hugetlb.c 80.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 38
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51 52 53
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138 139 140 141 142
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437 438
}

/* Decrement the reserved pages in the hugepage pool by one */
439 440
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
441
{
442 443 444
	if (vma->vm_flags & VM_NORESERVE)
		return;

445
	if (vma->vm_flags & VM_MAYSHARE) {
446
		/* Shared mappings always use reserves */
447
		h->resv_huge_pages--;
448
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 450 451 452
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
453
		h->resv_huge_pages--;
454 455 456
	}
}

457
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 459 460
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461
	if (!(vma->vm_flags & VM_MAYSHARE))
462 463 464 465
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
466
static int vma_has_reserves(struct vm_area_struct *vma)
467
{
468
	if (vma->vm_flags & VM_MAYSHARE)
469 470 471 472
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

509
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
510 511
{
	int nid = page_to_nid(page);
512
	list_move(&page->lru, &h->hugepage_freelists[nid]);
513 514
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
515 516
}

517 518 519 520 521 522 523
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524
	list_move(&page->lru, &h->hugepage_activelist);
525
	set_page_refcounted(page);
526 527 528 529 530
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

531 532
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
533
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
534
{
535
	struct page *page = NULL;
536
	struct mempolicy *mpol;
537
	nodemask_t *nodemask;
538
	struct zonelist *zonelist;
539 540
	struct zone *zone;
	struct zoneref *z;
541
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
542

543 544
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
545 546
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
547 548 549 550 551
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
552
	if (!vma_has_reserves(vma) &&
553
			h->free_huge_pages - h->resv_huge_pages == 0)
554
		goto err;
555

556
	/* If reserves cannot be used, ensure enough pages are in the pool */
557
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558
		goto err;
559

560 561
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
562 563 564 565 566 567 568
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
569
		}
L
Linus Torvalds 已提交
570
	}
571

572
	mpol_cond_put(mpol);
573 574
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
575
	return page;
576 577 578 579

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
580 581
}

582
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
583 584
{
	int i;
585

586 587
	VM_BUG_ON(h->order >= MAX_ORDER);

588 589 590
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
591 592 593 594
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
595
	}
596
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
597 598
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
599
	arch_release_hugepage(page);
600
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
601 602
}

603 604 605 606 607 608 609 610 611 612 613
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

614 615
static void free_huge_page(struct page *page)
{
616 617 618 619
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
620
	struct hstate *h = page_hstate(page);
621
	int nid = page_to_nid(page);
622 623
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
624

625
	set_page_private(page, 0);
626
	page->mapping = NULL;
627
	BUG_ON(page_count(page));
628
	BUG_ON(page_mapcount(page));
629 630

	spin_lock(&hugetlb_lock);
631 632
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
633
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 635
		/* remove the page from active list */
		list_del(&page->lru);
636 637 638
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
639
	} else {
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
686 687
EXPORT_SYMBOL_GPL(PageHuge);

688
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
689 690
{
	struct page *page;
691

692 693 694
	if (h->order >= MAX_ORDER)
		return NULL;

695
	page = alloc_pages_exact_node(nid,
696 697
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
698
		huge_page_order(h));
L
Linus Torvalds 已提交
699
	if (page) {
700
		if (arch_prepare_hugepage(page)) {
701
			__free_pages(page, huge_page_order(h));
702
			return NULL;
703
		}
704
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
705
	}
706 707 708 709

	return page;
}

710
/*
711 712 713 714 715
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
716
 */
717
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718
{
719
	nid = next_node(nid, *nodes_allowed);
720
	if (nid == MAX_NUMNODES)
721
		nid = first_node(*nodes_allowed);
722 723 724 725 726
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

727 728 729 730 731 732 733
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

734
/*
735 736 737 738
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
739
 */
740 741
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
742
{
743 744 745 746 747 748
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749 750

	return nid;
751 752
}

753
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 755 756 757 758 759
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

760
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761
	next_nid = start_nid;
762 763

	do {
764
		page = alloc_fresh_huge_page_node(h, next_nid);
765
		if (page) {
766
			ret = 1;
767 768
			break;
		}
769
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770
	} while (next_nid != start_nid);
771

772 773 774 775 776
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

777
	return ret;
L
Linus Torvalds 已提交
778 779
}

780
/*
781 782 783 784
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
785
 */
786
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787
{
788 789 790 791 792 793
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794 795

	return nid;
796 797 798 799 800 801 802 803
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
804 805
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
806 807 808 809 810
{
	int start_nid;
	int next_nid;
	int ret = 0;

