page_alloc.c 242.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
71
#include <linux/padata.h>
72
#include <linux/khugepaged.h>
L
Linus Torvalds 已提交
73

74
#include <asm/sections.h>
L
Linus Torvalds 已提交
75
#include <asm/tlbflush.h>
76
#include <asm/div64.h>
L
Linus Torvalds 已提交
77
#include "internal.h"
78
#include "shuffle.h"
A
Alexander Duyck 已提交
79
#include "page_reporting.h"
L
Linus Torvalds 已提交
80

81 82
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
83
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
84

85 86 87 88 89
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

90 91
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

103
/* work_structs for global per-cpu drains */
104 105 106 107
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
108 109
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110

111
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
112
volatile unsigned long latent_entropy __latent_entropy;
113 114 115
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
116
/*
117
 * Array of node states.
L
Linus Torvalds 已提交
118
 */
119 120 121 122 123 124 125
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
126 127
#endif
	[N_MEMORY] = { { [0] = 1UL } },
128 129 130 131 132
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

133 134
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
135
unsigned long totalreserve_pages __read_mostly;
136
unsigned long totalcma_pages __read_mostly;
137

138
int percpu_pagelist_fraction;
139
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

208 209 210 211 212
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
213 214 215 216
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
217
 */
218 219 220 221

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
222
{
223
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
224 225 226 227
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
228 229
}

230
void pm_restrict_gfp_mask(void)
231
{
232
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
233 234
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
235
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236
}
237 238 239

bool pm_suspended_storage(void)
{
240
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
241 242 243
		return false;
	return true;
}
244 245
#endif /* CONFIG_PM_SLEEP */

246
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
247
unsigned int pageblock_order __read_mostly;
248 249
#endif

250
static void __free_pages_ok(struct page *page, unsigned int order);
251

L
Linus Torvalds 已提交
252 253 254 255 256 257
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
258
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
259 260 261
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
262
 */
263
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
264
#ifdef CONFIG_ZONE_DMA
265
	[ZONE_DMA] = 256,
266
#endif
267
#ifdef CONFIG_ZONE_DMA32
268
	[ZONE_DMA32] = 256,
269
#endif
270
	[ZONE_NORMAL] = 32,
271
#ifdef CONFIG_HIGHMEM
272
	[ZONE_HIGHMEM] = 0,
273
#endif
274
	[ZONE_MOVABLE] = 0,
275
};
L
Linus Torvalds 已提交
276

277
static char * const zone_names[MAX_NR_ZONES] = {
278
#ifdef CONFIG_ZONE_DMA
279
	 "DMA",
280
#endif
281
#ifdef CONFIG_ZONE_DMA32
282
	 "DMA32",
283
#endif
284
	 "Normal",
285
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
286
	 "HighMem",
287
#endif
M
Mel Gorman 已提交
288
	 "Movable",
289 290 291
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
292 293
};

294
const char * const migratetype_names[MIGRATE_TYPES] = {
295 296 297 298 299 300 301 302 303 304 305 306
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

307 308 309
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
310
#ifdef CONFIG_HUGETLB_PAGE
311
	[HUGETLB_PAGE_DTOR] = free_huge_page,
312
#endif
313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
314
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
315
#endif
316 317
};

L
Linus Torvalds 已提交
318
int min_free_kbytes = 1024;
319
int user_min_free_kbytes = -1;
320 321 322 323 324 325 326 327 328 329 330 331
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
332
int watermark_boost_factor __read_mostly = 15000;
333
#endif
334
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
335

336 337 338
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
339

340 341
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
342
static unsigned long required_kernelcore __initdata;
343
static unsigned long required_kernelcore_percent __initdata;
344
static unsigned long required_movablecore __initdata;
345
static unsigned long required_movablecore_percent __initdata;
346
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
347
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
352

M
Miklos Szeredi 已提交
353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
466
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 468 469 470 471 472 473 474 475 476
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
477 478
static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page *page,
479 480 481 482 483 484 485 486 487 488 489 490 491
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
492
	return (word >> bitidx) & mask;
493 494 495 496 497
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long mask)
{
498
	return __get_pfnblock_flags_mask(page, pfn, mask);
499 500 501 502
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
503
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
522
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
523 524 525 526 527 528 529 530

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

531 532
	mask <<= bitidx;
	flags <<= bitidx;
533 534 535 536 537 538 539 540 541

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
542

543
void set_pageblock_migratetype(struct page *page, int migratetype)
544
{
545 546
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
547 548
		migratetype = MIGRATE_UNMOVABLE;

549
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
550
				page_to_pfn(page), MIGRATETYPE_MASK);
551 552
}

N
Nick Piggin 已提交
553
#ifdef CONFIG_DEBUG_VM
554
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
555
{
556 557 558
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
559
	unsigned long sp, start_pfn;
560

561 562
	do {
		seq = zone_span_seqbegin(zone);
563 564
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
565
		if (!zone_spans_pfn(zone, pfn))
566 567 568
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

569
	if (ret)
570 571 572
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
573

574
	return ret;
575 576 577 578
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
579
	if (!pfn_valid_within(page_to_pfn(page)))
580
		return 0;
L
Linus Torvalds 已提交
581
	if (zone != page_zone(page))
582 583 584 585 586 587 588
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
589
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
590 591
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
592
		return 1;
593 594 595
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
596 597
	return 0;
}
N
Nick Piggin 已提交
598
#else
599
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
600 601 602 603 604
{
	return 0;
}
#endif

605
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
606
{
607 608 609 610 611 612 613 614 615 616 617 618 619 620
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
621
			pr_alert(
622
			      "BUG: Bad page state: %lu messages suppressed\n",
623 624 625 626 627 628 629 630
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

631
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
632
		current->comm, page_to_pfn(page));
633
	__dump_page(page, reason);
634
	dump_page_owner(page);
635

636
	print_modules();
L
Linus Torvalds 已提交
637
	dump_stack();
638
out:
639
	/* Leave bad fields for debug, except PageBuddy could make trouble */
640
	page_mapcount_reset(page); /* remove PageBuddy */
641
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
642 643 644 645 646
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
647
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
648
 *
649 650
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
651
 *
652 653
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
654
 *
655
 * The first tail page's ->compound_order holds the order of allocation.
656
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
657
 */
658

659
void free_compound_page(struct page *page)
660
{
661
	mem_cgroup_uncharge(page);
662
	__free_pages_ok(page, compound_order(page));
663 664
}

665
void prep_compound_page(struct page *page, unsigned int order)
666 667 668 669 670 671 672
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
673
		set_page_count(p, 0);
674
		p->mapping = TAIL_MAPPING;
675
		set_compound_head(p, page);
676
	}
677 678 679

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
680
	atomic_set(compound_mapcount_ptr(page), -1);
681 682
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
683 684
}

685 686
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
687

688 689 690
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
691
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
692
EXPORT_SYMBOL(_debug_pagealloc_enabled);
693 694

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
695

696 697
static int __init early_debug_pagealloc(char *buf)
{
698
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
699 700 701
}
early_param("debug_pagealloc", early_debug_pagealloc);

702
void init_debug_pagealloc(void)
703
{
704 705 706
	if (!debug_pagealloc_enabled())
		return;

707 708
	static_branch_enable(&_debug_pagealloc_enabled);

709 710 711
	if (!debug_guardpage_minorder())
		return;

712
	static_branch_enable(&_debug_guardpage_enabled);
713 714
}

715 716 717 718 719
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
720
		pr_err("Bad debug_guardpage_minorder value\n");
721 722 723
		return 0;
	}
	_debug_guardpage_minorder = res;
724
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
725 726
	return 0;
}
727
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
728

729
static inline bool set_page_guard(struct zone *zone, struct page *page,
730
				unsigned int order, int migratetype)
731
{
732
	if (!debug_guardpage_enabled())
733 734 735 736
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
737

738
	__SetPageGuard(page);
739 740 741 742
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
743 744

	return true;
745 746
}

747 748
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
749
{
750 751 752
	if (!debug_guardpage_enabled())
		return;

753
	__ClearPageGuard(page);
754

755 756 757
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
758 759
}
#else
760 761
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
762 763
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
764 765
#endif

766
static inline void set_page_order(struct page *page, unsigned int order)
767
{
H
Hugh Dickins 已提交
768
	set_page_private(page, order);
769
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
770 771 772 773
}

/*
 * This function checks whether a page is free && is the buddy
774
 * we can coalesce a page and its buddy if
775
 * (a) the buddy is not in a hole (check before calling!) &&
776
 * (b) the buddy is in the buddy system &&
777 778
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
779
 *
780 781
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
782
 *
783
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
784
 */
785
static inline bool page_is_buddy(struct page *page, struct page *buddy,
786
							unsigned int order)
L
Linus Torvalds 已提交
787
{
788 789
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
790

791 792
	if (page_order(buddy) != order)
		return false;
793

794 795 796 797 798 799
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
800

801
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802

803
	return true;
L
Linus Torvalds 已提交
804 805
}

806 807 808 809 810
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

811
	return unlikely(capc) &&
812 813
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
814
		capc->cc->zone == zone ? capc : NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
888 889 890 891
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

892 893 894 895 896 897
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
941 942
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
943
 * So when we are allocating or freeing one, we can derive the state of the
944 945
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
946
 * If a block is freed, and its buddy is also free, then this
947
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
948
 *
949
 * -- nyc
L
Linus Torvalds 已提交
950 951
 */

N
Nick Piggin 已提交
952
static inline void __free_one_page(struct page *page,
953
		unsigned long pfn,
954
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
955
		int migratetype, bool report)
L
Linus Torvalds 已提交
956
{
957
	struct capture_control *capc = task_capc(zone);
958
	unsigned long buddy_pfn;
959
	unsigned long combined_pfn;
960
	unsigned int max_order;
961 962
	struct page *buddy;
	bool to_tail;
963 964

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
965

966
	VM_BUG_ON(!zone_is_initialized(zone));
967
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
968

969
	VM_BUG_ON(migratetype == -1);
970
	if (likely(!is_migrate_isolate(migratetype)))
971
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
972

973
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
974
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
975

976
continue_merging:
977
	while (order < max_order - 1) {
978 979 980 981 982
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
983 984
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
985 986 987

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
988
		if (!page_is_buddy(page, buddy, order))
989
			goto done_merging;
990 991 992 993
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
994
		if (page_is_guard(buddy))
995
			clear_page_guard(zone, buddy, order, migratetype);
996
		else
997
			del_page_from_free_list(buddy, zone, order);
998 999 1000
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1001 1002
		order++;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1015 1016
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
1029
	set_page_order(page, order);
1030

1031
	if (is_shuffle_order(order))
1032
		to_tail = shuffle_pick_tail();
1033
	else
1034
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1035

1036
	if (to_tail)
1037
		add_to_free_list_tail(page, zone, order, migratetype);
1038
	else
1039
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1040 1041 1042 1043

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1068
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1069
{
1070
	const char *bad_reason = NULL;
1071

1072
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1073 1074 1075
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1076
	if (unlikely(page_ref_count(page) != 0))
1077
		bad_reason = "nonzero _refcount";
1078 1079 1080 1081 1082
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083
	}
1084 1085 1086 1087
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1088 1089 1090 1091 1092 1093 1094
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095 1096
}

1097
static inline int check_free_page(struct page *page)
1098
{
1099
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100 1101 1102
		return 0;

	/* Something has gone sideways, find it */
1103
	check_free_page_bad(page);
1104
	return 1;
L
Linus Torvalds 已提交
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1123
		/* the first tail page: ->mapping may be compound_mapcount() */
1124
		if (unlikely(compound_mapcount(page))) {
1125
			bad_page(page, "nonzero compound_mapcount");
1126 1127 1128 1129 1130 1131
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1132
		 * deferred_list.next -- ignore value.
1133 1134 1135 1136
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1137
			bad_page(page, "corrupted mapping in tail page");
1138 1139 1140 1141 1142
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1143
		bad_page(page, "PageTail not set");
1144 1145 1146
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1147
		bad_page(page, "compound_head not consistent");
1148 1149 1150 1151 1152 1153 1154 1155 1156
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1157 1158 1159 1160
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1161 1162
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1163 1164
	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
1165
	kasan_enable_current();
1166 1167
}

