each_pipe(dev_priv, pipe) {
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2751 2752
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2753
{
2754
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2755
	bool changed = false;
2756

2757 2758 2759
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2765
		changed = true;
2766 2767 2768 2769
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2770
		changed = true;
2771
	}
2772

2773 2774 2775 2776
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2777

2778 2779 2780 2781 2782 2783 2784
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2785 2786
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2787
{
2788
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2789 2790 2791
	unsigned int dirty;
	uint32_t val;

2792
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2793 2794 2795 2796 2797
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2798
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2799
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2800
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2801
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2802
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2803 2804
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2807
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2808
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2809
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2810 2811
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2812
	if (dirty & WM_DIRTY_DDB) {
2813
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2828 2829
	}

2830
	if (dirty & WM_DIRTY_FBC) {
2831 2832 2833 2834 2835 2836 2837 2838
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2839 2840 2841 2842
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2843
	if (INTEL_GEN(dev_priv) >= 7) {
2844 2845 2846 2847 2848
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2849

2850
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2851
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2852
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2853
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2854
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2855
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2856 2857

	dev_priv->wm.hw = *results;
2858 2859
}

2860
bool ilk_disable_lp_wm(struct drm_device *dev)
2861
{
2862
	struct drm_i915_private *dev_priv = to_i915(dev);
2863 2864 2865 2866

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2867
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2868

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2906 2907 2908
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2909 2910 2911 2912 2913 2914 2915 2916
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2917 2918
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2931
intel_enable_sagv(struct drm_i915_private *dev_priv)
2932 2933 2934
{
	int ret;

2935 2936 2937 2938
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2954
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2955
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2956
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2957 2958 2959 2960 2961 2962
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2963
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2964 2965 2966 2967
	return 0;
}

static int
2968
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2982
intel_disable_sagv(struct drm_i915_private *dev_priv)
2983 2984 2985
{
	int ret, result;

2986 2987 2988 2989
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2990 2991 2992 2993 2994 2995
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2996
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3008
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3009
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3010
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3011 3012 3013 3014 3015 3016
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3017
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3018 3019 3020
	return 0;
}

3021
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3022 3023 3024 3025
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3026 3027
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3028 3029
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3030
	enum pipe pipe;
3031
	int level, latency;
3032

3033 3034 3035
	if (!intel_has_sagv(dev_priv))
		return false;

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3049
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3050
	cstate = to_intel_crtc_state(crtc->base.state);
3051

3052
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3053 3054
		return false;

3055
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3056
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3057

3058
		/* Skip this plane if it's not enabled */
3059
		if (!wm->wm[0].plane_en)
3060 3061 3062
			continue;

		/* Find the highest enabled wm level for this plane */
3063
		for (level = ilk_wm_max_level(dev_priv);
3064
		     !wm->wm[level].plane_en; --level)
3065 3066
		     { }

3067 3068 3069 3070 3071 3072 3073
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3074 3075 3076 3077 3078
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3079
		if (latency < SKL_SAGV_BLOCK_TIME)
3080 3081 3082 3083 3084 3085
			return false;
	}

	return true;
}

3086 3087
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3088
				   const struct intel_crtc_state *cstate,
3089 3090
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3091
{
3092 3093 3094
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3095
	struct drm_crtc *for_crtc = cstate->base.crtc;
3096 3097
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3098

3099
	if (WARN_ON(!state) || !cstate->base.active) {
3100 3101
		alloc->start = 0;
		alloc->end = 0;
3102
		*num_active = hweight32(dev_priv->active_crtcs);
3103 3104 3105
		return;
	}

3106 3107 3108 3109 3110
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3111 3112
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3113 3114 3115

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3116
	/*
3117 3118 3119 3120 3121 3122
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3123
	 */
3124
	if (!intel_state->active_pipe_changes) {
3125 3126 3127 3128 3129
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3130
		return;
3131
	}
3132 3133 3134 3135 3136 3137

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3138 3139
}

3140
static unsigned int skl_cursor_allocation(int num_active)
3141
{
3142
	if (num_active == 1)
3143 3144 3145 3146 3147
		return 32;

	return 8;
}

3148 3149 3150 3151
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3152 3153
	if (entry->end)
		entry->end += 1;
3154 3155
}

3156 3157
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3158 3159 3160 3161 3162
{
	enum pipe pipe;
	int plane;
	u32 val;

3163 3164
	memset(ddb, 0, sizeof(*ddb));

3165
	for_each_pipe(dev_priv, pipe) {
3166 3167 3168 3169
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3170 3171
			continue;

3172
		for_each_universal_plane(dev_priv, pipe, plane) {
3173 3174 3175 3176 3177 3178
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3179 3180
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3181 3182

		intel_display_power_put(dev_priv, power_domain);
3183 3184 3185
	}
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3208
	if (WARN_ON(!pstate->base.visible))
3209 3210 3211
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3212 3213 3214 3215
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3216
	if (drm_rotation_90_or_270(pstate->base.rotation))
3217 3218 3219 3220 3221 3222 3223 3224 3225
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3226
static unsigned int
3227 3228 3229
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3230
{
3231
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3232
	struct drm_framebuffer *fb = pstate->fb;
3233
	uint32_t down_scale_amount, data_rate;
3234
	uint32_t width = 0, height = 0;
3235 3236
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3237
	if (!intel_pstate->base.visible)
3238 3239 3240 3241 3242
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3243

3244 3245
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3246

3247
	if (drm_rotation_90_or_270(pstate->rotation))
3248
		swap(width, height);
3249 3250

	/* for planar format */
3251
	if (format == DRM_FORMAT_NV12) {
3252
		if (y)  /* y-plane data rate */
3253
			data_rate = width * height *
3254
				drm_format_plane_cpp(format, 0);
3255
		else    /* uv-plane data rate */
3256
			data_rate = (width / 2) * (height / 2) *
3257
				drm_format_plane_cpp(format, 1);
3258 3259 3260
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3261 3262
	}

3263 3264 3265
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3266 3267 3268 3269 3270 3271 3272 3273
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3274 3275 3276
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3277
{
3278 3279
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3280
	struct drm_plane *plane;
3281
	const struct intel_plane *intel_plane;
3282
	const struct drm_plane_state *pstate;
3283
	unsigned int rate, total_data_rate = 0;
3284
	int id;
3285 3286 3287

	if (WARN_ON(!state))
		return 0;
3288

3289
	/* Calculate and cache data rate for each plane */
3290
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3291 3292 3293 3294 3295 3296
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3297 3298 3299
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3300 3301 3302 3303

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3304
		plane_y_data_rate[id] = rate;
3305

3306
		total_data_rate += rate;
3307 3308 3309 3310 3311
	}

	return total_data_rate;
}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3334 3335
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3336

3337
	if (drm_rotation_90_or_270(pstate->rotation))
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3351
	if (drm_rotation_90_or_270(pstate->rotation)) {
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3399
static int
3400
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3401 3402
		      struct skl_ddb_allocation *ddb /* out */)
{
3403
	struct drm_atomic_state *state = cstate->base.state;
3404
	struct drm_crtc *crtc = cstate->base.crtc;
3405 3406 3407
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3408
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3409
	uint16_t alloc_size, start;
3410 3411
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3412
	unsigned int total_data_rate;
3413 3414
	int num_active;
	int id, i;
3415 3416
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3417

3418 3419 3420 3421
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3422 3423 3424
	if (WARN_ON(!state))
		return 0;