811
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 813 814
	next_nid = start_nid;

	do {
815 816 817 818 819 820
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
821 822 823 824 825 826
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
827 828 829 830
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
831 832
			update_and_free_page(h, page);
			ret = 1;
833
			break;
834
		}
835
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
836
	} while (next_nid != start_nid);
837 838 839 840

	return ret;
}

841
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 843
{
	struct page *page;
844
	unsigned int r_nid;
845

846 847 848
	if (h->order >= MAX_ORDER)
		return NULL;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
873
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 875 876
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
877 878
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
879 880 881
	}
	spin_unlock(&hugetlb_lock);

882 883 884 885 886 887 888 889
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890

891 892
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
893
		page = NULL;
894 895
	}

896
	spin_lock(&hugetlb_lock);
897
	if (page) {
898
		INIT_LIST_HEAD(&page->lru);
899
		r_nid = page_to_nid(page);
900
		set_compound_page_dtor(page, free_huge_page);
901
		set_hugetlb_cgroup(page, NULL);
902 903 904
		/*
		 * We incremented the global counters already
		 */
905 906
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
907
		__count_vm_event(HTLB_BUDDY_PGALLOC);
908
	} else {
909 910
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
911
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912
	}
913
	spin_unlock(&hugetlb_lock);
914 915 916 917

	return page;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

937
/*
L
Lucas De Marchi 已提交
938
 * Increase the hugetlb pool such that it can accommodate a reservation
939 940
 * of size 'delta'.
 */
941
static int gather_surplus_pages(struct hstate *h, int delta)
942 943 944 945 946
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
947
	bool alloc_ok = true;
948

949
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950
	if (needed <= 0) {
951
		h->resv_huge_pages += delta;
952
		return 0;
953
	}
954 955 956 957 958 959 960 961

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
962
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963 964 965 966
		if (!page) {
			alloc_ok = false;
			break;
		}
967 968
		list_add(&page->lru, &surplus_list);
	}
969
	allocated += i;
970 971 972 973 974 975

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
976 977
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
978 979 980 981 982 983 984 985 986 987
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
988 989
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
990
	 * needed to accommodate the reservation.  Add the appropriate number
991
	 * of pages to the hugetlb pool and free the extras back to the buddy
992 993 994
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
995 996
	 */
	needed += allocated;
997
	h->resv_huge_pages += delta;
998
	ret = 0;
999

1000
	/* Free the needed pages to the hugetlb pool */
1001
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002 1003
		if ((--needed) < 0)
			break;
1004 1005 1006 1007 1008 1009
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1010
		enqueue_huge_page(h, page);
1011
	}
1012
free:
1013
	spin_unlock(&hugetlb_lock);
1014 1015 1016 1017

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018
			put_page(page);
1019
		}
1020
	}
1021
	spin_lock(&hugetlb_lock);
1022 1023 1024 1025 1026 1027 1028 1029

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1030
 * Called with hugetlb_lock held.
1031
 */
1032 1033
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1034 1035 1036
{
	unsigned long nr_pages;

1037
	/* Uncommit the reservation */
1038
	h->resv_huge_pages -= unused_resv_pages;
1039

1040 1041 1042 1043
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1044
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1045

1046 1047
	/*
	 * We want to release as many surplus pages as possible, spread
1048 1049 1050 1051 1052
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1053 1054
	 */
	while (nr_pages--) {
1055
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056
			break;
1057 1058 1059
	}
}

1060 1061 1062
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1063 1064 1065 1066 1067 1068
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1069
 */
1070
static long vma_needs_reservation(struct hstate *h,
1071
			struct vm_area_struct *vma, unsigned long addr)
1072 1073 1074 1075
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1076
	if (vma->vm_flags & VM_MAYSHARE) {
1077
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078 1079 1080
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1081 1082
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1083

1084
	} else  {
1085
		long err;
1086
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087 1088 1089 1090 1091 1092 1093
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1094
}
1095 1096
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1097 1098 1099 1100
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1101
	if (vma->vm_flags & VM_MAYSHARE) {
1102
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1104 1105

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 1108 1109 1110
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1111 1112 1113
	}
}

1114
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1116
{
1117
	struct hugepage_subpool *spool = subpool_vma(vma);
1118
	struct hstate *h = hstate_vma(vma);
1119
	struct page *page;
1120
	long chg;
1121 1122
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1123