1168 1169
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1170
{
1171
	int bad = 0;
1172 1173 1174

	VM_BUG_ON_PAGE(PageTail(page), page);

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1186

1187 1188
		if (compound)
			ClearPageDoubleMap(page);
1189 1190 1191
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1192
			if (unlikely(check_free_page(page + i))) {
1193 1194 1195 1196 1197 1198
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1199
	if (PageMappingFlags(page))
1200
		page->mapping = NULL;
1201
	if (memcg_kmem_enabled() && PageKmemcg(page))
1202
		__memcg_kmem_uncharge_page(page, order);
1203
	if (check_free)
1204
		bad += check_free_page(page);
1205 1206
	if (bad)
		return false;
1207

1208 1209 1210
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1211 1212 1213

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1214
					   PAGE_SIZE << order);
1215
		debug_check_no_obj_freed(page_address(page),
1216
					   PAGE_SIZE << order);
1217
	}
1218 1219 1220
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1221
	kernel_poison_pages(page, 1 << order, 0);
1222 1223 1224 1225 1226 1227 1228
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1229
	if (debug_pagealloc_enabled_static())
1230 1231
		kernel_map_pages(page, 1 << order, 0);

1232
	kasan_free_nondeferred_pages(page, order);
1233 1234 1235 1236

	return true;
}

1237
#ifdef CONFIG_DEBUG_VM
1238 1239 1240 1241 1242 1243
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1244 1245 1246 1247
{
	return free_pages_prepare(page, 0, true);
}

1248
static bool bulkfree_pcp_prepare(struct page *page)
1249
{
1250
	if (debug_pagealloc_enabled_static())
1251
		return check_free_page(page);
1252 1253
	else
		return false;
1254 1255
}
#else
1256 1257 1258 1259 1260 1261
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1262 1263
static bool free_pcp_prepare(struct page *page)
{
1264
	if (debug_pagealloc_enabled_static())
1265 1266 1267
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1268 1269
}

1270 1271
static bool bulkfree_pcp_prepare(struct page *page)
{
1272
	return check_free_page(page);
1273 1274 1275
}
#endif /* CONFIG_DEBUG_VM */

1276 1277 1278 1279 1280 1281 1282 1283 1284
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1285
/*
1286
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1287
 * Assumes all pages on list are in same zone, and of same order.
1288
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1296 1297
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1298
{
1299
	int migratetype = 0;
1300
	int batch_free = 0;
1301
	int prefetch_nr = 0;
1302
	bool isolated_pageblocks;
1303 1304
	struct page *page, *tmp;
	LIST_HEAD(head);
1305

1306 1307 1308 1309 1310
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1311
	while (count) {
1312 1313 1314
		struct list_head *list;

		/*
1315 1316 1317 1318 1319
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1320 1321
		 */
		do {
1322
			batch_free++;
1323 1324 1325 1326
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1327

1328 1329
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1330
			batch_free = count;
1331

1332
		do {
1333
			page = list_last_entry(list, struct page, lru);
1334
			/* must delete to avoid corrupting pcp list */
1335
			list_del(&page->lru);
1336
			pcp->count--;
1337

1338 1339 1340
			if (bulkfree_pcp_prepare(page))
				continue;

1341
			list_add_tail(&page->lru, &head);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1354
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1355
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1372
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 1374
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1375
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1376 1377
}

1378 1379
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1380
				unsigned int order,
1381
				int migratetype)
L
Linus Torvalds 已提交
1382
{
1383
	spin_lock(&zone->lock);
1384 1385 1386 1387
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1388
	__free_one_page(page, pfn, zone, order, migratetype, true);
1389
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1390 1391
}

1392
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393
				unsigned long zone, int nid)
1394
{
1395
	mm_zero_struct_page(page);
1396 1397 1398 1399
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1400
	page_kasan_tag_reset(page);
1401 1402 1403 1404 1405 1406 1407 1408 1409

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1410
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411
static void __meminit init_reserved_page(unsigned long pfn)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1428
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 1430 1431 1432 1433 1434 1435
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1436 1437 1438 1439 1440 1441
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1442
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 1444 1445 1446
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1447 1448 1449 1450 1451
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1452 1453 1454 1455

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1456 1457 1458 1459 1460 1461
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1462 1463
		}
	}
1464 1465
}

1466 1467
static void __free_pages_ok(struct page *page, unsigned int order)
{
1468
	unsigned long flags;
M
Minchan Kim 已提交
1469
	int migratetype;
1470
	unsigned long pfn = page_to_pfn(page);
1471

1472
	if (!free_pages_prepare(page, order, true))
1473 1474
		return;

1475
	migratetype = get_pfnblock_migratetype(page, pfn);
1476 1477
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1478
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1480 1481
}

1482
void __free_pages_core(struct page *page, unsigned int order)
1483
{
1484
	unsigned int nr_pages = 1 << order;
1485
	struct page *p = page;
1486
	unsigned int loop;
1487

1488 1489 1490
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1491 1492
		__ClearPageReserved(p);
		set_page_count(p, 0);
1493
	}
1494 1495
	__ClearPageReserved(p);
	set_page_count(p, 0);
1496

1497
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 1499
	set_page_refcounted(page);
	__free_pages(page, order);
1500 1501
}

1502
#ifdef CONFIG_NEED_MULTIPLE_NODES
1503

1504 1505
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

1506 1507 1508 1509 1510 1511 1512
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
1513
{
1514
	unsigned long start_pfn, end_pfn;
1515 1516
	int nid;

1517 1518 1519 1520 1521 1522 1523 1524 1525
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1526 1527

	return nid;
1528
}
1529
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530 1531 1532

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1533
	static DEFINE_SPINLOCK(early_pfn_lock);
1534 1535
	int nid;

1536
	spin_lock(&early_pfn_lock);
1537
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538
	if (nid < 0)
1539
		nid = first_online_node;
1540
	spin_unlock(&early_pfn_lock);
1541

1542
	return nid;
1543
}
1544
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1545

1546
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1547 1548 1549 1550
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1551
	__free_pages_core(page, order);
1552 1553
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1583 1584 1585
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1614
		cond_resched();
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1626
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1627 1628
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1629
{
1630 1631
	struct page *page;
	unsigned long i;
1632

1633
	if (!nr_pages)
1634 1635
		return;

1636 1637
	page = pfn_to_page(pfn);

1638
	/* Free a large naturally-aligned chunk if possible */
1639 1640
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1641
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642
		__free_pages_core(page, pageblock_order);
1643 1644 1645
		return;
	}

1646 1647 1648
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1649
		__free_pages_core(page, 0);
1650
	}
1651 1652
}

1653 1654 1655 1656 1657 1658 1659 1660 1661
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1662

1663
/*
1664 1665 1666 1667 1668 1669 1670 1671
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1672
 */
1673
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1674
{
1675 1676 1677 1678 1679 1680
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1681

1682 1683 1684 1685
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1686
static void __init deferred_free_pages(unsigned long pfn,
1687 1688 1689 1690
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1691

1692
	for (; pfn < end_pfn; pfn++) {
1693
		if (!deferred_pfn_valid(pfn)) {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1705 1706
}

1707 1708 1709 1710 1711
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1712
static unsigned long  __init deferred_init_pages(struct zone *zone,
1713 1714
						 unsigned long pfn,
						 unsigned long end_pfn)
1715 1716
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717
	int nid = zone_to_nid(zone);
1718
	unsigned long nr_pages = 0;
1719
	int zid = zone_idx(zone);
1720 1721
	struct page *page = NULL;

1722
	for (; pfn < end_pfn; pfn++) {
1723
		if (!deferred_pfn_valid(pfn)) {
1724
			page = NULL;
1725
			continue;
1726
		} else if (!page || !(pfn & nr_pgmask)) {
1727
			page = pfn_to_page(pfn);
1728 1729
		} else {
			page++;
1730
		}
1731
		__init_single_page(page, pfn, zid, nid);
1732
		nr_pages++;
1733
	}
1734
	return (nr_pages);
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

1841 1842 1843 1844 1845 1846 1847
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

1848
/* Initialise remaining memory on a node */
1849
static int __init deferred_init_memmap(void *data)
1850
{
1851
	pg_data_t *pgdat = data;
1852
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1853
	unsigned long spfn = 0, epfn = 0;
1854
	unsigned long first_init_pfn, flags;
1855 1856
	unsigned long start = jiffies;
	struct zone *zone;
1857
	int zid, max_threads;
1858
	u64 i;
1859

1860 1861 1862 1863 1864 1865
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1866
	if (first_init_pfn == ULONG_MAX) {
1867
		pgdat_resize_unlock(pgdat, &flags);
1868
		pgdat_init_report_one_done();
1869 1870 1871
		return 0;
	}

1872 1873 1874 1875 1876
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

1877 1878 1879 1880 1881 1882 1883
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

1884 1885 1886 1887 1888 1889
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1890 1891 1892 1893 1894

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1895

1896
	max_threads = deferred_page_init_max_threads(cpumask);
1897

1898
	while (spfn < epfn) {
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
1913
	}
1914
zone_empty:
1915 1916 1917
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1918 1919
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920 1921

	pgdat_init_report_one_done();
1922 1923
	return 0;
}
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1944
	pg_data_t *pgdat = zone->zone_pgdat;
1945
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1946 1947
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1965 1966 1967 1968
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1969
		pgdat_resize_unlock(pgdat, &flags);
1970 1971
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1972 1973
	}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1984
		touch_nmi_watchdog();
1985

1986 1987 1988
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1989

1990
		/* If our quota has been met we can stop here */
1991 1992 1993 1994
		if (nr_pages >= nr_pages_needed)
			break;
	}

1995
	pgdat->first_deferred_pfn = spfn;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2013
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014 2015 2016

void __init page_alloc_init_late(void)
{
2017
	struct zone *zone;
2018
	int nid;
2019 2020

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021

2022 2023
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2024 2025 2026 2027 2028
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2029
	wait_for_completion(&pgdat_init_all_done_comp);
2030

2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2039 2040 2041 2042 2043 2044
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2045 2046
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2047
#endif
2048

P
Pavel Tatashin 已提交
2049 2050
	/* Discard memblock private memory */
	memblock_discard();
2051

2052 2053 2054
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2055 2056
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2057 2058
}

2059
#ifdef CONFIG_CMA
2060
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2061 2062 2063 2064 2065 2066 2067 2068
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2069
	} while (++p, --i);
2070 2071

	set_pageblock_migratetype(page, MIGRATE_CMA);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2086
	adjust_managed_page_count(page, pageblock_nr_pages);
2087 2088
}
#endif
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2102
 * -- nyc
L
Linus Torvalds 已提交
2103
 */
N
Nick Piggin 已提交
2104
static inline void expand(struct zone *zone, struct page *page,
2105
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2112
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2113

2114 2115 2116 2117 2118 2119 2120
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2121
			continue;
2122

2123
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2124 2125 2126 2127
		set_page_order(&page[size], high);
	}
}

2128
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2129
{
2130
	if (unlikely(page->flags & __PG_HWPOISON)) {
2131 2132 2133
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2134
	}
2135 2136 2137

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2151 2152
}

2153
static inline bool free_pages_prezeroed(void)
2154
{
2155 2156
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2157 2158
}

2159
#ifdef CONFIG_DEBUG_VM
2160 2161 2162 2163 2164 2165
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2166
{
2167
	if (debug_pagealloc_enabled_static())
2168 2169 2170
		return check_new_page(page);
	else
		return false;
2171 2172
}

2173
static inline bool check_new_pcp(struct page *page)
2174 2175 2176 2177
{
	return check_new_page(page);
}
#else
2178 2179 2180 2181 2182 2183
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2184 2185 2186
{
	return check_new_page(page);
}
2187
static inline bool check_new_pcp(struct page *page)
2188
{
2189
	if (debug_pagealloc_enabled_static())
2190 2191 2192
		return check_new_page(page);
	else
		return false;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2209 2210 2211 2212 2213 2214 2215
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2216
	if (debug_pagealloc_enabled_static())
2217
		kernel_map_pages(page, 1 << order, 1);
2218
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2219
	kernel_poison_pages(page, 1 << order, 1);
2220 2221 2222
	set_page_owner(page, order, gfp_flags);
}