3425
	if (!cstate->base.active) {
3426
		alloc->start = alloc->end = 0;
3427 3428 3429
		return 0;
	}

3430
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3431
	alloc_size = skl_ddb_entry_size(alloc);
3432 3433
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3434
		return 0;
3435 3436
	}

3437
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3438

3439 3440 3441 3442 3443
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3444

3445
	for (i = 0; i < I915_MAX_PLANES; i++) {
3446 3447
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3448 3449
	}

3450 3451 3452
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3453
	/*
3454 3455
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3456 3457 3458
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3459 3460 3461
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3462
	if (total_data_rate == 0)
3463
		return 0;
3464

3465
	start = alloc->start;
3466
	for (id = 0; id < I915_MAX_PLANES; id++) {
3467 3468
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3469

3470 3471 3472
		if (id == PLANE_CURSOR)
			continue;

3473
		data_rate = plane_data_rate[id];
3474 3475

		/*
3476
		 * allocation for (packed formats) or (uv-plane part of planar format):
3477 3478 3479
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3480
		plane_blocks = minimum[id];
3481 3482
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3483

3484 3485 3486 3487 3488
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3489 3490

		start += plane_blocks;
3491 3492 3493 3494

		/*
		 * allocation for y_plane part of planar format:
		 */
3495
		y_data_rate = plane_y_data_rate[id];
3496 3497 3498 3499

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3500

3501 3502 3503 3504
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3505 3506

		start += y_plane_blocks;
3507 3508
	}

3509
	return 0;
3510 3511
}

3512 3513
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3514
 * for the read latency) and cpp should always be <= 8, so that
3515 3516 3517
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3518
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3519 3520 3521 3522 3523 3524
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3525
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3526 3527 3528 3529 3530 3531
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3532
			       uint32_t latency, uint32_t plane_blocks_per_line)
3533
{
3534 3535
	uint32_t ret;
	uint32_t wm_intermediate_val;
3536 3537 3538 3539 3540 3541

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3542
				plane_blocks_per_line;
3543 3544 3545 3546

	return ret;
}

3547 3548 3549 3550 3551 3552 3553 3554
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3555
	if (WARN_ON(!pstate->base.visible))
3556 3557 3558 3559 3560 3561
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3562
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3563 3564 3565 3566 3567 3568 3569 3570
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3571 3572 3573 3574 3575 3576 3577 3578
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3579
{
3580 3581
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3582 3583 3584 3585 3586
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3587
	uint8_t cpp;
3588
	uint32_t width = 0, height = 0;
3589
	uint32_t plane_pixel_rate;
3590
	uint32_t y_tile_minimum, y_min_scanlines;
3591 3592 3593
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3594

3595
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3596 3597 3598
		*enabled = false;
		return 0;
	}
3599

3600 3601 3602
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3603 3604
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3605

3606
	if (drm_rotation_90_or_270(pstate->rotation))
3607 3608
		swap(width, height);

3609
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3610 3611
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3612
	if (drm_rotation_90_or_270(pstate->rotation)) {
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3627 3628 3629
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3630 3631 3632 3633 3634
		}
	} else {
		y_min_scanlines = 4;
	}

3635 3636 3637
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3651 3652
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3653
				 cstate->base.adjusted_mode.crtc_htotal,
3654
				 latency,
3655
				 plane_blocks_per_line);
3656

3657 3658
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3659 3660
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3661 3662
		selected_result = max(method2, y_tile_minimum);
	} else {
3663 3664 3665 3666
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3667 3668 3669 3670
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3671

3672 3673
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3674

3675
	if (level >= 1 && level <= 7) {
3676
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3677 3678
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3679
			res_lines += y_min_scanlines;
3680
		} else {
3681
			res_blocks++;
3682
		}
3683
	}
3684

3685 3686
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3703
	}
3704 3705 3706

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3707
	*enabled = true;
3708

3709
	return 0;
3710 3711
}

3712 3713 3714 3715
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3716
		     struct intel_plane *intel_plane,
3717 3718
		     int level,
		     struct skl_wm_level *result)
3719
{
3720
	struct drm_atomic_state *state = cstate->base.state;
3721
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3722 3723
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3724
	uint16_t ddb_blocks;
3725
	enum pipe pipe = intel_crtc->pipe;
3726
	int ret;
L
Lyude 已提交
3727 3728 3729 3730 3731 3732
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3733

3734
	/*
L
Lyude 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3744
	 */
L
Lyude 已提交
3745 3746
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3747

L
Lyude 已提交
3748
	WARN_ON(!intel_pstate->base.fb);
3749

L
Lyude 已提交
3750
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3751

L
Lyude 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3762 3763

	return 0;
3764 3765
}

3766
static uint32_t
3767
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3768
{
3769 3770
	uint32_t pixel_rate;

3771
	if (!cstate->base.active)
3772 3773
		return 0;

3774 3775 3776
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3777
		return 0;
3778

3779
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3780
			    pixel_rate);
3781 3782
}

3783
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3784
				      struct skl_wm_level *trans_wm /* out */)
3785
{
3786
	if (!cstate->base.active)
3787
		return;
3788 3789

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3790
	trans_wm->plane_en = false;
3791 3792
}

3793 3794 3795
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3796
{
3797
	struct drm_device *dev = cstate->base.crtc->dev;
3798
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3799 3800
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3801
	int level, max_level = ilk_wm_max_level(dev_priv);
3802
	int ret;
3803

L
Lyude 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3823
	}
3824
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3825

3826
	return 0;
3827 3828
}

3829 3830
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3831 3832 3833 3834 3835 3836 3837 3838
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3854 3855 3856 3857
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
			       int plane)
3858 3859 3860 3861
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3862
	int level, max_level = ilk_wm_max_level(dev_priv);
3863 3864 3865
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3866 3867
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3868
	}
3869 3870
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3871 3872

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3873
			    &ddb->plane[pipe][plane]);
3874
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3875
			    &ddb->y_plane[pipe][plane]);
3876 3877
}

3878 3879 3880
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3881 3882 3883 3884
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3885
	int level, max_level = ilk_wm_max_level(dev_priv);
3886 3887 3888
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3889 3890
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3891
	}
3892
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3893

3894
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3895
			    &ddb->plane[pipe][PLANE_CURSOR]);
3896 3897
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3912 3913
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3914
{
3915
	return a->start < b->end && b->start < a->end;
3916 3917
}

3918 3919 3920
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3921
{
3922
	int i;
3923

3924 3925 3926
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3927
			return true;
3928

3929
	return false;
3930 3931
}

3932
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3933
			      const struct skl_pipe_wm *old_pipe_wm,
3934
			      struct skl_pipe_wm *pipe_wm, /* out */
3935
			      struct skl_ddb_allocation *ddb, /* out */
3936
			      bool *changed /* out */)
3937
{
3938
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3939
	int ret;
3940

3941 3942 3943
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3944

3945
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3946 3947 3948
		*changed = false;
	else
		*changed = true;
3949

3950
	return 0;
3951 3952
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3966
static int
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3984
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4001 4002 4003 4004 4005 4006 4007
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4008
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4009
	uint32_t realloc_pipes = pipes_modified(state);
4010 4011 4012 4013 4014 4015 4016 4017
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4018 4019 4020 4021 4022 4023
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4024 4025
		intel_state->active_pipe_changes = ~0;

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4049
	if (intel_state->active_pipe_changes) {
4050
		realloc_pipes = ~0;
4051 4052
		intel_state->wm_results.dirty_pipes = ~0;
	}
4053