1124
	idx = hstate_index(h);
1125
	/*
1126 1127 1128 1129 1130 1131
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1132
	 */
1133
	chg = vma_needs_reservation(h, vma, addr);
1134
	if (chg < 0)
1135
		return ERR_PTR(-ENOMEM);
1136
	if (chg)
1137
		if (hugepage_subpool_get_pages(spool, chg))
1138
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1139

1140 1141 1142 1143 1144
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1145
	spin_lock(&hugetlb_lock);
1146
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1147
	spin_unlock(&hugetlb_lock);
1148

K
Ken Chen 已提交
1149
	if (!page) {
1150
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1151
		if (!page) {
1152 1153 1154
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1155
			hugepage_subpool_put_pages(spool, chg);
1156
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1157 1158
		}
	}
1159

1160
	set_page_private(page, (unsigned long)spool);
1161

1162
	vma_commit_reservation(h, vma, addr);
1163 1164
	/* update page cgroup details */
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1165
	return page;
1166 1167
}

1168
int __weak alloc_bootmem_huge_page(struct hstate *h)
1169 1170
{
	struct huge_bootmem_page *m;
1171
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1172 1173 1174 1175 1176

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1177
				NODE_DATA(hstate_next_node_to_alloc(h,
1178
						&node_states[N_HIGH_MEMORY])),
1179 1180 1181 1182 1183 1184 1185 1186 1187
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1188
			goto found;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1202 1203 1204 1205 1206 1207 1208 1209
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1210 1211 1212 1213 1214 1215 1216
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1217 1218 1219 1220 1221 1222 1223 1224 1225
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1226 1227
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1228
		prep_compound_huge_page(page, h->order);
1229
		prep_new_huge_page(h, page, page_to_nid(page));
1230 1231 1232 1233 1234 1235 1236 1237
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1238 1239 1240
	}
}

1241
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1242 1243
{
	unsigned long i;
1244

1245
	for (i = 0; i < h->max_huge_pages; ++i) {
1246 1247 1248
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1249 1250
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1251 1252
			break;
	}
1253
	h->max_huge_pages = i;
1254 1255 1256 1257 1258 1259 1260
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1261 1262 1263
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1264 1265 1266
	}
}

A
Andi Kleen 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1278 1279 1280 1281 1282
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1283 1284 1285 1286 1287
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1288 1289 1290
	}
}

L
Linus Torvalds 已提交
1291
#ifdef CONFIG_HIGHMEM
1292 1293
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1294
{
1295 1296
	int i;

1297 1298 1299
	if (h->order >= MAX_ORDER)
		return;

1300
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1301
		struct page *page, *next;
1302 1303 1304
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1305
				return;
L
Linus Torvalds 已提交
1306 1307 1308
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1309
			update_and_free_page(h, page);
1310 1311
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1312 1313 1314 1315
		}
	}
}
#else
1316 1317
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1318 1319 1320 1321
{
}
#endif

1322 1323 1324 1325 1326
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1327 1328
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1329
{
1330
	int start_nid, next_nid;
1331 1332 1333 1334
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1335
	if (delta < 0)
1336
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1337
	else
1338
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1339 1340 1341 1342 1343 1344 1345 1346
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1347
			if (!h->surplus_huge_pages_node[nid]) {
1348 1349
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1350
				continue;
1351
			}
1352 1353 1354 1355 1356 1357
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1358
						h->nr_huge_pages_node[nid]) {
1359 1360
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1361
				continue;
1362
			}
1363
		}
1364 1365 1366 1367 1368

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1369
	} while (next_nid != start_nid);
1370 1371 1372 1373

	return ret;
}

1374
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1375 1376
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1377
{
1378
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1379

1380 1381 1382
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1383 1384 1385 1386
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1387 1388 1389 1390 1391 1392
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1393
	 */
L
Linus Torvalds 已提交
1394
	spin_lock(&hugetlb_lock);
1395
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1396
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1397 1398 1399
			break;
	}

1400
	while (count > persistent_huge_pages(h)) {
1401 1402 1403 1404 1405 1406
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1407
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1408 1409 1410 1411
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1412 1413 1414
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1415 1416 1417 1418 1419 1420 1421 1422
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1423 1424 1425 1426 1427 1428 1429 1430
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1431
	 */
1432
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1433
	min_count = max(count, min_count);
1434
	try_to_free_low(h, min_count, nodes_allowed);
1435
	while (min_count < persistent_huge_pages(h)) {
1436
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1437 1438
			break;
	}
1439
	while (count < persistent_huge_pages(h)) {
1440
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1441 1442 1443
			break;
	}
out:
1444
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1445
	spin_unlock(&hugetlb_lock);
1446
	return ret;
L
Linus Torvalds 已提交
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1459 1460 1461
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1462 1463
{
	int i;
1464