2223
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2224
							unsigned int alloc_flags)
2225
{
2226
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2227

2228 2229
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2230 2231 2232 2233

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2234
	/*
2235
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2236 2237 2238 2239
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2240 2241 2242 2243
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2244 2245
}

2246 2247 2248 2249
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2250
static __always_inline
2251
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2252 2253 2254
						int migratetype)
{
	unsigned int current_order;
2255
	struct free_area *area;
2256 2257 2258 2259 2260
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2261
		page = get_page_from_free_area(area, migratetype);
2262 2263
		if (!page)
			continue;
2264 2265
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2266
		set_pcppage_migratetype(page, migratetype);
2267 2268 2269 2270 2271 2272 2273
		return page;
	}

	return NULL;
}


2274 2275 2276 2277
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2278
static int fallbacks[MIGRATE_TYPES][3] = {
2279 2280
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2281
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2282
#ifdef CONFIG_CMA
2283
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2284
#endif
2285
#ifdef CONFIG_MEMORY_ISOLATION
2286
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2287
#endif
2288 2289
};

2290
#ifdef CONFIG_CMA
2291
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292 2293 2294 2295 2296 2297 2298 2299 2300
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2301 2302
/*
 * Move the free pages in a range to the free lists of the requested type.
2303
 * Note that start_page and end_pages are not aligned on a pageblock
2304 2305
 * boundary. If alignment is required, use move_freepages_block()
 */
2306
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2307
			  struct page *start_page, struct page *end_page,
2308
			  int migratetype, int *num_movable)
2309 2310
{
	struct page *page;
2311
	unsigned int order;
2312
	int pages_moved = 0;
2313 2314 2315 2316 2317 2318 2319 2320

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2321 2322 2323 2324 2325 2326 2327 2328 2329
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2330 2331 2332 2333
			page++;
			continue;
		}

2334 2335 2336 2337
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2338
		order = page_order(page);
2339
		move_to_free_list(page, zone, order, migratetype);
2340
		page += 1 << order;
2341
		pages_moved += 1 << order;
2342 2343
	}

2344
	return pages_moved;
2345 2346
}

2347
int move_freepages_block(struct zone *zone, struct page *page,
2348
				int migratetype, int *num_movable)
2349 2350 2351 2352
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2353 2354 2355
	if (num_movable)
		*num_movable = 0;

2356
	start_pfn = page_to_pfn(page);
2357
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2358
	start_page = pfn_to_page(start_pfn);
2359 2360
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2361 2362

	/* Do not cross zone boundaries */
2363
	if (!zone_spans_pfn(zone, start_pfn))
2364
		start_page = page;
2365
	if (!zone_spans_pfn(zone, end_pfn))
2366 2367
		return 0;

2368 2369
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2383
/*
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2394
 */
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2416 2417 2418 2419 2420 2421
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
		return;
2430 2431 2432

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2445 2446 2447 2448 2449 2450
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2451 2452 2453
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2454 2455 2456 2457
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2458 2459
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2460
		unsigned int alloc_flags, int start_type, bool whole_block)
2461
{
2462
	unsigned int current_order = page_order(page);
2463 2464 2465 2466
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2467

2468 2469 2470 2471
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2472
	if (is_migrate_highatomic(old_block_type))
2473 2474
		goto single_page;

2475 2476 2477
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2478
		goto single_page;
2479 2480
	}

2481 2482 2483 2484 2485 2486 2487
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2488
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489

2490 2491 2492 2493
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2518
	/* moving whole block can fail due to zone boundary conditions */
2519
	if (!free_pages)
2520
		goto single_page;
2521

2522 2523 2524 2525 2526
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2527 2528
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2529 2530 2531 2532

	return;

single_page:
2533
	move_to_free_list(page, zone, current_order, start_type);
2534 2535
}

2536 2537 2538 2539 2540 2541 2542 2543
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2554
		if (fallback_mt == MIGRATE_TYPES)
2555 2556
			break;

2557
		if (free_area_empty(area, fallback_mt))
2558
			continue;
2559

2560 2561 2562
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2563 2564 2565 2566 2567
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2568
	}
2569 2570

	return -1;
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2587
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2599 2600
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2601 2602
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2603
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2615 2616 2617
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2618
 */
2619 2620
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2621 2622 2623 2624 2625 2626 2627
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2628
	bool ret;
2629

2630
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2631
								ac->nodemask) {
2632 2633 2634 2635 2636 2637
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2638 2639 2640 2641 2642 2643
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2644
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2645
			if (!page)
2646 2647 2648
				continue;

			/*
2649 2650 2651 2652 2653
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2654
			 */
2655
			if (is_migrate_highatomic_page(page)) {
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2678 2679
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2680 2681 2682 2683
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2684 2685 2686
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2687 2688

	return false;
2689 2690
}

2691 2692 2693 2694 2695
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2696 2697 2698 2699
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2700
 */
2701
static __always_inline bool
2702 2703
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2704
{
2705
	struct free_area *area;
2706
	int current_order;
2707
	int min_order = order;
2708
	struct page *page;
2709 2710
	int fallback_mt;
	bool can_steal;
2711

2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2720 2721 2722 2723 2724
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2725
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726
				--current_order) {
2727 2728
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2729
				start_migratetype, false, &can_steal);
2730 2731
		if (fallback_mt == -1)
			continue;
2732

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2744

2745 2746
		goto do_steal;
	}
2747

2748
	return false;
2749

2750 2751 2752 2753 2754 2755 2756 2757
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2758 2759
	}

2760 2761 2762 2763 2764 2765 2766
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2767
	page = get_page_from_free_area(area, fallback_mt);
2768

2769 2770
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2771 2772 2773 2774 2775 2776

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2777 2778
}

2779
/*
L
Linus Torvalds 已提交
2780 2781 2782
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2783
static __always_inline struct page *
2784 2785
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2786 2787 2788
{
	struct page *page;

2789 2790 2791 2792 2793 2794
#ifdef CONFIG_CMA
	/*
	 * Balance movable allocations between regular and CMA areas by
	 * allocating from CMA when over half of the zone's free memory
	 * is in the CMA area.
	 */
2795
	if (alloc_flags & ALLOC_CMA &&
2796 2797 2798 2799 2800 2801 2802
	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
		page = __rmqueue_cma_fallback(zone, order);
		if (page)
			return page;
	}
#endif
2803
retry:
2804
	page = __rmqueue_smallest(zone, order, migratetype);
2805
	if (unlikely(!page)) {
2806
		if (alloc_flags & ALLOC_CMA)
2807 2808
			page = __rmqueue_cma_fallback(zone, order);

2809 2810
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2811
			goto retry;
2812 2813
	}

2814
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2815
	return page;
L
Linus Torvalds 已提交
2816 2817
}

2818
/*
L
Linus Torvalds 已提交
2819 2820 2821 2822
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2823
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2824
			unsigned long count, struct list_head *list,
2825
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2826
{
2827
	int i, alloced = 0;
2828

2829
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2830
	for (i = 0; i < count; ++i) {
2831 2832
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2833
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2834
			break;
2835

2836 2837 2838
		if (unlikely(check_pcp_refill(page)))
			continue;

2839
		/*
2840 2841 2842 2843 2844 2845 2846 2847
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2848
		 */
2849
		list_add_tail(&page->lru, list);
2850
		alloced++;
2851
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2852 2853
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2854
	}
2855 2856 2857 2858 2859 2860 2861

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2862
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2863
	spin_unlock(&zone->lock);
2864
	return alloced;
L
Linus Torvalds 已提交
2865 2866
}

2867
#ifdef CONFIG_NUMA
2868
/*
2869 2870 2871 2872
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2873 2874
 * Note that this function must be called with the thread pinned to
 * a single processor.
2875
 */
2876
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877 2878
{
	unsigned long flags;
2879
	int to_drain, batch;
2880

2881
	local_irq_save(flags);
2882
	batch = READ_ONCE(pcp->batch);
2883
	to_drain = min(pcp->count, batch);
2884
	if (to_drain > 0)
2885
		free_pcppages_bulk(zone, to_drain, pcp);
2886
	local_irq_restore(flags);
2887 2888 2889
}
#endif

2890
/*
2891
 * Drain pcplists of the indicated processor and zone.
2892 2893 2894 2895 2896
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2897
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2898
{
N
Nick Piggin 已提交
2899
	unsigned long flags;
2900 2901
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2902

2903 2904
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2905

2906
	pcp = &pset->pcp;
2907
	if (pcp->count)
2908 2909 2910
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2911

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2925 2926 2927
	}
}

2928 2929
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 2931 2932
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2933
 */
2934
void drain_local_pages(struct zone *zone)
2935
{
2936 2937 2938 2939 2940 2941
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2942 2943
}

2944 2945
static void drain_local_pages_wq(struct work_struct *work)
{
2946 2947 2948 2949
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2958
	drain_local_pages(drain->zone);
2959
	preempt_enable();
2960 2961
}

2962
/*
2963 2964
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2965 2966
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2967
 * Note that this can be extremely slow as the draining happens in a workqueue.
2968
 */
2969
void drain_all_pages(struct zone *zone)
2970
{
2971 2972 2973 2974 2975 2976 2977 2978
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2979 2980 2981 2982 2983 2984 2985
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2996

2997 2998 2999 3000 3001 3002 3003
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3004 3005
		struct per_cpu_pageset *pcp;
		struct zone *z;
3006
		bool has_pcps = false;
3007 3008

		if (zone) {
3009
			pcp = per_cpu_ptr(zone->pageset, cpu);
3010
			if (pcp->pcp.count)
3011
				has_pcps = true;
3012 3013 3014 3015 3016 3017 3018
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
3019 3020
			}
		}
3021

3022 3023 3024 3025 3026
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3027

3028
	for_each_cpu(cpu, &cpus_with_pcps) {
3029 3030 3031 3032 3033
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034
	}
3035
	for_each_cpu(cpu, &cpus_with_pcps)
3036
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037 3038

	mutex_unlock(&pcpu_drain_mutex);
3039 3040
}

3041
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3042

3043 3044 3045 3046 3047
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3048 3049
void mark_free_pages(struct zone *zone)
{
3050
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3051
	unsigned long flags;
3052
	unsigned int order, t;
3053
	struct page *page;
L
Linus Torvalds 已提交
3054

3055
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3056 3057 3058
		return;

	spin_lock_irqsave(&zone->lock, flags);
3059

3060
	max_zone_pfn = zone_end_pfn(zone);
3061 3062
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3063
			page = pfn_to_page(pfn);
3064

3065 3066 3067 3068 3069
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3070 3071 3072
			if (page_zone(page) != zone)
				continue;

3073 3074
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3075
		}
L
Linus Torvalds 已提交
3076

3077
	for_each_migratetype_order(order, t) {
3078 3079
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3080
			unsigned long i;
L
Linus Torvalds 已提交
3081

3082
			pfn = page_to_pfn(page);
3083 3084 3085 3086 3087
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3088
				swsusp_set_page_free(pfn_to_page(pfn + i));
3089
			}
3090
		}
3091
	}
L
Linus Torvalds 已提交
3092 3093
	spin_unlock_irqrestore(&zone->lock, flags);
}
3094
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3095

3096
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3097
{
3098
	int migratetype;
L
Linus Torvalds 已提交
3099

3100
	if (!free_pcp_prepare(page))
3101
		return false;
3102

3103
	migratetype = get_pfnblock_migratetype(page, pfn);
3104
	set_pcppage_migratetype(page, migratetype);
3105 3106 3107
	return true;
}

3108
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109 3110 3111 3112 3113 3114
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3115
	__count_vm_event(PGFREE);
3116

3117 3118 3119
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3120
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3121 3122 3123 3124
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3125
		if (unlikely(is_migrate_isolate(migratetype))) {
3126
			free_one_page(zone, page, pfn, 0, migratetype);
3127
			return;
3128 3129 3130 3131
		}
		migratetype = MIGRATE_MOVABLE;
	}