4054 4055 4056 4057 4058 4059
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4060 4061 4062 4063 4064 4065 4066
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4067
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4068 4069
		if (ret)
			return ret;
4070

4071
		ret = skl_ddb_add_affected_planes(cstate);
4072 4073
		if (ret)
			return ret;
4074 4075 4076 4077 4078
	}

	return 0;
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4103
	int i;
4104 4105

	for_each_crtc_in_state(state, crtc, cstate, i) {
4106 4107
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4108

4109
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4110 4111 4112 4113 4114 4115 4116 4117 4118
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4119 4120 4121 4122 4123
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4124 4125 4126 4127
		}
	}
}

4128 4129 4130 4131 4132
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4133 4134 4135
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4136
	bool changed = false;
4137
	int ret, i;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4152 4153 4154
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4155 4156 4157 4158
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4172 4173
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4174 4175

		pipe_wm = &intel_cstate->wm.skl.optimal;
4176 4177
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4191 4192
	skl_print_wm_changes(state);

4193 4194 4195
	return 0;
}

4196 4197 4198 4199 4200 4201
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4202
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4203
	enum pipe pipe = crtc->pipe;
4204 4205 4206 4207
	int plane;

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4208 4209

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4210 4211 4212 4213 4214

	for_each_universal_plane(dev_priv, pipe, plane)
		skl_write_plane_wm(crtc, &pipe_wm->planes[plane], ddb, plane);

	skl_write_cursor_wm(crtc, &pipe_wm->planes[PLANE_CURSOR], ddb);
4215 4216
}

4217 4218
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4219
{
4220
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4221
	struct drm_device *dev = intel_crtc->base.dev;
4222
	struct drm_i915_private *dev_priv = to_i915(dev);
4223
	struct skl_wm_values *results = &state->wm_results;
4224
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4225
	enum pipe pipe = intel_crtc->pipe;
4226

4227
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4228 4229
		return;

4230
	mutex_lock(&dev_priv->wm.wm_mutex);
4231

4232 4233
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4234 4235

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4236 4237

	mutex_unlock(&dev_priv->wm.wm_mutex);
4238 4239
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4258
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4259
{
4260
	struct drm_device *dev = &dev_priv->drm;
4261
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4262
	struct ilk_wm_maximums max;
4263
	struct intel_wm_config config = {};
4264
	struct ilk_wm_values results = {};
4265
	enum intel_ddb_partitioning partitioning;
4266

4267 4268 4269 4270
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4271 4272

	/* 5/6 split only in single pipe config on IVB+ */
4273
	if (INTEL_GEN(dev_priv) >= 7 &&
4274 4275 4276
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4277

4278
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4279
	} else {
4280
		best_lp_wm = &lp_wm_1_2;
4281 4282
	}

4283
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4284
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4285

4286
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4287

4288
	ilk_write_wm_values(dev_priv, &results);
4289 4290
}

4291 4292
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4293
{
4294 4295
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4296

4297
	mutex_lock(&dev_priv->wm.wm_mutex);
4298
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4299 4300 4301
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4302

4303 4304
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4305 4306 4307
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4308

4309 4310
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4311
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4312 4313 4314
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4315 4316
}

4317 4318
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4319
{
4320 4321 4322 4323
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4324 4325
}

4326 4327
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4328 4329
{
	struct drm_device *dev = crtc->dev;
4330
	struct drm_i915_private *dev_priv = to_i915(dev);
4331
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4332 4333
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4334
	enum pipe pipe = intel_crtc->pipe;
4335 4336
	int level, id, max_level;
	uint32_t val;
4337

4338
	max_level = ilk_wm_max_level(dev_priv);
4339

4340 4341
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4342
		wm = &out->planes[id];
4343

4344 4345 4346 4347 4348
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4349

4350
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4351 4352
		}

4353 4354 4355 4356 4357 4358
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4359 4360
	}

4361 4362
	if (!intel_crtc->active)
		return;
4363

4364
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4365 4366 4367 4368
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4369
	struct drm_i915_private *dev_priv = to_i915(dev);
4370
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4371
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4372
	struct drm_crtc *crtc;
4373 4374
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4375

4376
	skl_ddb_get_hw_state(dev_priv, ddb);
4377 4378 4379 4380 4381 4382
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4383
		if (intel_crtc->active)
4384 4385
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4386

4387 4388 4389 4390 4391 4392 4393
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4394 4395
}

4396 4397 4398
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4399
	struct drm_i915_private *dev_priv = to_i915(dev);
4400
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4401
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4402
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4403
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4404
	enum pipe pipe = intel_crtc->pipe;
4405
	static const i915_reg_t wm0_pipe_reg[] = {
4406 4407 4408 4409 4410 4411
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4412
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4413
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4414

4415 4416
	memset(active, 0, sizeof(*active));

4417
	active->pipe_enabled = intel_crtc->active;
4418 4419

	if (active->pipe_enabled) {
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4434
		int level, max_level = ilk_wm_max_level(dev_priv);
4435 4436 4437 4438 4439 4440 4441 4442 4443

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4444 4445

	intel_crtc->wm.active.ilk = *active;
4446 4447
}

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
4546
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4547 4548 4549
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
4550
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4565 4566 4567 4568 4569 4570 4571 4572 4573
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4574
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4601 4602
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4603
	struct drm_i915_private *dev_priv = to_i915(dev);
4604
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4605 4606
	struct drm_crtc *crtc;

4607
	for_each_crtc(dev, crtc)
4608 4609 4610 4611 4612 4613 4614
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4615
	if (INTEL_GEN(dev_priv) >= 7) {
4616 4617 4618
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4619

4620
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4621 4622
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4623
	else if (IS_IVYBRIDGE(dev_priv))
4624 4625
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4626 4627 4628 4629 4630

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4663
void intel_update_watermarks(struct intel_crtc *crtc)
4664
{
4665
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4666 4667

	if (dev_priv->display.update_wm)
4668
		dev_priv->display.update_wm(crtc);
4669 4670
}

4671
/*
4672 4673 4674 4675 4676 4677 4678 4679
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4680
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4681 4682 4683
{
	u16 rgvswctl;

4684 4685
	assert_spin_locked(&mchdev_lock);

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4703
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4704
{
4705
	u32 rgvmodectl;
4706 4707
	u8 fmax, fmin, fstart, vstart;

4708 4709
	spin_lock_irq(&mchdev_lock);

4710 4711
	rgvmodectl = I915_READ(MEMMODECTL);

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4732
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4733 4734
		PXVFREQ_PX_SHIFT;

4735 4736
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4737

4738 4739 4740
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4757
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4758
		DRM_ERROR("stuck trying to change perf mode\n");
4759
	mdelay(1);
4760

4761
	ironlake_set_drps(dev_priv, fstart);
4762

4763 4764
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4765
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4766
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4767
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4768 4769

	spin_unlock_irq(&mchdev_lock);
4770 4771
}

4772
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4773
{
4774 4775 4776 4777 4778
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4779 4780 4781 4782 4783 4784 4785 4786 4787

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4788
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4789
	mdelay(1);
4790 4791
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4792
	mdelay(1);
4793

4794
	spin_unlock_irq(&mchdev_lock);
4795 4796
}

4797 4798 4799 4800 4801
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4802
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4803
{
4804
	u32 limits;
4805

4806 4807 4808 4809 4810 4811
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4812
	if (IS_GEN9(dev_priv)) {
4813 4814 4815 4816 4817 4818 4819 4820
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4821 4822 4823 4824

	return limits;
}

4825 4826 4827
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4828 4829
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4830 4831 4832 4833