1465
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1466 1467 1468
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1469
			return &hstates[i];
1470 1471 1472
		}

	return kobj_to_node_hstate(kobj, nidp);
1473 1474
}

1475
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1476 1477
					struct kobj_attribute *attr, char *buf)
{
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1489
}
1490

1491 1492 1493
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1494 1495
{
	int err;
1496
	int nid;
1497
	unsigned long count;
1498
	struct hstate *h;
1499
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1500

1501
	err = strict_strtoul(buf, 10, &count);
1502
	if (err)
1503
		goto out;
1504

1505
	h = kobj_to_hstate(kobj, &nid);
1506 1507 1508 1509 1510
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1530
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1531

1532
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1533 1534 1535
		NODEMASK_FREE(nodes_allowed);

	return len;
1536 1537 1538
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1551 1552 1553
}
HSTATE_ATTR(nr_hugepages);

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1575 1576 1577
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1578
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1579 1580
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1581

1582 1583 1584 1585 1586
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1587
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1588

1589 1590 1591
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1592 1593
	err = strict_strtoul(buf, 10, &input);
	if (err)
1594
		return err;
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1618 1619 1620 1621 1622 1623
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1624
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1625 1626 1627 1628 1629 1630 1631
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1643 1644 1645 1646 1647 1648 1649 1650 1651
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1652 1653 1654
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1655 1656 1657 1658 1659 1660 1661
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1662 1663 1664
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1665 1666
{
	int retval;
1667
	int hi = hstate_index(h);
1668

1669 1670
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1671 1672
		return -ENOMEM;

1673
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1674
	if (retval)
1675
		kobject_put(hstate_kobjs[hi]);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1690 1691
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1692 1693 1694 1695 1696 1697
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1698 1699 1700 1701
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1702 1703 1704
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1705 1706 1707 1708 1709 1710 1711 1712 1713
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1714
 * A subset of global hstate attributes for node devices
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1728
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1751
 * Unregister hstate attributes from a single node device.
1752 1753 1754 1755 1756
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1757
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1758 1759

	if (!nhs->hugepages_kobj)
1760
		return;		/* no hstate attributes */
1761

1762 1763 1764 1765 1766
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1767
		}
1768
	}
1769 1770 1771 1772 1773 1774

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1775
 * hugetlb module exit:  unregister hstate attributes from node devices
1776 1777 1778 1779 1780 1781 1782
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1783
	 * disable node device registrations.
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1795
 * Register hstate attributes for a single node device.
1796 1797 1798 1799 1800
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1801
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1802 1803 1804 1805 1806 1807
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1808
							&node->dev.kobj);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1819
						h->name, node->dev.id);
1820 1821 1822 1823 1824 1825 1826
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1827
 * hugetlb init time:  register hstate attributes for all registered node
1828 1829
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1830 1831 1832 1833 1834
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1835
	for_each_node_state(nid, N_HIGH_MEMORY) {
1836
		struct node *node = &node_devices[nid];
1837
		if (node->dev.id == nid)
1838 1839 1840 1841
			hugetlb_register_node(node);
	}

	/*
1842
	 * Let the node device driver know we're here so it can
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1864 1865 1866 1867
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1868 1869
	hugetlb_unregister_all_nodes();

1870
	for_each_hstate(h) {
1871
		kobject_put(hstate_kobjs[hstate_index(h)]);
1872 1873 1874 1875 1876 1877 1878 1879
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1880 1881 1882 1883 1884 1885
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1886

1887 1888 1889 1890
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1891
	}
1892
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1893 1894
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1895 1896 1897

	hugetlb_init_hstates();

1898 1899
	gather_bootmem_prealloc();

1900 1901 1902 1903
	report_hugepages();

	hugetlb_sysfs_init();

1904 1905
	hugetlb_register_all_nodes();

1906 1907 1908 1909 1910 1911 1912 1913
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1914 1915
	unsigned long i;

1916 1917 1918 1919
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1920
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1921
	BUG_ON(order == 0);
1922
	h = &hstates[hugetlb_max_hstate++];
1923 1924
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1925 1926 1927 1928
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1929
	INIT_LIST_HEAD(&h->hugepage_activelist);
1930 1931
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1932 1933
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1934 1935 1936 1937 1938 1939 1940
	/*
	 * Add cgroup control files only if the huge page consists
	 * of more than two normal pages. This is because we use
	 * page[2].lru.next for storing cgoup details.
	 */
	if (order >= HUGETLB_CGROUP_MIN_ORDER)
		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1941