3132
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3133
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3134
	pcp->count++;
N
Nick Piggin 已提交
3135
	if (pcp->count >= pcp->high) {
3136
		unsigned long batch = READ_ONCE(pcp->batch);
3137
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3138
	}
3139
}
3140

3141 3142 3143
/*
 * Free a 0-order page
 */
3144
void free_unref_page(struct page *page)
3145 3146 3147 3148
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3149
	if (!free_unref_page_prepare(page, pfn))
3150 3151 3152
		return;

	local_irq_save(flags);
3153
	free_unref_page_commit(page, pfn);
3154
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3155 3156
}

3157 3158 3159
/*
 * Free a list of 0-order pages
 */
3160
void free_unref_page_list(struct list_head *list)
3161 3162
{
	struct page *page, *next;
3163
	unsigned long flags, pfn;
3164
	int batch_count = 0;
3165 3166 3167 3168

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3169
		if (!free_unref_page_prepare(page, pfn))
3170 3171 3172
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3173

3174
	local_irq_save(flags);
3175
	list_for_each_entry_safe(page, next, list, lru) {
3176 3177 3178
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3179 3180
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3191
	}
3192
	local_irq_restore(flags);
3193 3194
}

N
Nick Piggin 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3207 3208
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3209

3210
	for (i = 1; i < (1 << order); i++)
3211
		set_page_refcounted(page + i);
3212
	split_page_owner(page, order);
N
Nick Piggin 已提交
3213
}
K
K. Y. Srinivasan 已提交
3214
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3215

3216
int __isolate_free_page(struct page *page, unsigned int order)
3217 3218 3219
{
	unsigned long watermark;
	struct zone *zone;
3220
	int mt;
3221 3222 3223 3224

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3225
	mt = get_pageblock_migratetype(page);
3226

3227
	if (!is_migrate_isolate(mt)) {
3228 3229 3230 3231 3232 3233
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3234
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3235
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3236 3237
			return 0;

3238
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3239
	}
3240 3241

	/* Remove page from free list */
3242

3243
	del_page_from_free_list(page, zone, order);
3244

3245 3246 3247 3248
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3249 3250
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3251 3252
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3253
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3254
			    && !is_migrate_highatomic(mt))
3255 3256 3257
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3258 3259
	}

3260

3261
	return 1UL << order;
3262 3263
}

3264 3265 3266 3267
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3268
 * @mt: The page's pageblock's migratetype
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3281
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282 3283
}

3284 3285 3286 3287 3288
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3289
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3290 3291
{
#ifdef CONFIG_NUMA
3292
	enum numa_stat_item local_stat = NUMA_LOCAL;
3293

3294 3295 3296 3297
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3298
	if (zone_to_nid(z) != numa_node_id())
3299 3300
		local_stat = NUMA_OTHER;

3301
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3302
		__inc_numa_state(z, NUMA_HIT);
3303
	else {
3304 3305
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306
	}
3307
	__inc_numa_state(z, local_stat);
3308 3309 3310
#endif
}

3311 3312
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3313
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3314
			struct per_cpu_pages *pcp,
3315 3316 3317 3318 3319 3320 3321 3322
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3323
					migratetype, alloc_flags);
3324 3325 3326 3327
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3328
		page = list_first_entry(list, struct page, lru);
3329 3330 3331 3332 3333 3334 3335 3336 3337
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3338 3339
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3340 3341 3342 3343
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3344
	unsigned long flags;
3345

3346
	local_irq_save(flags);
3347 3348
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3349
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3350
	if (page) {
3351
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3352 3353
		zone_statistics(preferred_zone, zone);
	}
3354
	local_irq_restore(flags);
3355 3356 3357
	return page;
}

L
Linus Torvalds 已提交
3358
/*
3359
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3360
 */
3361
static inline
3362
struct page *rmqueue(struct zone *preferred_zone,
3363
			struct zone *zone, unsigned int order,
3364 3365
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3366 3367
{
	unsigned long flags;
3368
	struct page *page;
L
Linus Torvalds 已提交
3369

3370
	if (likely(order == 0)) {
3371 3372 3373 3374 3375 3376 3377
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3378
					migratetype, alloc_flags);
3379 3380
			goto out;
		}
3381
	}
3382

3383 3384 3385 3386 3387 3388
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3389

3390 3391
	do {
		page = NULL;
3392 3393 3394 3395 3396 3397 3398
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3399 3400 3401 3402
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3403
		if (!page)
3404
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3405 3406 3407 3408 3409 3410
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3411

3412
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3413
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3414
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3415

3416
out:
3417 3418 3419 3420 3421 3422
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3423
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3424
	return page;
N
Nick Piggin 已提交
3425 3426 3427 3428

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3429 3430
}

3431 3432
#ifdef CONFIG_FAIL_PAGE_ALLOC

3433
static struct {
3434 3435
	struct fault_attr attr;

3436
	bool ignore_gfp_highmem;
3437
	bool ignore_gfp_reclaim;
3438
	u32 min_order;
3439 3440
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3441
	.ignore_gfp_reclaim = true,
3442
	.ignore_gfp_highmem = true,
3443
	.min_order = 1,
3444 3445 3446 3447 3448 3449 3450 3451
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3452
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453
{
3454
	if (order < fail_page_alloc.min_order)
3455
		return false;
3456
	if (gfp_mask & __GFP_NOFAIL)
3457
		return false;
3458
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459
		return false;
3460 3461
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3462
		return false;
3463 3464 3465 3466 3467 3468 3469 3470

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3471
	umode_t mode = S_IFREG | 0600;
3472 3473
	struct dentry *dir;

3474 3475
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3476

3477 3478 3479 3480 3481
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3482

3483
	return 0;
3484 3485 3486 3487 3488 3489 3490 3491
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3492
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3493
{
3494
	return false;
3495 3496 3497 3498
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3499 3500 3501 3502 3503 3504
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3528
/*
3529 3530 3531 3532
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3533
 */
3534
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3535
			 int highest_zoneidx, unsigned int alloc_flags,
3536
			 long free_pages)
L
Linus Torvalds 已提交
3537
{
3538
	long min = mark;
L
Linus Torvalds 已提交
3539
	int o;
3540
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3541

3542
	/* free_pages may go negative - that's OK */
3543
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544

R
Rohit Seth 已提交
3545
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3546
		min -= min / 2;
3547

3548
	if (unlikely(alloc_harder)) {
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3561 3562 3563 3564 3565
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3566
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3567
		return false;
L
Linus Torvalds 已提交
3568

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3582
			if (!free_area_empty(area, mt))
3583 3584 3585 3586
				return true;
		}

#ifdef CONFIG_CMA
3587
		if ((alloc_flags & ALLOC_CMA) &&
3588
		    !free_area_empty(area, MIGRATE_CMA)) {
3589
			return true;
3590
		}
3591
#endif
3592
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3593
			return true;
L
Linus Torvalds 已提交
3594
	}
3595
	return false;
3596 3597
}

3598
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3599
		      int highest_zoneidx, unsigned int alloc_flags)
3600
{
3601
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3602 3603 3604
					zone_page_state(z, NR_FREE_PAGES));
}

3605
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3606
				unsigned long mark, int highest_zoneidx,
3607
				unsigned int alloc_flags, gfp_t gfp_mask)
3608
{
3609
	long free_pages;
3610

3611
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3612 3613 3614

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3615
	 * need to be calculated.
3616
	 */
3617 3618 3619 3620 3621 3622 3623 3624
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3643 3644
}

3645
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3646
			unsigned long mark, int highest_zoneidx)
3647 3648 3649 3650 3651 3652
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3653
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3654
								free_pages);
L
Linus Torvalds 已提交
3655 3656
}

3657
#ifdef CONFIG_NUMA
3658 3659
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3660
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3661
				node_reclaim_distance;
3662
}
3663
#else	/* CONFIG_NUMA */
3664 3665 3666 3667
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3668 3669
#endif	/* CONFIG_NUMA */

3670 3671 3672 3673 3674 3675 3676 3677 3678
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3679
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680
{
3681
	unsigned int alloc_flags;
3682

3683 3684 3685 3686 3687
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688 3689

#ifdef CONFIG_ZONE_DMA32
3690 3691 3692
	if (!zone)
		return alloc_flags;

3693
	if (zone_idx(zone) != ZONE_NORMAL)
3694
		return alloc_flags;
3695 3696 3697 3698 3699 3700 3701 3702

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3703
		return alloc_flags;
3704

3705
	alloc_flags |= ALLOC_NOFRAGMENT;
3706 3707
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3708 3709
}

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
					unsigned int alloc_flags)
{
#ifdef CONFIG_CMA
	unsigned int pflags = current->flags;

	if (!(pflags & PF_MEMALLOC_NOCMA) &&
			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;

#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
3724
/*
3725
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3726 3727 3728
 * a page.
 */
static struct page *
3729 3730
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3731
{
3732
	struct zoneref *z;
3733
	struct zone *zone;
3734
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3735
	bool no_fallback;
3736

3737
retry:
R
Rohit Seth 已提交
3738
	/*
3739
	 * Scan zonelist, looking for a zone with enough free.
3740
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3741
	 */
3742 3743
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3744 3745
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
					ac->highest_zoneidx, ac->nodemask) {
3746
		struct page *page;
3747 3748
		unsigned long mark;

3749 3750
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3751
			!__cpuset_zone_allowed(zone, gfp_mask))
3752
				continue;
3753 3754
		/*
		 * When allocating a page cache page for writing, we
3755 3756
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3757
		 * proportional share of globally allowed dirty pages.
3758
		 * The dirty limits take into account the node's
3759 3760 3761 3762 3763
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3764
		 * exceed the per-node dirty limit in the slowpath
3765
		 * (spread_dirty_pages unset) before going into reclaim,
3766
		 * which is important when on a NUMA setup the allowed
3767
		 * nodes are together not big enough to reach the
3768
		 * global limit.  The proper fix for these situations
3769
		 * will require awareness of nodes in the
3770 3771
		 * dirty-throttling and the flusher threads.
		 */
3772 3773 3774 3775 3776 3777 3778 3779 3780
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3798
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3799
		if (!zone_watermark_fast(zone, order, mark,
3800 3801
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
3802 3803
			int ret;

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3814 3815 3816 3817 3818
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3819
			if (node_reclaim_mode == 0 ||
3820
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3821 3822
				continue;

3823
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824
			switch (ret) {
3825
			case NODE_RECLAIM_NOSCAN:
3826
				/* did not scan */
3827
				continue;
3828
			case NODE_RECLAIM_FULL:
3829
				/* scanned but unreclaimable */
3830
				continue;
3831 3832
			default:
				/* did we reclaim enough */
3833
				if (zone_watermark_ok(zone, order, mark,
3834
					ac->highest_zoneidx, alloc_flags))
3835 3836 3837
					goto try_this_zone;

				continue;
3838
			}
R
Rohit Seth 已提交
3839 3840
		}

3841
try_this_zone:
3842
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3843
				gfp_mask, alloc_flags, ac->migratetype);
3844
		if (page) {
3845
			prep_new_page(page, order, gfp_mask, alloc_flags);
3846 3847 3848 3849 3850 3851 3852 3853

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3854
			return page;
3855 3856 3857 3858 3859 3860 3861 3862
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3863
		}
3864
	}
3865

3866 3867 3868 3869 3870 3871 3872 3873 3874
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3875
	return NULL;
M
Martin Hicks 已提交
3876 3877
}

3878
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879 3880 3881 3882 3883 3884 3885 3886 3887
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3888
		if (tsk_is_oom_victim(current) ||
3889 3890
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3891
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3892 3893
		filter &= ~SHOW_MEM_FILTER_NODES;

3894
	show_mem(filter, nodemask);
3895 3896
}

3897
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898 3899 3900
{
	struct va_format vaf;
	va_list args;
3901
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3902

3903
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3904 3905
		return;

3906 3907 3908
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3909
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3910 3911
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3912
	va_end(args);
J
Joe Perches 已提交
3913

3914
	cpuset_print_current_mems_allowed();
3915
	pr_cont("\n");
3916
	dump_stack();
3917
	warn_alloc_show_mem(gfp_mask, nodemask);
3918 3919
}