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4834 4835
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4836 4837 4838 4839
			new_power = BETWEEN;
		break;

	case BETWEEN:
4840 4841
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4842
			new_power = LOW_POWER;
4843 4844
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4845 4846 4847 4848
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4849 4850
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4851 4852 4853 4854
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4855
	if (val <= dev_priv->rps.min_freq_softlimit)
4856
		new_power = LOW_POWER;
4857
	if (val >= dev_priv->rps.max_freq_softlimit)
4858 4859 4860 4861 4862 4863 4864 4865
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4866 4867
		ei_up = 16000;
		threshold_up = 95;
4868 4869

		/* Downclock if less than 85% busy over 32ms */
4870 4871
		ei_down = 32000;
		threshold_down = 85;
4872 4873 4874 4875
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4876 4877
		ei_up = 13000;
		threshold_up = 90;
4878 4879

		/* Downclock if less than 75% busy over 32ms */
4880 4881
		ei_down = 32000;
		threshold_down = 75;
4882 4883 4884 4885
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4886 4887
		ei_up = 10000;
		threshold_up = 85;
4888 4889

		/* Downclock if less than 60% busy over 32ms */
4890 4891
		ei_down = 32000;
		threshold_down = 60;
4892 4893 4894
		break;
	}

4895
	I915_WRITE(GEN6_RP_UP_EI,
4896
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4897
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4898 4899
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4900 4901

	I915_WRITE(GEN6_RP_DOWN_EI,
4902
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4903
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4914

4915
	dev_priv->rps.power = new_power;
4916 4917
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4918 4919 4920
	dev_priv->rps.last_adj = 0;
}

4921 4922 4923 4924 4925
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4926
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4927
	if (val < dev_priv->rps.max_freq_softlimit)
4928
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4929

4930 4931
	mask &= dev_priv->pm_rps_events;

4932
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4933 4934
}

4935 4936 4937
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4938
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4939
{
4940
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4941
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4942 4943
		return;

4944
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4945 4946
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4947

C
Chris Wilson 已提交
4948 4949 4950 4951 4952
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4953

4954
		if (IS_GEN9(dev_priv))
4955 4956
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4957
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4958 4959 4960 4961 4962 4963 4964
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4965
	}
4966 4967 4968 4969

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4970
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4971
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4972

4973 4974
	POSTING_READ(GEN6_RPNSWREQ);

4975
	dev_priv->rps.cur_freq = val;
4976
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4977 4978
}

4979
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4980 4981
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4982 4983
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4984

4985
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4986 4987 4988
		      "Odd GPU freq value\n"))
		val &= ~1;

4989 4990
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4991
	if (val != dev_priv->rps.cur_freq) {
4992
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4993 4994 4995
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4996 4997 4998 4999 5000

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5001
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5002 5003
 *
 * * If Gfx is Idle, then
5004 5005 5006
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5007 5008 5009
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5010
	u32 val = dev_priv->rps.idle_freq;
5011

5012
	if (dev_priv->rps.cur_freq <= val)
5013 5014
		return;

5015 5016 5017
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5018
	valleyview_set_rps(dev_priv, val);
5019
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5020 5021
}

5022 5023 5024 5025 5026 5027 5028 5029
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5030

5031 5032
		gen6_enable_rps_interrupts(dev_priv);

5033 5034 5035 5036 5037
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5038 5039 5040 5041
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5042 5043
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5044 5045 5046 5047 5048 5049 5050
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5051
	mutex_lock(&dev_priv->rps.hw_lock);
5052
	if (dev_priv->rps.enabled) {
5053
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5054
			vlv_set_rps_idle(dev_priv);
5055
		else
5056
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5057
		dev_priv->rps.last_adj = 0;
5058 5059
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5060
	}
5061
	mutex_unlock(&dev_priv->rps.hw_lock);
5062

5063
	spin_lock(&dev_priv->rps.client_lock);
5064 5065
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5066
	spin_unlock(&dev_priv->rps.client_lock);
5067 5068
}

5069
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5070 5071
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5072
{
5073 5074 5075
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5076
	if (!(dev_priv->gt.awake &&
5077
	      dev_priv->rps.enabled &&
5078
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5079
		return;
5080

5081 5082 5083
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5084
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5085 5086
		rps = NULL;

5087 5088 5089 5090 5091
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5092
			schedule_work(&dev_priv->rps.work);
5093 5094
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5095

5096 5097 5098
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5099 5100
		} else
			dev_priv->rps.boosts++;
5101
	}
5102
	spin_unlock(&dev_priv->rps.client_lock);
5103 5104
}

5105
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5106
{
5107 5108
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5109
	else
5110
		gen6_set_rps(dev_priv, val);
5111 5112
}

5113
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5114 5115
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5116
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5117 5118
}

5119
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5120 5121 5122 5123
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5124
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5125 5126
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5127
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5128
	I915_WRITE(GEN6_RP_CONTROL, 0);
5129 5130
}

5131
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5132 5133 5134 5135
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5136
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5137
{
5138 5139
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5140
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5141

5142
	I915_WRITE(GEN6_RC_CONTROL, 0);
5143

5144
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5145 5146
}

5147
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5148
{
5149
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5150 5151 5152 5153 5154
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5155
	if (HAS_RC6p(dev_priv))
5156 5157 5158 5159 5160
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5161 5162

	else
5163 5164
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5165 5166
}

5167
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5168
{
5169
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5170 5171
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5183 5184

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5185
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5186 5187 5188 5189 5190 5191 5192 5193
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5194 5195 5196
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5197
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5198 5199 5200 5201 5202 5203 5204
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5205
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5206 5207 5208
		enable_rc6 = false;
	}

5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5223 5224 5225 5226 5227 5228
		enable_rc6 = false;
	}

	return enable_rc6;
}

5229
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5230
{
5231
	/* No RC6 before Ironlake and code is gone for ilk. */
5232
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5233 5234
		return 0;

5235 5236 5237
	if (!enable_rc6)
		return 0;

5238
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5239 5240 5241 5242
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5243
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5244 5245 5246
	if (enable_rc6 >= 0) {
		int mask;

5247
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5248 5249 5250 5251 5252 5253
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5254 5255 5256
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5257 5258 5259

		return enable_rc6 & mask;
	}
5260

5261
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5262
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5263 5264

	return INTEL_RC6_ENABLE;
5265 5266
}

5267
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5268 5269
{
	/* All of these values are in units of 50MHz */
5270

5271
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5272
	if (IS_BROXTON(dev_priv)) {
5273
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5274 5275 5276 5277
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5278
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5279 5280 5281 5282
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5283
	/* hw_max = RP0 until we check for overclocking */
5284
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5285

5286
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5287 5288
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5289 5290 5291 5292 5293
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5294
			dev_priv->rps.efficient_freq =
5295 5296 5297 5298
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5299 5300
	}

5301
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5302
		/* Store the frequency values in 16.66 MHZ units, which is
5303 5304
		 * the natural hardware unit for SKL
		 */
5305 5306 5307 5308 5309 5310
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5311 5312
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5325
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5326
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5327 5328 5329
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5330
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5331
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5332 5333 5334 5335 5336 5337 5338 5339 5340
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5341
		gen9_disable_rps(dev_priv);
5342 5343 5344 5345
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5346 5347 5348 5349 5350 5351 5352 5353
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5354 5355
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5356 5357 5358
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5359
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5360 5361 5362 5363