1942 1943 1944
	parsed_hstate = h;
}

1945
static int __init hugetlb_nrpages_setup(char *s)
1946 1947
{
	unsigned long *mhp;
1948
	static unsigned long *last_mhp;
1949 1950

	/*
1951
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1952 1953
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1954
	if (!hugetlb_max_hstate)
1955 1956 1957 1958
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1959 1960 1961 1962 1963 1964
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1965 1966 1967
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1968 1969 1970 1971 1972
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1973
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1974 1975 1976 1977
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1978 1979
	return 1;
}
1980 1981 1982 1983 1984 1985 1986 1987
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1988

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2001 2002 2003
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2004
{
2005 2006
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2007
	int ret;
2008

2009
	tmp = h->max_huge_pages;
2010

2011 2012 2013
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2014 2015
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2016 2017 2018
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2019

2020
	if (write) {
2021 2022
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2033 2034
out:
	return ret;
L
Linus Torvalds 已提交
2035
}
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2054
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2055
			void __user *buffer,
2056 2057
			size_t *length, loff_t *ppos)
{
2058
	proc_dointvec(table, write, buffer, length, ppos);
2059 2060 2061 2062 2063 2064 2065
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2066
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2067
			void __user *buffer,
2068 2069
			size_t *length, loff_t *ppos)
{
2070
	struct hstate *h = &default_hstate;
2071
	unsigned long tmp;
2072
	int ret;
2073

2074
	tmp = h->nr_overcommit_huge_pages;
2075

2076 2077 2078
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2079 2080
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2081 2082 2083
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2084 2085 2086 2087 2088 2089

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2090 2091
out:
	return ret;
2092 2093
}

L
Linus Torvalds 已提交
2094 2095
#endif /* CONFIG_SYSCTL */

2096
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2097
{
2098
	struct hstate *h = &default_hstate;
2099
	seq_printf(m,
2100 2101 2102 2103 2104
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2105 2106 2107 2108 2109
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2110 2111 2112 2113
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2114
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2115 2116
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2117 2118
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2119 2120 2121
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2127 2128
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2129 2130
}

2131
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2154
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2155 2156
			goto out;

2157 2158
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2159 2160 2161 2162 2163 2164
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2165
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2166 2167 2168 2169 2170 2171

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2172 2173 2174 2175 2176 2177 2178 2179
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2180
	 * has a reference to the reservation map it cannot disappear until
2181 2182 2183 2184 2185 2186 2187
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2188 2189 2190 2191 2192 2193 2194 2195 2196
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2197 2198
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2199
	struct hstate *h = hstate_vma(vma);
2200
	struct resv_map *reservations = vma_resv_map(vma);
2201
	struct hugepage_subpool *spool = subpool_vma(vma);
2202 2203 2204 2205 2206
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2207 2208
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2209 2210 2211 2212

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2213
		resv_map_put(vma);
2214

2215
		if (reserve) {
2216
			hugetlb_acct_memory(h, -reserve);
2217
			hugepage_subpool_put_pages(spool, reserve);
2218
		}
2219
	}
2220 2221
}

L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2228
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2229 2230
{
	BUG();
N
Nick Piggin 已提交
2231
	return 0;
L
Linus Torvalds 已提交
2232 2233
}

2234
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2235
	.fault = hugetlb_vm_op_fault,
2236
	.open = hugetlb_vm_op_open,
2237
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2238 2239
};

2240 2241
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2242 2243 2244
{
	pte_t entry;

2245
	if (writable) {
D
David Gibson 已提交
2246 2247 2248
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2249
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2250 2251 2252
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2253
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2254 2255 2256 2257

	return entry;
}

2258 2259 2260 2261 2262
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2263
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2264
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2265
		update_mmu_cache(vma, address, ptep);
2266 2267 2268
}


D
David Gibson 已提交
2269 2270 2271 2272 2273
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2274
	unsigned long addr;
2275
	int cow;
2276 2277
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2278 2279

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2280

2281
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2282 2283 2284
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2285
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2286 2287
		if (!dst_pte)
			goto nomem;
2288 2289 2290 2291 2292

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2293
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2294
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2295
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2296
			if (cow)
2297 2298
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2299 2300
			ptepage = pte_page(entry);
			get_page(ptepage);
2301
			page_dup_rmap(ptepage);
2302 2303 2304
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2305
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2306 2307 2308 2309 2310 2311 2312
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2313 2314 2315 2316 2317 2318 2319
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2320
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2321
		return 1;
2322
	else
N
Naoya Horiguchi 已提交
2323 2324 2325
		return 0;
}