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3940 3941
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3942
	const struct alloc_context *ac, unsigned long *did_some_progress)
3943
{
3944 3945 3946
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3947
		.memcg = NULL,
3948 3949 3950
		.gfp_mask = gfp_mask,
		.order = order,
	};
3951 3952
	struct page *page;

3953 3954 3955
	*did_some_progress = 0;

	/*
3956 3957
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3958
	 */
3959
	if (!mutex_trylock(&oom_lock)) {
3960
		*did_some_progress = 1;
3961
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3962 3963
		return NULL;
	}
3964

3965 3966 3967
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3968 3969 3970
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3971
	 */
3972 3973 3974
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3975
	if (page)
3976 3977
		goto out;

3978 3979 3980 3981 3982 3983
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3984 3985 3986 3987 3988
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
3989 3990
	 *
	 * The OOM killer may not free memory on a specific node.
3991
	 */
3992
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3993
		goto out;
3994
	/* The OOM killer does not needlessly kill tasks for lowmem */
3995
	if (ac->highest_zoneidx < ZONE_NORMAL)
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4009
	/* Exhausted what can be done so it's blame time */
4010
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4011
		*did_some_progress = 1;
4012

4013 4014 4015 4016 4017 4018
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4019 4020
					ALLOC_NO_WATERMARKS, ac);
	}
4021
out:
4022
	mutex_unlock(&oom_lock);
4023 4024 4025
	return page;
}

4026 4027 4028 4029 4030 4031
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4032 4033 4034 4035
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4036
		unsigned int alloc_flags, const struct alloc_context *ac,
4037
		enum compact_priority prio, enum compact_result *compact_result)
4038
{
4039
	struct page *page = NULL;
4040
	unsigned long pflags;
4041
	unsigned int noreclaim_flag;
4042 4043

	if (!order)
4044 4045
		return NULL;

4046
	psi_memstall_enter(&pflags);
4047
	noreclaim_flag = memalloc_noreclaim_save();
4048

4049
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4050
								prio, &page);
4051

4052
	memalloc_noreclaim_restore(noreclaim_flag);
4053
	psi_memstall_leave(&pflags);
4054

4055 4056 4057 4058 4059
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4060

4061 4062 4063 4064 4065 4066 4067
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4068

4069 4070
	if (page) {
		struct zone *zone = page_zone(page);
4071

4072 4073 4074 4075 4076
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4077

4078 4079 4080 4081 4082
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4083

4084
	cond_resched();
4085 4086 4087

	return NULL;
}
4088

4089 4090 4091 4092
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4093
		     int *compaction_retries)
4094 4095
{
	int max_retries = MAX_COMPACT_RETRIES;
4096
	int min_priority;
4097 4098 4099
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4100 4101 4102 4103

	if (!order)
		return false;

4104 4105 4106
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4107 4108 4109 4110 4111
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4112 4113
	if (compaction_failed(compact_result))
		goto check_priority;
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4124 4125 4126
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4127 4128
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4129
	 */
4130
	if (compaction_withdrawn(compact_result)) {
4131
		goto check_priority;
4132
	}
4133 4134

	/*
4135
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4136 4137 4138 4139 4140 4141 4142 4143
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4144 4145 4146 4147
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4148

4149 4150 4151 4152 4153
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4154 4155
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4156

4157
	if (*compact_priority > min_priority) {
4158 4159
		(*compact_priority)--;
		*compaction_retries = 0;
4160
		ret = true;
4161
	}
4162 4163 4164
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4165
}
4166 4167 4168
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4169
		unsigned int alloc_flags, const struct alloc_context *ac,
4170
		enum compact_priority prio, enum compact_result *compact_result)
4171
{
4172
	*compact_result = COMPACT_SKIPPED;
4173 4174
	return NULL;
}
4175 4176

static inline bool
4177 4178
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4179
		     enum compact_priority *compact_priority,
4180
		     int *compaction_retries)
4181
{
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4194 4195
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4196
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4197
					ac->highest_zoneidx, alloc_flags))
4198 4199
			return true;
	}
4200 4201
	return false;
}
4202
#endif /* CONFIG_COMPACTION */
4203

4204
#ifdef CONFIG_LOCKDEP
4205
static struct lockdep_map __fs_reclaim_map =
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4217
	if (current->flags & PF_MEMALLOC)
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4240 4241 4242
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4243
		__fs_reclaim_acquire();
4244 4245 4246 4247 4248 4249
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4250
		__fs_reclaim_release();
4251 4252 4253 4254
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4255 4256
/* Perform direct synchronous page reclaim */
static int
4257 4258
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4259
{
4260
	int progress;
4261
	unsigned int noreclaim_flag;
4262
	unsigned long pflags;
4263 4264 4265 4266 4267

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4268
	psi_memstall_enter(&pflags);
4269
	fs_reclaim_acquire(gfp_mask);
4270
	noreclaim_flag = memalloc_noreclaim_save();
4271

4272 4273
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4274

4275
	memalloc_noreclaim_restore(noreclaim_flag);
4276
	fs_reclaim_release(gfp_mask);
4277
	psi_memstall_leave(&pflags);
4278 4279 4280

	cond_resched();

4281 4282 4283 4284 4285 4286
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4287
		unsigned int alloc_flags, const struct alloc_context *ac,
4288
		unsigned long *did_some_progress)
4289 4290 4291 4292
{
	struct page *page = NULL;
	bool drained = false;

4293
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4294 4295
	if (unlikely(!(*did_some_progress)))
		return NULL;
4296

4297
retry:
4298
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4299 4300 4301

	/*
	 * If an allocation failed after direct reclaim, it could be because
4302
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4303
	 * Shrink them and try again
4304 4305
	 */
	if (!page && !drained) {
4306
		unreserve_highatomic_pageblock(ac, false);
4307
		drain_all_pages(NULL);
4308 4309 4310 4311
		drained = true;
		goto retry;
	}

4312 4313 4314
	return page;
}

4315 4316
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4317 4318 4319
{
	struct zoneref *z;
	struct zone *zone;
4320
	pg_data_t *last_pgdat = NULL;
4321
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4322

4323
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4324
					ac->nodemask) {
4325
		if (last_pgdat != zone->zone_pgdat)
4326
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4327 4328
		last_pgdat = zone->zone_pgdat;
	}
4329 4330
}

4331
static inline unsigned int
4332 4333
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4334
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4335

4336 4337 4338 4339 4340
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4341
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4342
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4343

4344 4345 4346 4347
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4348
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4349
	 */
4350 4351
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4352

4353
	if (gfp_mask & __GFP_ATOMIC) {
4354
		/*
4355 4356
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4357
		 */
4358
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4359
			alloc_flags |= ALLOC_HARDER;
4360
		/*
4361
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4362
		 * comment for __cpuset_node_allowed().
4363
		 */
4364
		alloc_flags &= ~ALLOC_CPUSET;
4365
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4366 4367
		alloc_flags |= ALLOC_HARDER;

4368 4369
	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);

4370 4371 4372
	return alloc_flags;
}

4373
static bool oom_reserves_allowed(struct task_struct *tsk)
4374
{
4375 4376 4377 4378 4379 4380 4381 4382
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4383 4384
		return false;

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4396
	if (gfp_mask & __GFP_MEMALLOC)
4397
		return ALLOC_NO_WATERMARKS;
4398
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4399 4400 4401 4402 4403 4404 4405
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4406

4407 4408 4409 4410 4411 4412
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4413 4414
}

M
Michal Hocko 已提交
4415 4416 4417
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4418 4419 4420 4421
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4422 4423 4424 4425 4426 4427
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4428
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4429 4430 4431
{
	struct zone *zone;
	struct zoneref *z;
4432
	bool ret = false;
M
Michal Hocko 已提交
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4444 4445 4446 4447
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4448 4449
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4450
		return unreserve_highatomic_pageblock(ac, true);
4451
	}
M
Michal Hocko 已提交
4452

4453 4454 4455 4456 4457
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4458
	 */
4459 4460
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4461
		unsigned long available;
4462
		unsigned long reclaimable;
4463 4464
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4465

4466 4467
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4468 4469

		/*
4470 4471
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4472
		 */
4473
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4474
				ac->highest_zoneidx, alloc_flags, available);
4475 4476 4477
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4478 4479 4480 4481 4482 4483 4484
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4485
				unsigned long write_pending;
4486

4487 4488
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4489

4490
				if (2 * write_pending > reclaimable) {
4491 4492 4493 4494
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4495

4496 4497
			ret = true;
			goto out;
M
Michal Hocko 已提交
4498 4499 4500
		}
	}

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4514 4515
}

4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4549 4550
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4551
						struct alloc_context *ac)
4552
{
4553
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4554
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4555
	struct page *page = NULL;
4556
	unsigned int alloc_flags;
4557
	unsigned long did_some_progress;
4558
	enum compact_priority compact_priority;
4559
	enum compact_result compact_result;
4560 4561 4562
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4563
	int reserve_flags;
L
Linus Torvalds 已提交
4564

4565 4566 4567 4568 4569 4570 4571 4572
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4573 4574 4575 4576 4577
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4578 4579 4580 4581 4582 4583 4584 4585

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4586 4587 4588 4589 4590 4591 4592
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4593
					ac->highest_zoneidx, ac->nodemask);
4594 4595 4596
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4597
	if (alloc_flags & ALLOC_KSWAPD)
4598
		wake_all_kswapds(order, gfp_mask, ac);
4599 4600 4601 4602 4603 4604 4605 4606 4607

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4608 4609
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4610 4611 4612 4613 4614 4615
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4616
	 */
4617 4618 4619 4620
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4621 4622
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4623
						INIT_COMPACT_PRIORITY,
4624 4625 4626 4627
						&compact_result);
		if (page)
			goto got_pg;

4628 4629 4630 4631 4632
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4633 4634 4635 4636
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4637 4638
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4653 4654

			/*
4655 4656
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4657
			 * using async compaction.
4658
			 */
4659
			compact_priority = INIT_COMPACT_PRIORITY;
4660 4661
		}
	}
4662

4663
retry:
4664
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4665
	if (alloc_flags & ALLOC_KSWAPD)
4666
		wake_all_kswapds(order, gfp_mask, ac);
4667

4668 4669
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
4670
		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4671

4672
	/*
4673 4674 4675
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4676
	 */
4677
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4678
		ac->nodemask = NULL;
4679
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4680
					ac->highest_zoneidx, ac->nodemask);
4681 4682
	}

4683
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4684
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4685 4686
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4687

4688
	/* Caller is not willing to reclaim, we can't balance anything */
4689
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4690 4691
		goto nopage;

4692 4693
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4694 4695
		goto nopage;

4696 4697 4698 4699 4700 4701 4702
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4703
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4704
					compact_priority, &compact_result);
4705 4706
	if (page)
		goto got_pg;
4707

4708 4709
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4710
		goto nopage;
4711

M
Michal Hocko 已提交
4712 4713
	/*
	 * Do not retry costly high order allocations unless they are
4714
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4715
	 */
4716
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4717
		goto nopage;
M
Michal Hocko 已提交
4718 4719

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4720
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4721 4722
		goto retry;

4723 4724 4725 4726 4727 4728 4729
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4730
			should_compact_retry(ac, order, alloc_flags,
4731
				compact_result, &compact_priority,
4732
				&compaction_retries))
4733 4734
		goto retry;

4735 4736 4737

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4738 4739
		goto retry_cpuset;

4740 4741 4742 4743 4744
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4745
	/* Avoid allocations with no watermarks from looping endlessly */
4746
	if (tsk_is_oom_victim(current) &&
4747
	    (alloc_flags & ALLOC_OOM ||
4748
	     (gfp_mask & __GFP_NOMEMALLOC)))
4749 4750
		goto nopage;

4751
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4752 4753
	if (did_some_progress) {
		no_progress_loops = 0;
4754
		goto retry;
M
Michal Hocko 已提交
4755
	}
4756

L
Linus Torvalds 已提交
4757
nopage:
4758 4759
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4760 4761
		goto retry_cpuset;

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4799 4800 4801 4802
		cond_resched();
		goto retry;
	}
fail:
4803
	warn_alloc(gfp_mask, ac->nodemask,
4804
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4805
got_pg:
4806
	return page;
L
Linus Torvalds 已提交
4807
}
4808