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5364
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5365
{
5366
	struct intel_engine_cs *engine;
5367
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5368 5369 5370 5371 5372 5373 5374
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5375
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5376 5377 5378 5379 5380

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5381 5382

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5383
	if (IS_SKYLAKE(dev_priv))
5384 5385 5386
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5387 5388
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5389
	for_each_engine(engine, dev_priv, id)
5390
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5391

5392
	if (HAS_GUC(dev_priv))
5393 5394
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5395 5396
	I915_WRITE(GEN6_RC_SLEEP, 0);

5397 5398 5399 5400
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5401
	/* 3a: Enable RC6 */
5402
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5403
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5404
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5405
	/* WaRsUseTimeoutMode:bxt */
5406
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5407
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5408 5409 5410
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5411 5412
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5413 5414 5415
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5416
	}
Z
Zhe Wang 已提交
5417

5418 5419
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5420
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5421
	 */
5422
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5423 5424 5425 5426
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5427

5428
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5429 5430
}

5431
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5432
{
5433
	struct intel_engine_cs *engine;
5434
	enum intel_engine_id id;
5435
	uint32_t rc6_mask = 0;
5436 5437 5438 5439 5440 5441

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5442
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5443 5444 5445 5446 5447 5448 5449 5450

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5451
	for_each_engine(engine, dev_priv, id)
5452
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5453
	I915_WRITE(GEN6_RC_SLEEP, 0);
5454
	if (IS_BROADWELL(dev_priv))
5455 5456 5457
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5458 5459

	/* 3: Enable RC6 */
5460
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5461
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5462 5463
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5464 5465 5466 5467 5468 5469 5470
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5471 5472

	/* 4 Program defaults and thresholds for RPS*/
5473 5474 5475 5476
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5491 5492

	/* 5: Enable RPS */
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5503
	reset_rps(dev_priv, gen6_set_rps);
5504

5505
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5506 5507
}

5508
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5509
{
5510
	struct intel_engine_cs *engine;
5511
	enum intel_engine_id id;
5512
	u32 rc6vids, rc6_mask = 0;
5513 5514
	u32 gtfifodbg;
	int rc6_mode;
5515
	int ret;
5516

5517
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5518

5519 5520 5521 5522 5523 5524 5525 5526 5527
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5528 5529
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5530 5531 5532 5533
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5534
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5545
	for_each_engine(engine, dev_priv, id)
5546
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5547 5548 5549

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5550
	if (IS_IVYBRIDGE(dev_priv))
5551 5552 5553
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5554
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5555 5556
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5557
	/* Check if we are enabling RC6 */
5558
	rc6_mode = intel_enable_rc6();
5559 5560 5561
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5562
	/* We don't use those on Haswell */
5563
	if (!IS_HASWELL(dev_priv)) {
5564 5565
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5566

5567 5568 5569
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5570

5571
	intel_print_rc6_info(dev_priv, rc6_mask);
5572 5573 5574 5575 5576 5577

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5578 5579
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5580 5581
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5582
	reset_rps(dev_priv, gen6_set_rps);
5583

5584 5585
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5586
	if (IS_GEN6(dev_priv) && ret) {
5587
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5588
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5589 5590 5591 5592 5593 5594 5595 5596 5597
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5598
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5599 5600
}

5601
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5602 5603
{
	int min_freq = 15;
5604 5605
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5606
	unsigned int max_gpu_freq, min_gpu_freq;
5607
	int scaling_factor = 180;
5608
	struct cpufreq_policy *policy;
5609

5610
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5611

5612 5613 5614 5615 5616 5617 5618 5619 5620
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5621
		max_ia_freq = tsc_khz;
5622
	}
5623 5624 5625 5626

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5627
	min_ring_freq = I915_READ(DCLK) & 0xf;
5628 5629
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5630

5631
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5632 5633 5634 5635 5636 5637 5638 5639
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5640 5641 5642 5643 5644
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5645 5646
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5647 5648
		unsigned int ia_freq = 0, ring_freq = 0;

5649
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5650 5651 5652 5653 5654
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5655
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5656 5657
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5658
		} else if (IS_HASWELL(dev_priv)) {
5659
			ring_freq = mult_frac(gpu_freq, 5, 4);
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5676

B
Ben Widawsky 已提交
5677 5678
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5679 5680 5681
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5682 5683 5684
	}
}

5685
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5686 5687 5688
{
	u32 val, rp0;

5689
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5690

5691
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5706
	}
5707 5708 5709

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5723 5724 5725 5726
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5727 5728 5729
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5730 5731 5732
	return rp1;
}

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5744
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5745 5746 5747
{
	u32 val, rp0;

5748
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5761
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5762
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5763
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5764 5765 5766 5767 5768
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5769
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5770
{
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5782 5783
}

5784 5785 5786 5787 5788 5789 5790 5791 5792
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5793 5794 5795 5796 5797 5798 5799 5800 5801

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5802
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5803
{
5804
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5805
	unsigned long pctx_paddr, paddr;
5806 5807 5808 5809 5810
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5811
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5812
		paddr = (dev_priv->mm.stolen_base +
5813
			 (ggtt->stolen_size - pctx_size));
5814 5815 5816 5817

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5818 5819

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5820 5821
}

5822
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5835
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5836
								      pcbr_offset,
5837
								      I915_GTT_OFFSET_NONE,
5838 5839 5840 5841
								      pctx_size);
		goto out;
	}

5842 5843
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5844 5845 5846 5847 5848 5849 5850 5851
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5852
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5853 5854
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5855
		goto out;
5856 5857 5858 5859 5860 5861
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5862
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5863 5864 5865
	dev_priv->vlv_pctx = pctx;
}

5866
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5867 5868 5869 5870
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5871
	i915_gem_object_put(dev_priv->vlv_pctx);
5872 5873 5874
	dev_priv->vlv_pctx = NULL;
}

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5886
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5887
{
5888
	u32 val;
5889

5890
	valleyview_setup_pctx(dev_priv);
5891

5892 5893
	vlv_init_gpll_ref_freq(dev_priv);

5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5907
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5908

5909 5910 5911
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5912
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5913 5914 5915 5916
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5917
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5918 5919
			 dev_priv->rps.efficient_freq);

5920 5921
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5922
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5923 5924
			 dev_priv->rps.rp1_freq);

5925 5926
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5927
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5928 5929 5930
			 dev_priv->rps.min_freq);
}

5931
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5932
{
5933
	u32 val;
5934

5935
	cherryview_setup_pctx(dev_priv);
5936

5937 5938
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5939
	mutex_lock(&dev_priv->sb_lock);
5940
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5941
	mutex_unlock(&dev_priv->sb_lock);
5942

5943 5944 5945 5946
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5947
	default:
5948 5949 5950
		dev_priv->mem_freq = 1600;
		break;
	}
5951
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5952

5953 5954 5955
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5956
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5957 5958 5959 5960
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5961
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5962 5963
			 dev_priv->rps.efficient_freq);

5964 5965
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5966
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5967 5968
			 dev_priv->rps.rp1_freq);

5969 5970
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5971
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5972
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5973 5974
			 dev_priv->rps.min_freq);

5975 5976 5977 5978 5979
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5980 5981
}

5982
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5983
{
5984
	valleyview_cleanup_pctx(dev_priv);
5985 5986
}

5987
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5988
{
5989
	struct intel_engine_cs *engine;
5990
	enum intel_engine_id id;
5991
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5992 5993 5994

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5995 5996
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6007
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6008