2326 2327 2328 2329 2330 2331 2332
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2333
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2334
		return 1;
2335
	else
2336 2337 2338
		return 0;
}

2339 2340 2341
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2342
{
2343
	int force_flush = 0;
D
David Gibson 已提交
2344 2345
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2346
	pte_t *ptep;
D
David Gibson 已提交
2347 2348
	pte_t pte;
	struct page *page;
2349 2350 2351
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2352
	WARN_ON(!is_vm_hugetlb_page(vma));
2353 2354
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2355

2356
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2357
	mmu_notifier_invalidate_range_start(mm, start, end);
2358
again:
2359
	spin_lock(&mm->page_table_lock);
2360
	for (address = start; address < end; address += sz) {
2361
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2362
		if (!ptep)
2363 2364
			continue;

2365 2366 2367
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2396
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2397
		tlb_remove_tlb_entry(tlb, ptep, address);
2398 2399
		if (pte_dirty(pte))
			set_page_dirty(page);
2400

2401 2402 2403 2404
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2405 2406 2407
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2408
	}
2409
	spin_unlock(&mm->page_table_lock);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2420
	}
2421 2422
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2423
}
D
David Gibson 已提交
2424

2425
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2426
			  unsigned long end, struct page *ref_page)
2427
{
2428 2429 2430 2431 2432 2433 2434 2435
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2436 2437
}

2438 2439 2440 2441 2442 2443
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2444 2445
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2446
{
2447
	struct hstate *h = hstate_vma(vma);
2448 2449 2450 2451 2452 2453 2454 2455 2456
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2457
	address = address & huge_page_mask(h);
2458
	pgoff = vma_hugecache_offset(h, vma, address);
2459
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2460

2461 2462 2463 2464 2465
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2466
	mutex_lock(&mapping->i_mmap_mutex);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2480 2481
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2482
	}
2483
	mutex_unlock(&mapping->i_mmap_mutex);
2484 2485 2486 2487

	return 1;
}

2488 2489
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2490 2491 2492
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2493
 */
2494
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2495 2496
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2497
{
2498
	struct hstate *h = hstate_vma(vma);
2499
	struct page *old_page, *new_page;
2500
	int avoidcopy;
2501
	int outside_reserve = 0;
2502 2503 2504

	old_page = pte_page(pte);

2505
retry_avoidcopy:
2506 2507
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2508
	avoidcopy = (page_mapcount(old_page) == 1);
2509
	if (avoidcopy) {
2510 2511
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2512
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2513
		return 0;
2514 2515
	}

2516 2517 2518 2519 2520 2521 2522 2523 2524
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2525
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2526 2527 2528 2529
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2530
	page_cache_get(old_page);
2531 2532 2533

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2534
	new_page = alloc_huge_page(vma, address, outside_reserve);
2535

2536
	if (IS_ERR(new_page)) {
2537
		long err = PTR_ERR(new_page);
2538
		page_cache_release(old_page);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2551
				spin_lock(&mm->page_table_lock);
2552 2553 2554 2555 2556 2557 2558 2559
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2560 2561 2562 2563
			}
			WARN_ON_ONCE(1);
		}

2564 2565
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2566 2567 2568 2569
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2570 2571
	}

2572 2573 2574 2575
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2576
	if (unlikely(anon_vma_prepare(vma))) {
2577 2578
		page_cache_release(new_page);
		page_cache_release(old_page);
2579 2580
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2581
		return VM_FAULT_OOM;
2582
	}
2583

A
Andrea Arcangeli 已提交
2584 2585
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2586
	__SetPageUptodate(new_page);
2587

2588 2589 2590 2591 2592
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2593
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2594
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2595
		/* Break COW */
2596 2597 2598
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2599
		huge_ptep_clear_flush(vma, address, ptep);
2600 2601
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2602
		page_remove_rmap(old_page);
2603
		hugepage_add_new_anon_rmap(new_page, vma, address);
2604 2605
		/* Make the old page be freed below */
		new_page = old_page;
2606 2607 2608
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2609 2610 2611
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2612
	return 0;
2613 2614
}

2615
/* Return the pagecache page at a given address within a VMA */
2616 2617
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2618 2619
{
	struct address_space *mapping;
2620
	pgoff_t idx;
2621 2622

	mapping = vma->vm_file->f_mapping;
2623
	idx = vma_hugecache_offset(h, vma, address);
2624 2625 2626 2627