4809
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4810
		int preferred_nid, nodemask_t *nodemask,
4811 4812
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4813
{
4814
	ac->highest_zoneidx = gfp_zone(gfp_mask);
4815
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4816
	ac->nodemask = nodemask;
4817
	ac->migratetype = gfp_migratetype(gfp_mask);
4818

4819
	if (cpusets_enabled()) {
4820
		*alloc_mask |= __GFP_HARDWALL;
4821 4822 4823 4824 4825
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
4826
			ac->nodemask = &cpuset_current_mems_allowed;
4827 4828
		else
			*alloc_flags |= ALLOC_CPUSET;
4829 4830
	}

4831 4832
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4833

4834
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4835 4836

	if (should_fail_alloc_page(gfp_mask, order))
4837
		return false;
4838

4839
	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4840

4841 4842
	return true;
}
4843

4844
/* Determine whether to spread dirty pages and what the first usable zone */
4845
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4846
{
4847
	/* Dirty zone balancing only done in the fast path */
4848
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4849

4850 4851 4852 4853 4854
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4855
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4856
					ac->highest_zoneidx, ac->nodemask);
4857 4858 4859 4860 4861 4862
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4863 4864
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4865 4866 4867
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4868
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4869 4870
	struct alloc_context ac = { };

4871 4872 4873 4874 4875 4876 4877 4878 4879
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4880
	gfp_mask &= gfp_allowed_mask;
4881
	alloc_mask = gfp_mask;
4882
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4883 4884
		return NULL;

4885
	finalise_ac(gfp_mask, &ac);
4886

4887 4888 4889 4890
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4891
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4892

4893
	/* First allocation attempt */
4894
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4895 4896
	if (likely(page))
		goto out;
4897

4898
	/*
4899 4900 4901 4902
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4903
	 */
4904
	alloc_mask = current_gfp_context(gfp_mask);
4905
	ac.spread_dirty_pages = false;
4906

4907 4908 4909 4910
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4911
	ac.nodemask = nodemask;
4912

4913
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4914

4915
out:
4916
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4917
	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4918 4919
		__free_pages(page, order);
		page = NULL;
4920 4921
	}

4922 4923
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4924
	return page;
L
Linus Torvalds 已提交
4925
}
4926
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4927 4928

/*
4929 4930 4931
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4932
 */
H
Harvey Harrison 已提交
4933
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4934
{
4935 4936
	struct page *page;

4937
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4944
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4945
{
4946
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4947 4948 4949
}
EXPORT_SYMBOL(get_zeroed_page);

4950
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4951
{
4952 4953 4954 4955
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4956 4957
}

4958 4959 4960 4961 4962
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4963 4964
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4965
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4966 4967
{
	if (addr != 0) {
N
Nick Piggin 已提交
4968
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4986 4987
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5007
void __page_frag_cache_drain(struct page *page, unsigned int count)
5008 5009 5010
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5011 5012
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5013
}
5014
EXPORT_SYMBOL(__page_frag_cache_drain);
5015

5016 5017
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
5018 5019 5020 5021 5022 5023 5024
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5025
		page = __page_frag_cache_refill(nc, gfp_mask);
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5036
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5037 5038

		/* reset page count bias and offset to start of new frag */
5039
		nc->pfmemalloc = page_is_pfmemalloc(page);
5040
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5041 5042 5043 5044 5045 5046 5047
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5048
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5049 5050 5051 5052 5053 5054 5055
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5056
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5057 5058

		/* reset page count bias and offset to start of new frag */
5059
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5060 5061 5062 5063 5064 5065 5066 5067
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
5068
EXPORT_SYMBOL(page_frag_alloc);
5069 5070 5071 5072

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5073
void page_frag_free(void *addr)
5074 5075 5076
{
	struct page *page = virt_to_head_page(addr);

5077 5078
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5079
}
5080
EXPORT_SYMBOL(page_frag_free);
5081

5082 5083
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5098 5099 5100
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5101
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5102 5103 5104 5105 5106 5107 5108 5109
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5110 5111
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5112 5113 5114 5115 5116 5117
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5118 5119 5120
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5121
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5122
	return make_alloc_exact(addr, order, size);
5123 5124 5125
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5126 5127 5128
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5129
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5130
 * @size: the number of bytes to allocate
5131
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5132 5133 5134
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5135 5136
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5137
 */
5138
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5139
{
5140
	unsigned int order = get_order(size);
5141 5142 5143 5144 5145 5146
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5147 5148 5149 5150 5151
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5171 5172 5173 5174
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5175
 * nr_free_zone_pages() counts the number of pages which are beyond the
5176 5177
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5178 5179
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5180 5181
 *
 * Return: number of pages beyond high watermark.
5182
 */
5183
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5184
{
5185
	struct zoneref *z;
5186 5187
	struct zone *zone;

5188
	/* Just pick one node, since fallback list is circular */
5189
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5190

5191
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5192

5193
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5194
		unsigned long size = zone_managed_pages(zone);
5195
		unsigned long high = high_wmark_pages(zone);
5196 5197
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202
	}

	return sum;
}

5203 5204 5205 5206 5207
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5208 5209 5210
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5211
 */
5212
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5213
{
A
Al Viro 已提交
5214
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5215
}
5216
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5217

5218
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5219
{
5220
	if (IS_ENABLED(CONFIG_NUMA))
5221
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5222 5223
}

5224 5225 5226 5227 5228 5229
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5230
	unsigned long reclaimable;
5231 5232 5233 5234
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5235
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5236 5237

	for_each_zone(zone)
5238
		wmark_low += low_wmark_pages(zone);
5239 5240 5241 5242 5243

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5244
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5256 5257 5258
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5259
	 */
5260 5261
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5262
	available += reclaimable - min(reclaimable / 2, wmark_low);
5263

5264 5265 5266 5267 5268 5269
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5270 5271
void si_meminfo(struct sysinfo *val)
{
5272
	val->totalram = totalram_pages();
5273
	val->sharedram = global_node_page_state(NR_SHMEM);
5274
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5275
	val->bufferram = nr_blockdev_pages();
5276
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5286 5287
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5288 5289
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5290 5291
	pg_data_t *pgdat = NODE_DATA(nid);

5292
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5293
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5294
	val->totalram = managed_pages;
5295
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5296
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5297
#ifdef CONFIG_HIGHMEM
5298 5299 5300 5301
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5302
			managed_highpages += zone_managed_pages(zone);
5303 5304 5305 5306 5307
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5308
#else
5309 5310
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5311
#endif
L
Linus Torvalds 已提交
5312 5313 5314 5315
	val->mem_unit = PAGE_SIZE;
}
#endif

5316
/*
5317 5318
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5319
 */
5320
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5321 5322
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5323
		return false;
5324

5325 5326 5327 5328 5329 5330 5331 5332 5333
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5334 5335
}

L
Linus Torvalds 已提交
5336 5337
#define K(x) ((x) << (PAGE_SHIFT-10))

5338 5339 5340 5341 5342
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5343 5344
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5345 5346 5347
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5348
#ifdef CONFIG_MEMORY_ISOLATION
5349
		[MIGRATE_ISOLATE]	= 'I',
5350
#endif
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5362
	printk(KERN_CONT "(%s) ", tmp);
5363 5364
}

L
Linus Torvalds 已提交
5365 5366 5367 5368
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5369 5370 5371 5372
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5373
 */
5374
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5375
{
5376
	unsigned long free_pcp = 0;
5377
	int cpu;
L
Linus Torvalds 已提交
5378
	struct zone *zone;
M
Mel Gorman 已提交
5379
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5380

5381
	for_each_populated_zone(zone) {
5382
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5383
			continue;
5384

5385 5386
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5387 5388
	}

K
KOSAKI Motohiro 已提交
5389 5390
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5391
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5392
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5393
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5394
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5395 5396 5397 5398 5399 5400 5401
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5402 5403
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5404 5405
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5406
		global_node_page_state(NR_FILE_MAPPED),
5407
		global_node_page_state(NR_SHMEM),
5408 5409 5410
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5411
		free_pcp,
5412
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5413

M
Mel Gorman 已提交
5414
	for_each_online_pgdat(pgdat) {
5415
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5416 5417
			continue;

M
Mel Gorman 已提交
5418 5419 5420 5421 5422 5423 5424 5425
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5426
			" mapped:%lukB"
5427 5428 5429 5430 5431 5432 5433 5434 5435
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5436 5437 5438 5439
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
M
Mel Gorman 已提交
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5450
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5451 5452
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5453
			K(node_page_state(pgdat, NR_SHMEM)),
5454 5455 5456 5457 5458 5459 5460
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5461 5462 5463 5464
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5465 5466
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5467 5468
	}

5469
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5470 5471
		int i;

5472
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5473
			continue;
5474 5475 5476 5477 5478

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5479
		show_node(zone);
5480 5481
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5482 5483 5484 5485
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5486
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5487 5488 5489 5490 5491
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5492
			" writepending:%lukB"
L
Linus Torvalds 已提交
5493
			" present:%lukB"
5494
			" managed:%lukB"
5495 5496 5497
			" mlocked:%lukB"
			" pagetables:%lukB"
			" bounce:%lukB"
5498 5499
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5500
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5501 5502
			"\n",
			zone->name,
5503
			K(zone_page_state(zone, NR_FREE_PAGES)),
5504 5505 5506
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5507
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5508 5509 5510 5511 5512
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5513
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5514
			K(zone->present_pages),
5515
			K(zone_managed_pages(zone)),
5516 5517 5518
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5519 5520
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5521
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5522 5523
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5524 5525
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5526 5527
	}

5528
	for_each_populated_zone(zone) {
5529 5530
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5531
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5532

5533
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5534
			continue;
L
Linus Torvalds 已提交
5535
		show_node(zone);
5536
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5537 5538 5539

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5540 5541 5542 5543
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5544
			total += nr[order] << order;
5545 5546 5547

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5548
				if (!free_area_empty(area, type))
5549 5550
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5551 5552
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5553
		for (order = 0; order < MAX_ORDER; order++) {
5554 5555
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5556 5557 5558
			if (nr[order])
				show_migration_types(types[order]);
		}
5559
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5560 5561
	}

5562 5563
	hugetlb_show_meminfo();

5564
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5565

L
Linus Torvalds 已提交
5566 5567 5568
	show_swap_cache_info();
}

5569 5570 5571 5572 5573 5574
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5575 5576
/*
 * Builds allocation fallback zone lists.
5577 5578
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5579
 */
5580
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5581
{
5582
	struct zone *zone;
5583
	enum zone_type zone_type = MAX_NR_ZONES;
5584
	int nr_zones = 0;
5585 5586

	do {
5587
		zone_type--;
5588
		zone = pgdat->node_zones + zone_type;
5589
		if (managed_zone(zone)) {
5590
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5591
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5592
		}
5593
	} while (zone_type);
5594

5595
	return nr_zones;
L
Linus Torvalds 已提交
5596 5597 5598
}

#ifdef CONFIG_NUMA
5599 5600 5601

static int __parse_numa_zonelist_order(char *s)
{
5602 5603 5604 5605 5606 5607 5608 5609
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5610 5611 5612 5613 5614
		return -EINVAL;
	}
	return 0;
}

5615 5616
char numa_zonelist_order[] = "Node";

5617 5618 5619
/*
 * sysctl handler for numa_zonelist_order
 */
5620
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5621
		void *buffer, size_t *length, loff_t *ppos)
5622
{
5623 5624 5625
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
5626 5627 5628
}


5629
#define MAX_NODE_LOAD (nr_online_nodes)
5630 5631
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5632
/**
5633
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5644 5645
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5646
 */
5647
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5648
{
5649
	int n, val;
L
Linus Torvalds 已提交
5650
	int min_val = INT_MAX;
D
David Rientjes 已提交
5651
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
5652

5653 5654 5655 5656 5657
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5658

5659
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664 5665 5666 5667

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5668 5669 5670
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5671
		/* Give preference to headless and unused nodes */
5672
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5691 5692 5693 5694 5695 5696

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5697 5698
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5699
{
5700 5701 5702 5703 5704 5705 5706 5707 5708
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5709