6009 6010 6011
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6012 6013 6014 6015 6016
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6017
	for_each_engine(engine, dev_priv, id)
6018
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6019 6020
	I915_WRITE(GEN6_RC_SLEEP, 0);

6021 6022
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6034 6035
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6036
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6037 6038 6039

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6040
	/* 4 Program defaults and thresholds for RPS*/
6041
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6052
		   GEN6_RP_MEDIA_IS_GFX |
6053 6054 6055 6056
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6057 6058 6059 6060 6061 6062
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6063 6064
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6065 6066 6067
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6068
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6069 6070
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6071
	reset_rps(dev_priv, valleyview_set_rps);
6072

6073
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6074 6075
}

6076
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6077
{
6078
	struct intel_engine_cs *engine;
6079
	enum intel_engine_id id;
6080
	u32 gtfifodbg, val, rc6_mode = 0;
6081 6082 6083

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6084 6085
	valleyview_check_pctx(dev_priv);

6086 6087
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6088 6089
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6090 6091 6092
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6093
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6094
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6095

6096 6097 6098
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6099
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6119
	for_each_engine(engine, dev_priv, id)
6120
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6121

6122
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6123 6124

	/* allows RC6 residency counter to work */
6125
	I915_WRITE(VLV_COUNTER_CONTROL,
6126 6127
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6128 6129
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6130

6131
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6132
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6133

6134
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6135

6136
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6137

D
Deepak S 已提交
6138 6139 6140 6141 6142 6143
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6144
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6145

6146 6147 6148
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6149
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6150 6151
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6152
	reset_rps(dev_priv, valleyview_set_rps);
6153

6154
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6155 6156
}

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6186
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6187 6188 6189 6190 6191 6192
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6193 6194
	assert_spin_locked(&mchdev_lock);

6195
	diff1 = now - dev_priv->ips.last_time1;
6196 6197 6198 6199 6200 6201 6202

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6203
		return dev_priv->ips.chipset_power;
6204 6205 6206 6207 6208 6209 6210 6211

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6212 6213
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6214 6215
		diff += total_count;
	} else {
6216
		diff = total_count - dev_priv->ips.last_count1;
6217 6218 6219
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6220 6221
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6232 6233
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6234

6235
	dev_priv->ips.chipset_power = ret;
6236 6237 6238 6239

	return ret;
}

6240 6241 6242 6243
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6244
	if (INTEL_INFO(dev_priv)->gen != 5)
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6283
{
6284 6285 6286
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6287
	if (INTEL_INFO(dev_priv)->is_mobile)
6288 6289 6290
		return vm > 0 ? vm : 0;

	return vd;
6291 6292
}

6293
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6294
{
6295
	u64 now, diff, diffms;
6296 6297
	u32 count;

6298
	assert_spin_locked(&mchdev_lock);
6299

6300 6301 6302
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6303 6304 6305 6306 6307 6308 6309

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6310 6311
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6312 6313
		diff += count;
	} else {
6314
		diff = count - dev_priv->ips.last_count2;
6315 6316
	}

6317 6318
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6319 6320 6321 6322

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6323
	dev_priv->ips.gfx_power = diff;
6324 6325
}

6326 6327
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6328
	if (INTEL_INFO(dev_priv)->gen != 5)
6329 6330
		return;

6331
	spin_lock_irq(&mchdev_lock);
6332 6333 6334

	__i915_update_gfx_val(dev_priv);

6335
	spin_unlock_irq(&mchdev_lock);
6336 6337
}

6338
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6339 6340 6341 6342
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6343 6344
	assert_spin_locked(&mchdev_lock);

6345
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6365
	corr2 = (corr * dev_priv->ips.corr);
6366 6367 6368 6369

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6370
	__i915_update_gfx_val(dev_priv);
6371

6372
	return dev_priv->ips.gfx_power + state2;
6373 6374
}

6375 6376 6377 6378
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6379
	if (INTEL_INFO(dev_priv)->gen != 5)
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6402
	spin_lock_irq(&mchdev_lock);
6403 6404 6405 6406
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6407 6408
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6409 6410 6411 6412

	ret = chipset_val + graphics_val;

out_unlock:
6413
	spin_unlock_irq(&mchdev_lock);
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6429
	spin_lock_irq(&mchdev_lock);
6430 6431 6432 6433 6434 6435
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6436 6437
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6438 6439

out_unlock:
6440
	spin_unlock_irq(&mchdev_lock);
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6457
	spin_lock_irq(&mchdev_lock);
6458 6459 6460 6461 6462 6463
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6464 6465
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6466 6467

out_unlock:
6468
	spin_unlock_irq(&mchdev_lock);
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6483
	spin_lock_irq(&mchdev_lock);
6484 6485
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6486
	spin_unlock_irq(&mchdev_lock);
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6503
	spin_lock_irq(&mchdev_lock);
6504 6505 6506 6507 6508 6509
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6510
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6511

6512
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6513 6514 6515
		ret = false;

out_unlock:
6516
	spin_unlock_irq(&mchdev_lock);
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6544 6545
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6546
	spin_lock_irq(&mchdev_lock);
6547
	i915_mch_dev = dev_priv;
6548
	spin_unlock_irq(&mchdev_lock);
6549 6550 6551 6552 6553 6554

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6555
	spin_lock_irq(&mchdev_lock);
6556
	i915_mch_dev = NULL;
6557
	spin_unlock_irq(&mchdev_lock);
6558
}
6559

6560
static void intel_init_emon(struct drm_i915_private *dev_priv)
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6577
		I915_WRITE(PEW(i), 0);
6578
	for (i = 0; i < 3; i++)
6579
		I915_WRITE(DEW(i), 0);
6580 6581 6582

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6583
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6604
		I915_WRITE(PXW(i), val);
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6620
		I915_WRITE(PXWL(i), 0);
6621 6622 6623 6624 6625 6626

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6627
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6628 6629
}

6630
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6631
{
6632 6633 6634 6635 6636 6637 6638 6639
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6640

6641
	mutex_lock(&dev_priv->drm.struct_mutex);
6642 6643 6644
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6645 6646 6647 6648
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6649
	else if (INTEL_GEN(dev_priv) >= 6)
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6679 6680 6681
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6682
	mutex_unlock(&dev_priv->rps.hw_lock);
6683
	mutex_unlock(&dev_priv->drm.struct_mutex);
6684 6685

	intel_autoenable_gt_powersave(dev_priv);
6686 6687
}

6688
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6689
{
6690
	if (IS_VALLEYVIEW(dev_priv))
6691
		valleyview_cleanup_gt_powersave(dev_priv);
6692 6693 6694

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6695 6696
}

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6716 6717 6718 6719
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6720 6721

	gen6_reset_rps_interrupts(dev_priv);
6722 6723
}

6724
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6725
{
6726 6727
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6728

6729
	mutex_lock(&dev_priv->rps.hw_lock);
6730

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6742
	}
6743 6744 6745

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6746 6747
}

6748
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6749
{
6750 6751 6752
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6753 6754
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6755

6756 6757 6758
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6759

6760
	mutex_lock(&dev_priv->rps.hw_lock);
6761 6762 6763 6764 6765

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6766
	} else if (INTEL_GEN(dev_priv) >= 9) {
6767 6768 6769
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6770
			gen6_update_ring_freq(dev_priv);
6771 6772
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6773
		gen6_update_ring_freq(dev_priv);
6774
	} else if (INTEL_GEN(dev_priv) >= 6) {
6775
		gen6_enable_rps(dev_priv);
6776
		gen6_update_ring_freq(dev_priv);
6777 6778 6779
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6780
	}
6781 6782 6783 6784 6785 6786 6787