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2628 2629 2630 2631 2632
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2648
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2649
			unsigned long address, pte_t *ptep, unsigned int flags)
2650
{
2651
	struct hstate *h = hstate_vma(vma);
2652
	int ret = VM_FAULT_SIGBUS;
2653
	int anon_rmap = 0;
2654
	pgoff_t idx;
A
Adam Litke 已提交
2655 2656 2657
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2658
	pte_t new_pte;
A
Adam Litke 已提交
2659

2660 2661 2662
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2663
	 * COW. Warn that such a situation has occurred as it may not be obvious
2664 2665 2666 2667 2668 2669 2670 2671
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2672
	mapping = vma->vm_file->f_mapping;
2673
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2674 2675 2676 2677 2678

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2679 2680 2681
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2682
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2683 2684
		if (idx >= size)
			goto out;
2685
		page = alloc_huge_page(vma, address, 0);
2686
		if (IS_ERR(page)) {
2687 2688 2689 2690 2691
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2692 2693
			goto out;
		}
A
Andrea Arcangeli 已提交
2694
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2695
		__SetPageUptodate(page);
2696

2697
		if (vma->vm_flags & VM_MAYSHARE) {
2698
			int err;
K
Ken Chen 已提交
2699
			struct inode *inode = mapping->host;
2700 2701 2702 2703 2704 2705 2706 2707

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2708 2709

			spin_lock(&inode->i_lock);
2710
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2711
			spin_unlock(&inode->i_lock);
2712
		} else {
2713
			lock_page(page);
2714 2715 2716 2717
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2718
			anon_rmap = 1;
2719
		}
2720
	} else {
2721 2722 2723 2724 2725 2726
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2727
			ret = VM_FAULT_HWPOISON |
2728
				VM_FAULT_SET_HINDEX(hstate_index(h));
2729 2730
			goto backout_unlocked;
		}
2731
	}
2732

2733 2734 2735 2736 2737 2738
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2739
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2740 2741 2742 2743
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2744

2745
	spin_lock(&mm->page_table_lock);
2746
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2747 2748 2749
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2750
	ret = 0;
2751
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2752 2753
		goto backout;

2754 2755 2756 2757
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2758 2759 2760 2761
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2762
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2763
		/* Optimization, do the COW without a second fault */
2764
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2765 2766
	}

2767
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2768 2769
	unlock_page(page);
out:
2770
	return ret;
A
Adam Litke 已提交
2771 2772 2773

backout:
	spin_unlock(&mm->page_table_lock);
2774
backout_unlocked:
A
Adam Litke 已提交
2775 2776 2777
	unlock_page(page);
	put_page(page);
	goto out;
2778 2779
}

2780
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2781
			unsigned long address, unsigned int flags)
2782 2783 2784
{
	pte_t *ptep;
	pte_t entry;
2785
	int ret;
2786
	struct page *page = NULL;
2787
	struct page *pagecache_page = NULL;
2788
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2789
	struct hstate *h = hstate_vma(vma);
2790

2791 2792
	address &= huge_page_mask(h);

2793 2794 2795
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2796 2797 2798 2799
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2800
			return VM_FAULT_HWPOISON_LARGE |
2801
				VM_FAULT_SET_HINDEX(hstate_index(h));
2802 2803
	}

2804
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2805 2806 2807
	if (!ptep)
		return VM_FAULT_OOM;

2808 2809 2810 2811 2812 2813
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2814 2815
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2816
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2817
		goto out_mutex;
2818
	}
2819

N
Nick Piggin 已提交
2820
	ret = 0;
2821

2822 2823 2824 2825 2826 2827 2828 2829
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2830
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2831 2832
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2833
			goto out_mutex;
2834
		}
2835

2836
		if (!(vma->vm_flags & VM_MAYSHARE))
2837 2838 2839 2840
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2841 2842 2843 2844 2845 2846 2847 2848
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2849
	get_page(page);
2850
	if (page != pagecache_page)
2851 2852
		lock_page(page);

2853 2854
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2855 2856 2857 2858
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2859
	if (flags & FAULT_FLAG_WRITE) {
2860
		if (!pte_write(entry)) {
2861 2862
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2863 2864 2865 2866 2867
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2868 2869
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2870
		update_mmu_cache(vma, address, ptep);
2871 2872

out_page_table_lock:
2873
	spin_unlock(&mm->page_table_lock);
2874 2875 2876 2877 2878

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2879 2880
	if (page != pagecache_page)
		unlock_page(page);
2881
	put_page(page);
2882