5710 5711 5712 5713 5714
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5715 5716
}

5717 5718 5719 5720 5721
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5722 5723
	struct zoneref *zonerefs;
	int nr_zones;
5724

5725 5726 5727 5728 5729
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5730 5731
}

5732 5733 5734 5735 5736 5737 5738 5739 5740
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5741 5742
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
5743
	nodemask_t used_mask = NODE_MASK_NONE;
5744
	int local_node, prev_node;
L
Linus Torvalds 已提交
5745 5746 5747

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5748
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5749
	prev_node = local_node;
5750 5751

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5752 5753 5754 5755 5756 5757
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5758 5759
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5760 5761
			node_load[node] = load;

5762
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5763 5764 5765
		prev_node = node;
		load--;
	}
5766

5767
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5768
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5769 5770
}

5771 5772 5773 5774 5775 5776 5777 5778 5779
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5780
	struct zoneref *z;
5781

5782
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5783
				   gfp_zone(GFP_KERNEL),
5784
				   NULL);
5785
	return zone_to_nid(z->zone);
5786 5787
}
#endif
5788

5789 5790
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5791 5792
#else	/* CONFIG_NUMA */

5793
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5794
{
5795
	int node, local_node;
5796 5797
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5798 5799 5800

	local_node = pgdat->node_id;

5801 5802 5803
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5804

5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5816 5817
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5818
	}
5819 5820 5821
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5822 5823
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5824 5825
	}

5826 5827
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5828 5829 5830 5831
}

#endif	/* CONFIG_NUMA */

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5849
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5850

5851
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5852
{
5853
	int nid;
5854
	int __maybe_unused cpu;
5855
	pg_data_t *self = data;
5856 5857 5858
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5859

5860 5861 5862
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5863

5864 5865 5866 5867
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5868 5869
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5870 5871 5872
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5873

5874 5875
			build_zonelists(pgdat);
		}
5876

5877 5878 5879 5880 5881 5882 5883 5884 5885
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5886
		for_each_online_cpu(cpu)
5887
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5888
#endif
5889
	}
5890 5891

	spin_unlock(&lock);
5892 5893
}

5894 5895 5896
static noinline void __init
build_all_zonelists_init(void)
{
5897 5898
	int cpu;

5899
	__build_all_zonelists(NULL);
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5917 5918 5919 5920
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5921 5922
/*
 * unless system_state == SYSTEM_BOOTING.
5923
 *
5924
 * __ref due to call of __init annotated helper build_all_zonelists_init
5925
 * [protected by SYSTEM_BOOTING].
5926
 */
5927
void __ref build_all_zonelists(pg_data_t *pgdat)
5928
{
D
David Hildenbrand 已提交
5929 5930
	unsigned long vm_total_pages;

5931
	if (system_state == SYSTEM_BOOTING) {
5932
		build_all_zonelists_init();
5933
	} else {
5934
		__build_all_zonelists(pgdat);
5935 5936
		/* cpuset refresh routine should be here */
	}
5937 5938
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5939 5940 5941 5942 5943 5944 5945
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5946
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5947 5948 5949 5950
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5951
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5952 5953 5954
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5955
#ifdef CONFIG_NUMA
5956
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5957
#endif
L
Linus Torvalds 已提交
5958 5959
}

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
5982 5983
/*
 * Initially all pages are reserved - free ones are freed
5984
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5985 5986
 * done. Non-atomic initialization, single-pass.
 */
5987
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5988
		unsigned long start_pfn, enum meminit_context context,
5989
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5990
{
5991
	unsigned long pfn, end_pfn = start_pfn + size;
5992
	struct page *page;
L
Linus Torvalds 已提交
5993

5994 5995 5996
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5997
#ifdef CONFIG_ZONE_DEVICE
5998 5999
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6000 6001 6002 6003
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6004
	 */
6005 6006 6007 6008 6009 6010 6011 6012 6013
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6014

6015
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6016
		/*
6017 6018
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6019
		 */
6020
		if (context == MEMINIT_EARLY) {
6021 6022 6023 6024
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
6025
		}
6026

6027 6028
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6029
		if (context == MEMINIT_HOTPLUG)
6030
			__SetPageReserved(page);
6031

6032 6033 6034 6035 6036
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
6037
		 * kernel allocations are made.
6038 6039 6040 6041 6042 6043 6044 6045
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6046
			cond_resched();
6047
		}
6048
		pfn++;
L
Linus Torvalds 已提交
6049 6050 6051
	}
}

6052 6053 6054
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6055
				   unsigned long nr_pages,
6056 6057
				   struct dev_pagemap *pgmap)
{
6058
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6059
	struct pglist_data *pgdat = zone->zone_pgdat;
6060
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6061 6062 6063 6064
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6065
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6066 6067 6068 6069 6070 6071 6072
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6073
	if (altmap) {
6074
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6075
		nr_pages = end_pfn - start_pfn;
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6093 6094 6095
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6096 6097
		 */
		page->pgmap = pgmap;
6098
		page->zone_device_data = NULL;
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
6112
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6113
		 * because this is done early in section_activate()
6114 6115 6116 6117 6118 6119 6120
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6121
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6122
		nr_pages, jiffies_to_msecs(jiffies - start));
6123 6124 6125
}

#endif
6126
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6127
{
6128
	unsigned int order, t;
6129 6130
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6131 6132 6133 6134
		zone->free_area[order].nr_free = 0;
	}
}

6135
void __meminit __weak memmap_init(unsigned long size, int nid,
6136 6137
				  unsigned long zone,
				  unsigned long range_start_pfn)
6138
{
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	unsigned long start_pfn, end_pfn;
	unsigned long range_end_pfn = range_start_pfn + size;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);

		if (end_pfn > start_pfn) {
			size = end_pfn - start_pfn;
			memmap_init_zone(size, nid, zone, start_pfn,
6150
					 MEMINIT_EARLY, NULL);
6151 6152
		}
	}
6153
}
L
Linus Torvalds 已提交
6154

6155
static int zone_batchsize(struct zone *zone)
6156
{
6157
#ifdef CONFIG_MMU
6158 6159 6160 6161
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6162
	 * size of the zone.
6163
	 */
6164
	batch = zone_managed_pages(zone) / 1024;
6165 6166 6167
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6168 6169 6170 6171 6172
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6173 6174 6175
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6176
	 *
6177 6178 6179 6180
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6181
	 */
6182
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6183

6184
	return batch;
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6202 6203
}

6204 6205 6206 6207 6208 6209 6210
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6211
 * those fields changing asynchronously (acording to the above rule).
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6231
/* a companion to pageset_set_high() */
6232 6233
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6234
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6235 6236
}

6237
static void pageset_init(struct per_cpu_pageset *p)
6238 6239
{
	struct per_cpu_pages *pcp;
6240
	int migratetype;
6241

6242 6243
	memset(p, 0, sizeof(*p));

6244
	pcp = &p->pcp;
6245 6246
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6247 6248
}

6249 6250 6251 6252 6253 6254
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6255
/*
6256
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6257 6258
 * to the value high for the pageset p.
 */
6259
static void pageset_set_high(struct per_cpu_pageset *p,
6260 6261
				unsigned long high)
{
6262 6263 6264
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6265

6266
	pageset_update(&p->pcp, high, batch);
6267 6268
}

6269 6270
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6271 6272
{
	if (percpu_pagelist_fraction)
6273
		pageset_set_high(pcp,
6274
			(zone_managed_pages(zone) /
6275 6276 6277 6278 6279
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6280 6281 6282 6283 6284 6285 6286 6287
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6288
void __meminit setup_zone_pageset(struct zone *zone)
6289 6290 6291
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6292 6293
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6294 6295
}

6296
/*
6297 6298
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6299
 */
6300
void __init setup_per_cpu_pageset(void)
6301
{
6302
	struct pglist_data *pgdat;
6303
	struct zone *zone;
6304
	int __maybe_unused cpu;
6305

6306 6307
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6308

6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
		memset(pcp->vm_numa_stat_diff, 0,
		       sizeof(pcp->vm_numa_stat_diff));
	}
#endif

6323 6324 6325
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6326 6327
}

6328
static __meminit void zone_pcp_init(struct zone *zone)
6329
{
6330 6331 6332 6333 6334 6335
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6336

6337
	if (populated_zone(zone))
6338 6339 6340
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6341 6342
}

6343
void __meminit init_currently_empty_zone(struct zone *zone,
6344
					unsigned long zone_start_pfn,
6345
					unsigned long size)
6346 6347
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6348
	int zone_idx = zone_idx(zone) + 1;
6349

6350 6351
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6352 6353 6354

	zone->zone_start_pfn = zone_start_pfn;

6355 6356 6357 6358 6359 6360
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6361
	zone_init_free_lists(zone);
6362
	zone->initialized = 1;
6363 6364
}

6365 6366
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6367 6368 6369
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6370 6371
 *
 * It returns the start and end page frame of a node based on information
6372
 * provided by memblock_set_node(). If called for a node
6373
 * with no available memory, a warning is printed and the start and end
6374
 * PFNs will be 0.
6375
 */
6376
void __init get_pfn_range_for_nid(unsigned int nid,
6377 6378
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6379
	unsigned long this_start_pfn, this_end_pfn;
6380
	int i;
6381

6382 6383 6384
	*start_pfn = -1UL;
	*end_pfn = 0;

6385 6386 6387
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6388 6389
	}

6390
	if (*start_pfn == -1UL)
6391 6392 6393
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6394 6395 6396 6397 6398
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6399
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6417
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6418 6419 6420 6421 6422 6423 6424
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6425
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6440 6441 6442 6443 6444 6445
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6446 6447 6448 6449 6450 6451
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6452 6453 6454 6455
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6456
static unsigned long __init zone_spanned_pages_in_node(int nid,
6457
					unsigned long zone_type,
6458 6459
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6460
					unsigned long *zone_start_pfn,
6461
					unsigned long *zone_end_pfn)
6462
{
6463 6464
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6465
	/* When hotadd a new node from cpu_up(), the node should be empty */
6466 6467 6468
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6469
	/* Get the start and end of the zone */
6470 6471
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6472 6473
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6474
				zone_start_pfn, zone_end_pfn);
6475 6476

	/* Check that this node has pages within the zone's required range */
6477
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6478 6479 6480
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6481 6482
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6483 6484

	/* Return the spanned pages */
6485
	return *zone_end_pfn - *zone_start_pfn;
6486 6487 6488 6489
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6490
 * then all holes in the requested range will be accounted for.
6491
 */
6492
unsigned long __init __absent_pages_in_range(int nid,
6493 6494 6495
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6496 6497 6498
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6499

6500 6501 6502 6503
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6504
	}
6505
	return nr_absent;
6506 6507 6508 6509 6510 6511 6512
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6513
 * Return: the number of pages frames in memory holes within a range.
6514 6515 6516 6517 6518 6519 6520 6521
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6522
static unsigned long __init zone_absent_pages_in_node(int nid,
6523
					unsigned long zone_type,
6524
					unsigned long node_start_pfn,
6525
					unsigned long node_end_pfn)
6526
{
6527 6528
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6529
	unsigned long zone_start_pfn, zone_end_pfn;
6530
	unsigned long nr_absent;
6531

6532
	/* When hotadd a new node from cpu_up(), the node should be empty */
6533 6534 6535
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6536 6537
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6538

M
Mel Gorman 已提交
6539 6540 6541
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6542 6543 6544 6545 6546 6547 6548
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6566 6567 6568 6569
		}
	}

	return nr_absent;
6570
}
6571

6572
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6573
						unsigned long node_start_pfn,
6574
						unsigned long node_end_pfn)
6575
{
6576
	unsigned long realtotalpages = 0, totalpages = 0;
6577 6578
	enum zone_type i;

6579 6580
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6581
		unsigned long zone_start_pfn, zone_end_pfn;
6582
		unsigned long spanned, absent;
6583
		unsigned long size, real_size;
6584

6585 6586 6587 6588 6589 6590 6591 6592
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
6593 6594 6595 6596

		size = spanned;
		real_size = size - absent;