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6788
	dev_priv->rps.enabled = true;
6789 6790
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6791

6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6802
	rcs = dev_priv->engine[RCS];
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6855
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6856 6857 6858 6859 6860 6861 6862 6863 6864
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6865
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6866
{
6867
	enum pipe pipe;
6868

6869
	for_each_pipe(dev_priv, pipe) {
6870 6871 6872
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6873 6874 6875

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6876 6877 6878
	}
}

6879
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6891
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6892
{
6893
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6894

6895 6896 6897 6898
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6899 6900 6901
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6919
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6920 6921 6922
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6923

6924
	ilk_init_lp_watermarks(dev_priv);
6925 6926 6927 6928 6929 6930 6931 6932

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6933
	if (IS_IRONLAKE_M(dev_priv)) {
6934
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6935 6936 6937 6938 6939 6940 6941 6942
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6943 6944
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6945 6946 6947 6948 6949 6950
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6951

6952
	/* WaDisableRenderCachePipelinedFlush:ilk */
6953 6954
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6955

6956 6957 6958
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6959
	g4x_disable_trickle_feed(dev_priv);
6960

6961
	ibx_init_clock_gating(dev_priv);
6962 6963
}

6964
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6965 6966
{
	int pipe;
6967
	uint32_t val;
6968 6969 6970 6971 6972 6973

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6974 6975 6976
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6977 6978
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6979 6980 6981
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6982
	for_each_pipe(dev_priv, pipe) {
6983 6984 6985
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6986
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6987
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6988 6989 6990
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6991 6992
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6993
	/* WADP0ClockGatingDisable */
6994
	for_each_pipe(dev_priv, pipe) {
6995 6996 6997
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6998 6999
}

7000
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7001 7002 7003 7004
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7005 7006 7007
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7008 7009
}

7010
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7011
{
7012
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7013

7014
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7015 7016 7017 7018 7019

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7020
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7021 7022 7023
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7024 7025 7026
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7027 7028 7029
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7030 7031 7032 7033
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7034 7035
	 */
	I915_WRITE(GEN6_GT_MODE,
7036
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7037

7038
	ilk_init_lp_watermarks(dev_priv);
7039 7040

	I915_WRITE(CACHE_MODE_0,
7041
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7057
	 *
7058 7059
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7060 7061 7062 7063 7064
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7065
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7066 7067
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7068

7069 7070 7071 7072 7073 7074 7075 7076
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7077 7078 7079 7080 7081 7082 7083 7084
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7085 7086
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7087 7088 7089 7090 7091 7092 7093
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7094 7095 7096 7097
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7098

7099
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7100

7101
	cpt_init_clock_gating(dev_priv);
7102

7103
	gen6_check_mch_setup(dev_priv);
7104 7105 7106 7107 7108 7109
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7110
	/*
7111
	 * WaVSThreadDispatchOverride:ivb,vlv
7112 7113 7114 7115
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7116 7117 7118 7119 7120 7121 7122 7123
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7124
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7125 7126 7127 7128 7129
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7130
	if (HAS_PCH_LPT_LP(dev_priv))
7131 7132 7133
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7134 7135

	/* WADPOClockGatingDisable:hsw */
7136 7137
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7138
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7139 7140
}

7141
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7142
{
7143
	if (HAS_PCH_LPT_LP(dev_priv)) {
7144 7145 7146 7147 7148 7149 7150
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7174
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7175
{
7176
	gen9_init_clock_gating(dev_priv);
7177 7178 7179 7180 7181

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7182 7183 7184 7185 7186

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7187 7188 7189 7190

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7191 7192
}

7193
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7194
{
7195
	gen9_init_clock_gating(dev_priv);
7196 7197 7198 7199

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7200 7201 7202 7203

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7204 7205
}

7206
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7207
{
7208
	enum pipe pipe;
B
Ben Widawsky 已提交
7209

7210
	ilk_init_lp_watermarks(dev_priv);
7211

7212
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7213
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7214

7215
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7216 7217 7218
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7219
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7220
	for_each_pipe(dev_priv, pipe) {
7221
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7222
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7223
			   BDW_DPRS_MASK_VBLANK_SRD);
7224
	}
7225

7226 7227 7228 7229 7230
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7231

7232 7233
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7234 7235 7236 7237

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7238

7239 7240
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7241

7242 7243 7244 7245 7246 7247 7248
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7249 7250 7251 7252
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7253
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7254 7255
}

7256
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7257
{
7258
	ilk_init_lp_watermarks(dev_priv);
7259

7260 7261 7262 7263 7264
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7265
	/* This is required by WaCatErrorRejectionIssue:hsw */
7266 7267 7268 7269
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7270 7271 7272
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7273

7274 7275 7276
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7277 7278 7279 7280
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7281
	/* WaDisable4x2SubspanOptimization:hsw */
7282 7283
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7284

7285 7286 7287
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7288 7289 7290 7291
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7292 7293
	 */
	I915_WRITE(GEN7_GT_MODE,
7294
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7295

7296 7297 7298 7299
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7300
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7301 7302
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7303 7304 7305
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7306

7307
	lpt_init_clock_gating(dev_priv);
7308 7309
}

7310
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7311
{
7312
	uint32_t snpcr;
7313

7314
	ilk_init_lp_watermarks(dev_priv);
7315

7316
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7317

7318
	/* WaDisableEarlyCull:ivb */
7319 7320 7321
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7322
	/* WaDisableBackToBackFlipFix:ivb */
7323 7324 7325 7326
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7327
	/* WaDisablePSDDualDispatchEnable:ivb */
7328
	if (IS_IVB_GT1(dev_priv))
7329 7330 7331
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7332 7333 7334
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7335
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7336 7337 7338
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7339
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7340 7341 7342
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7343
		   GEN7_WA_L3_CHICKEN_MODE);
7344
	if (IS_IVB_GT1(dev_priv))
7345 7346
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7347 7348 7349 7350
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7351 7352
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7353
	}
7354

7355
	/* WaForceL3Serialization:ivb */
7356 7357 7358
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7359
	/*
7360
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7361
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7362 7363
	 */
	I915_WRITE(GEN6_UCGCTL2,
7364
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7365

7366
	/* This is required by WaCatErrorRejectionIssue:ivb */
7367 7368 7369 7370
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7371
	g4x_disable_trickle_feed(dev_priv);
7372 7373

	gen7_setup_fixed_func_scheduler(dev_priv);
7374

7375 7376 7377 7378 7379
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7380

7381
	/* WaDisable4x2SubspanOptimization:ivb */
7382 7383
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7384

7385 7386 7387
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7388 7389 7390 7391
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7392 7393
	 */
	I915_WRITE(GEN7_GT_MODE,
7394
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7395

7396 7397 7398 7399
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7400

7401
	if (!HAS_PCH_NOP(dev_priv))
7402
		cpt_init_clock_gating(dev_priv);
7403

7404
	gen6_check_mch_setup(dev_priv);
7405 7406
}

7407
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7408
{
7409
	/* WaDisableEarlyCull:vlv */
7410 7411 7412
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7413
	/* WaDisableBackToBackFlipFix:vlv */
7414 7415 7416 7417
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7418
	/* WaPsdDispatchEnable:vlv */
7419
	/* WaDisablePSDDualDispatchEnable:vlv */
7420
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7421 7422
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7423