2883
out_mutex:
2884
	mutex_unlock(&hugetlb_instantiation_mutex);
2885 2886

	return ret;
2887 2888
}

A
Andi Kleen 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2898 2899
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2900
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2901
			unsigned int flags)
D
David Gibson 已提交
2902
{
2903 2904
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2905
	int remainder = *length;
2906
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2907

2908
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2909
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2910
		pte_t *pte;
H
Hugh Dickins 已提交
2911
		int absent;
A
Adam Litke 已提交
2912
		struct page *page;
D
David Gibson 已提交
2913

A
Adam Litke 已提交
2914 2915
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2916
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2917 2918
		 * first, for the page indexing below to work.
		 */
2919
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2920 2921 2922 2923
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2924 2925 2926 2927
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2928
		 */
H
Hugh Dickins 已提交
2929 2930
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2931 2932 2933
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2934

H
Hugh Dickins 已提交
2935 2936
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2937
			int ret;
D
David Gibson 已提交
2938

A
Adam Litke 已提交
2939
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2940 2941
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2942
			spin_lock(&mm->page_table_lock);
2943
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2944
				continue;
D
David Gibson 已提交
2945

A
Adam Litke 已提交
2946 2947 2948 2949
			remainder = 0;
			break;
		}

2950
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2951
		page = pte_page(huge_ptep_get(pte));
2952
same_page:
2953
		if (pages) {
H
Hugh Dickins 已提交
2954
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2955
			get_page(pages[i]);
2956
		}
D
David Gibson 已提交
2957 2958 2959 2960 2961

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2962
		++pfn_offset;
D
David Gibson 已提交
2963 2964
		--remainder;
		++i;
2965
		if (vaddr < vma->vm_end && remainder &&
2966
				pfn_offset < pages_per_huge_page(h)) {
2967 2968 2969 2970 2971 2972
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2973
	}
2974
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2975 2976 2977
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2978
	return i ? i : -EFAULT;
D
David Gibson 已提交
2979
}
2980 2981 2982 2983 2984 2985 2986 2987

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2988
	struct hstate *h = hstate_vma(vma);
2989 2990 2991 2992

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2993
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2994
	spin_lock(&mm->page_table_lock);
2995
	for (; address < end; address += huge_page_size(h)) {
2996 2997 2998
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2999 3000
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
3001
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3002 3003 3004 3005 3006 3007
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
3008
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3009 3010 3011 3012

	flush_tlb_range(vma, start, end);
}

3013 3014
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3015
					struct vm_area_struct *vma,
3016
					vm_flags_t vm_flags)
3017
{
3018
	long ret, chg;
3019
	struct hstate *h = hstate_inode(inode);
3020
	struct hugepage_subpool *spool = subpool_inode(inode);
3021

3022 3023 3024
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3025
	 * without using reserves
3026
	 */
3027
	if (vm_flags & VM_NORESERVE)
3028 3029
		return 0;

3030 3031 3032 3033 3034 3035
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3036
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3037
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3038 3039 3040 3041 3042
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3043
		chg = to - from;
3044

3045 3046 3047 3048
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3049 3050 3051 3052
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3053

3054
	/* There must be enough pages in the subpool for the mapping */
3055 3056 3057 3058
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3059 3060

	/*
3061
	 * Check enough hugepages are available for the reservation.
3062
	 * Hand the pages back to the subpool if there are not
3063
	 */
3064
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3065
	if (ret < 0) {
3066
		hugepage_subpool_put_pages(spool, chg);
3067
		goto out_err;
K
Ken Chen 已提交
3068
	}
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3081
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3082
		region_add(&inode->i_mapping->private_list, from, to);
3083
	return 0;
3084
out_err:
3085 3086
	if (vma)
		resv_map_put(vma);
3087
	return ret;
3088 3089 3090 3091
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3092
	struct hstate *h = hstate_inode(inode);
3093
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3094
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3095 3096

	spin_lock(&inode->i_lock);
3097
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3098 3099
	spin_unlock(&inode->i_lock);

3100
	hugepage_subpool_put_pages(spool, (chg - freed));
3101
	hugetlb_acct_memory(h, -(chg - freed));
3102
}
3103

3104 3105
#ifdef CONFIG_MEMORY_FAILURE

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3120 3121 3122 3123
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3124
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3125 3126 3127
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3128
	int ret = -EBUSY;
3129 3130

	spin_lock(&hugetlb_lock);
3131 3132
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3133
		set_page_refcounted(hpage);
3134 3135 3136 3137
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3138
	spin_unlock(&hugetlb_lock);
3139
	return ret;
3140
}
3141
#endif