7424 7425 7426
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7427
	/* WaForceL3Serialization:vlv */
7428 7429 7430
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7431
	/* WaDisableDopClockGating:vlv */
7432 7433 7434
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7435
	/* This is required by WaCatErrorRejectionIssue:vlv */
7436 7437 7438 7439
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7440 7441
	gen7_setup_fixed_func_scheduler(dev_priv);

7442
	/*
7443
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7444
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7445 7446
	 */
	I915_WRITE(GEN6_UCGCTL2,
7447
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7448

7449 7450 7451 7452 7453
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7454

7455 7456 7457 7458
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7459 7460
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7461

7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7473 7474 7475 7476 7477 7478
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7479
	/*
7480
	 * WaDisableVLVClockGating_VBIIssue:vlv
7481 7482 7483
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7484
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7485 7486
}

7487
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7488
{
7489 7490 7491 7492 7493
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7494 7495 7496 7497

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7498 7499 7500 7501

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7502 7503 7504 7505

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7506

7507 7508 7509 7510 7511 7512 7513
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7514 7515 7516 7517 7518
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7519 7520
}

7521
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7533
	if (IS_GM45(dev_priv))
7534 7535
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7536 7537 7538 7539

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7540

7541 7542 7543
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7544
	g4x_disable_trickle_feed(dev_priv);
7545 7546
}

7547
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7548 7549 7550 7551 7552 7553
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7554 7555
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7556 7557 7558

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7559 7560
}

7561
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7562 7563 7564 7565 7566 7567 7568
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7569 7570
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7571 7572 7573

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7574 7575
}

7576
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7577 7578 7579 7580 7581 7582
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7583

7584
	if (IS_PINEVIEW(dev_priv))
7585
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7586 7587 7588

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7589 7590

	/* interrupts should cause a wake up from C3 */
7591
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7592 7593 7594

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7595 7596 7597

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7598 7599
}

7600
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7601 7602
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7603 7604 7605 7606

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7607 7608 7609

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7610 7611
}

7612
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7613 7614
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7615 7616 7617 7618

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7619 7620
}

7621
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7622
{
7623
	dev_priv->display.init_clock_gating(dev_priv);
7624 7625
}

7626
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7627
{
7628 7629
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7630 7631
}

7632
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7649
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7650
	else if (IS_KABYLAKE(dev_priv))
7651
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7686
/* Set up chip specific power management-related functions */
7687
void intel_init_pm(struct drm_i915_private *dev_priv)
7688
{
7689
	intel_fbc_init(dev_priv);
7690

7691
	/* For cxsr */
7692
	if (IS_PINEVIEW(dev_priv))
7693
		i915_pineview_get_mem_freq(dev_priv);
7694
	else if (IS_GEN5(dev_priv))
7695
		i915_ironlake_get_mem_freq(dev_priv);
7696

7697
	/* For FIFO watermark updates */
7698
	if (INTEL_GEN(dev_priv) >= 9) {
7699
		skl_setup_wm_latency(dev_priv);
7700
		dev_priv->display.initial_watermarks = skl_initial_wm;
7701
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7702
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7703
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7704
		ilk_setup_wm_latency(dev_priv);
7705

7706
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7707
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7708
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7709
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7710
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7711 7712 7713 7714 7715 7716
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7717 7718 7719 7720
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7721
	} else if (IS_CHERRYVIEW(dev_priv)) {
7722
		vlv_setup_wm_latency(dev_priv);
7723
		dev_priv->display.update_wm = vlv_update_wm;
7724
	} else if (IS_VALLEYVIEW(dev_priv)) {
7725
		vlv_setup_wm_latency(dev_priv);
7726
		dev_priv->display.update_wm = vlv_update_wm;
7727
	} else if (IS_PINEVIEW(dev_priv)) {
7728
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7729 7730 7731 7732 7733 7734 7735 7736 7737
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7738
			intel_set_memory_cxsr(dev_priv, false);
7739 7740 7741
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7742
	} else if (IS_G4X(dev_priv)) {
7743
		dev_priv->display.update_wm = g4x_update_wm;
7744
	} else if (IS_GEN4(dev_priv)) {
7745
		dev_priv->display.update_wm = i965_update_wm;
7746
	} else if (IS_GEN3(dev_priv)) {
7747 7748
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7749
	} else if (IS_GEN2(dev_priv)) {
7750
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7751
			dev_priv->display.update_wm = i845_update_wm;
7752
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7753 7754
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7755
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7756 7757 7758
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7759 7760 7761
	}
}

7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7774
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7806
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7807
{
7808 7809
	int status;

7810
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7811

7812 7813 7814 7815 7816 7817
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7818 7819 7820 7821
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7822 7823 7824
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7825

7826 7827 7828
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7829 7830 7831 7832
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7833 7834
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7835

7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7847 7848 7849
	return 0;
}

7850
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7851
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7852
{
7853 7854
	int status;

7855
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7856

7857 7858 7859 7860 7861 7862
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7863 7864 7865 7866
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7867 7868
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7869

7870 7871 7872
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7873 7874 7875 7876
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7877
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7878

7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7890 7891
	return 0;
}
7892

7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
 * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
 * for @timeout_base_ms and if this times out for another 10 ms with
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
	 * requests. Increase the timeout from @timeout_base_ms to 10ms to
	 * account for interrupts that could reduce the number of these
	 * requests.
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
	ret = wait_for_atomic(COND, 10);
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

7968 7969
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7970 7971 7972 7973 7974
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7975 7976
}

7977
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7978
{
7979
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7980 7981
}

7982
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7983
{
7984 7985 7986 7987 7988
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7989 7990
}

7991
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7992
{
7993
	/* CHV needs even values */
7994
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7995 7996
}

7997
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7998
{
7999
	if (IS_GEN9(dev_priv))
8000 8001
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8002
	else if (IS_CHERRYVIEW(dev_priv))
8003
		return chv_gpu_freq(dev_priv, val);
8004
	else if (IS_VALLEYVIEW(dev_priv))
8005 8006 8007
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8008 8009
}

8010 8011
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8012
	if (IS_GEN9(dev_priv))
8013 8014
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8015
	else if (IS_CHERRYVIEW(dev_priv))
8016
		return chv_freq_opcode(dev_priv, val);
8017
	else if (IS_VALLEYVIEW(dev_priv))
8018 8019
		return byt_freq_opcode(dev_priv, val);
	else
8020
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8021
}
8022

8023 8024
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8025
	struct drm_i915_gem_request *req;
8026 8027 8028 8029 8030
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8031
	struct drm_i915_gem_request *req = boost->req;
8032

8033
	if (!i915_gem_request_completed(req))
8034
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8035

8036
	i915_gem_request_put(req);
8037 8038 8039
	kfree(boost);
}

8040
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8041 8042 8043
{
	struct request_boost *boost;

8044
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8045 8046
		return;

8047
	if (i915_gem_request_completed(req))
8048 8049
		return;

8050 8051 8052 8053
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8054
	boost->req = i915_gem_request_get(req);
8055 8056

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8057
	queue_work(req->i915->wq, &boost->work);
8058 8059
}

D
Daniel Vetter 已提交
8060
void intel_pm_setup(struct drm_device *dev)
8061
{
8062
	struct drm_i915_private *dev_priv = to_i915(dev);
8063

D
Daniel Vetter 已提交
8064
	mutex_init(&dev_priv->rps.hw_lock);
8065
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8066

8067 8068
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8069
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8070

8071
	dev_priv->pm.suspended = false;
8072
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8073
}