6597 6598 6599 6600
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6601 6602 6603 6604 6605 6606 6607 6608
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6609 6610 6611 6612 6613
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6614 6615 6616
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6617 6618
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6619 6620 6621
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6622
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6623 6624 6625
{
	unsigned long usemapsize;

6626
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6627 6628
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6629 6630 6631 6632 6633 6634
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6635
static void __ref setup_usemap(struct pglist_data *pgdat,
6636 6637 6638
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6639
{
6640
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6641
	zone->pageblock_flags = NULL;
6642
	if (usemapsize) {
6643
		zone->pageblock_flags =
6644 6645
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6646 6647 6648 6649
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6650 6651
}
#else
6652 6653
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6654 6655
#endif /* CONFIG_SPARSEMEM */

6656
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6657

6658
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6659
void __init set_pageblock_order(void)
6660
{
6661 6662
	unsigned int order;

6663 6664 6665 6666
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6667 6668 6669 6670 6671
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6672 6673
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6674 6675
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6676 6677 6678 6679 6680
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6681 6682
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6683 6684 6685
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6686
 */
6687
void __init set_pageblock_order(void)
6688 6689
{
}
6690 6691 6692

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6693
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6694
						unsigned long present_pages)
6695 6696 6697 6698 6699 6700 6701 6702
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6703
	 * populated regions may not be naturally aligned on page boundary.
6704 6705 6706 6707 6708 6709 6710 6711 6712
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6713 6714 6715
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6716 6717 6718 6719 6720
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6735
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6736
{
6737
	pgdat_resize_init(pgdat);
6738 6739 6740 6741

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6742
	init_waitqueue_head(&pgdat->kswapd_wait);
6743
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6744

6745
	pgdat_page_ext_init(pgdat);
6746
	spin_lock_init(&pgdat->lru_lock);
6747
	lruvec_init(&pgdat->__lruvec);
6748 6749 6750 6751 6752
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6753
	atomic_long_set(&zone->managed_pages, remaining_pages);
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6794

6795
	pgdat_init_internals(pgdat);
6796 6797
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6798 6799
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6800
		unsigned long size, freesize, memmap_pages;
6801
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6802

6803
		size = zone->spanned_pages;
6804
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6805

6806
		/*
6807
		 * Adjust freesize so that it accounts for how much memory
6808 6809 6810
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6811
		memmap_pages = calc_memmap_size(size, freesize);
6812 6813 6814 6815 6816 6817 6818 6819
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6820
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6821 6822
					zone_names[j], memmap_pages, freesize);
		}
6823

6824
		/* Account for reserved pages */
6825 6826
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6827
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6828
					zone_names[0], dma_reserve);
6829 6830
		}

6831
		if (!is_highmem_idx(j))
6832
			nr_kernel_pages += freesize;
6833 6834 6835
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6836
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6837

6838 6839 6840 6841 6842
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6843
		zone_init_internals(zone, j, nid, freesize);
6844

6845
		if (!size)
L
Linus Torvalds 已提交
6846 6847
			continue;

6848
		set_pageblock_order();
6849 6850
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6851
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6852 6853 6854
	}
}

6855
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6856
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6857
{
6858
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6859 6860
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6861 6862 6863 6864
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6865 6866
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6867 6868
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6869
		unsigned long size, end;
A
Andy Whitcroft 已提交
6870 6871
		struct page *map;

6872 6873 6874 6875 6876
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6877
		end = pgdat_end_pfn(pgdat);
6878 6879
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6880 6881
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6882 6883 6884
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6885
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6886
	}
6887 6888 6889
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6890
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6891 6892 6893
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6894
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6895
		mem_map = NODE_DATA(0)->node_mem_map;
6896
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6897
			mem_map -= offset;
6898
	}
L
Linus Torvalds 已提交
6899 6900
#endif
}
6901 6902 6903
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6904

6905 6906 6907 6908 6909 6910 6911 6912 6913
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6914
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
6915
{
6916
	pg_data_t *pgdat = NODE_DATA(nid);
6917 6918
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6919

6920
	/* pg_data_t should be reset to zero when it's allocated */
6921
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6922

6923
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6924

L
Linus Torvalds 已提交
6925
	pgdat->node_id = nid;
6926
	pgdat->node_start_pfn = start_pfn;
6927
	pgdat->per_cpu_nodestats = NULL;
6928

6929
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6930 6931
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6932
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
6933 6934

	alloc_node_mem_map(pgdat);
6935
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6936

6937
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6938 6939
}

6940
void __init free_area_init_memoryless_node(int nid)
6941
{
6942
	free_area_init_node(nid);
6943 6944
}

M
Mike Rapoport 已提交
6945
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6946
/*
6947 6948
 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
 * PageReserved(). Return the number of struct pages that were initialized.
6949
 */
6950
static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
6961 6962 6963 6964 6965 6966 6967
		/*
		 * Use a fake node/zone (0) for now. Some of these pages
		 * (in memblock.reserved but not in memblock.memory) will
		 * get re-initialized via reserve_bootmem_region() later.
		 */
		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
		__SetPageReserved(pfn_to_page(pfn));
6968 6969 6970 6971 6972 6973
		pgcnt++;
	}

	return pgcnt;
}

6974 6975 6976 6977 6978
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
6979
 * flags). We must explicitly initialize those struct pages.
6980 6981 6982 6983
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
6984 6985
 * layout is manually configured via memmap=, or when the highest physical
 * address (max_pfn) does not end on a section boundary.
6986
 */
6987
static void __init init_unavailable_mem(void)
6988 6989 6990
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6991
	phys_addr_t next = 0;
6992 6993

	/*
6994
	 * Loop through unavailable ranges not covered by memblock.memory.
6995 6996
	 */
	pgcnt = 0;
6997 6998
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6999
		if (next < start)
7000 7001
			pgcnt += init_unavailable_range(PFN_DOWN(next),
							PFN_UP(start));
7002 7003
		next = end;
	}
7004 7005 7006 7007 7008 7009 7010 7011

	/*
	 * Early sections always have a fully populated memmap for the whole
	 * section - see pfn_valid(). If the last section has holes at the
	 * end and that section is marked "online", the memmap will be
	 * considered initialized. Make sure that memmap has a well defined
	 * state.
	 */
7012 7013
	pgcnt += init_unavailable_range(PFN_DOWN(next),
					round_up(max_pfn, PAGES_PER_SECTION));
7014

7015 7016 7017 7018 7019
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
7020
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7021
}
7022 7023 7024 7025
#else
static inline void __init init_unavailable_mem(void)
{
}
M
Mike Rapoport 已提交
7026
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7027

M
Miklos Szeredi 已提交
7028 7029 7030 7031
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7032
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7033
{
7034
	unsigned int highest;
M
Miklos Szeredi 已提交
7035

7036
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7037 7038 7039 7040
	nr_node_ids = highest + 1;
}
#endif

7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7057
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7058 7059 7060 7061 7062
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7063
	unsigned long start, end, mask;
7064
	int last_nid = NUMA_NO_NODE;
7065
	int i, nid;
7066

7067
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7091 7092 7093
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7094
 * Return: the minimum PFN based on information provided via
7095
 * memblock_set_node().
7096 7097 7098
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7099
	return PHYS_PFN(memblock_start_of_DRAM());
7100 7101
}

7102 7103 7104
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7105
 * Populate N_MEMORY for calculating usable_nodes.
7106
 */
A
Adrian Bunk 已提交
7107
static unsigned long __init early_calculate_totalpages(void)
7108 7109
{
	unsigned long totalpages = 0;
7110 7111 7112 7113 7114
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7115

7116 7117
		totalpages += pages;
		if (pages)
7118
			node_set_state(nid, N_MEMORY);
7119
	}
7120
	return totalpages;
7121 7122
}

M
Mel Gorman 已提交
7123 7124 7125 7126 7127 7128
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7129
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7130 7131 7132 7133
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7134
	/* save the state before borrow the nodemask */
7135
	nodemask_t saved_node_state = node_states[N_MEMORY];
7136
	unsigned long totalpages = early_calculate_totalpages();
7137
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7138
	struct memblock_region *r;
7139 7140 7141 7142 7143 7144 7145 7146 7147

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7148 7149
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7150 7151
				continue;

7152
			nid = memblock_get_region_node(r);
7153

E
Emil Medve 已提交
7154
			usable_startpfn = PFN_DOWN(r->base);
7155 7156 7157 7158 7159 7160 7161
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7162

7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

7173
			nid = memblock_get_region_node(r);
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7188
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7189 7190 7191 7192

		goto out2;
	}

7193
	/*
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7221
		required_movablecore = min(totalpages, required_movablecore);
7222 7223 7224 7225 7226
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7227 7228 7229 7230 7231
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7232
		goto out;
M
Mel Gorman 已提交
7233 7234 7235 7236 7237 7238 7239

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7240
	for_each_node_state(nid, N_MEMORY) {
7241 7242
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7259
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7260 7261
			unsigned long size_pages;

7262
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7305
			 * satisfied
M
Mel Gorman 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7319
	 * satisfied
M
Mel Gorman 已提交
7320 7321 7322 7323 7324
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7325
out2:
M
Mel Gorman 已提交
7326 7327 7328 7329
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7330

7331
out:
7332
	/* restore the node_state */
7333
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7334 7335
}

7336 7337
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7338 7339 7340
{
	enum zone_type zone_type;

7341
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7342
		struct zone *zone = &pgdat->node_zones[zone_type];
7343
		if (populated_zone(zone)) {
7344 7345 7346
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7347
				node_set_state(nid, N_NORMAL_MEMORY);
7348 7349
			break;
		}
7350 7351 7352
	}
}

7353 7354 7355 7356 7357 7358 7359 7360 7361
/*
 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7362
/**
7363
 * free_area_init - Initialise all pg_data_t and zone data
7364
 * @max_zone_pfn: an array of max PFNs for each zone
7365 7366
 *
 * This will call free_area_init_node() for each active node in the system.
7367
 * Using the page ranges provided by memblock_set_node(), the size of each
7368 7369 7370 7371 7372 7373 7374
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7375
void __init free_area_init(unsigned long *max_zone_pfn)
7376
{
7377
	unsigned long start_pfn, end_pfn;
7378 7379
	int i, nid, zone;
	bool descending;
7380

7381 7382 7383 7384 7385
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7386 7387

	start_pfn = find_min_pfn_with_active_regions();
7388
	descending = arch_has_descending_max_zone_pfns();
7389 7390

	for (i = 0; i < MAX_NR_ZONES; i++) {
7391 7392 7393 7394 7395 7396
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7397
			continue;
7398

7399 7400 7401
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7402 7403

		start_pfn = end_pfn;
7404
	}
M
Mel Gorman 已提交
7405 7406 7407

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7408
	find_zone_movable_pfns_for_nodes();
7409 7410

	/* Print out the zone ranges */
7411
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7412 7413 7414
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7415
		pr_info("  %-8s ", zone_names[i]);
7416 7417
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7418
			pr_cont("empty\n");
7419
		else
7420 7421 7422 7423
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7424
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7425 7426 7427
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7428
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7429 7430
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7431 7432
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7433
	}
7434

7435 7436 7437 7438 7439
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7440
	pr_info("Early memory node ranges\n");
7441
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7442 7443 7444
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7445 7446
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7447 7448

	/* Initialise every node */
7449
	mminit_verify_pageflags_layout();
7450
	setup_nr_node_ids();
7451
	init_unavailable_mem();
7452 7453
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7454
		free_area_init_node(nid);
7455 7456 7457

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7458 7459
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7460 7461
	}
}
M
Mel Gorman 已提交
7462

7463 7464
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7465 7466
{
	unsigned long long coremem;
7467 7468
	char *endptr;

M
Mel Gorman 已提交
7469 7470 7471
	if (!p)
		return -EINVAL;

7472 7473 7474 7475 7476
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7477

7478 7479 7480 7481 7482
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7483

7484 7485 7486
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7487 7488
	return 0;
}
M
Mel Gorman 已提交
7489

7490 7491 7492 7493 7494 7495
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7496 7497 7498 7499 7500 7501
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7502 7503
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7504 7505 7506 7507 7508 7509 7510 7511
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7512 7513
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7514 7515
}

M
Mel Gorman 已提交
7516
early_param("kernelcore", cmdline_parse_kernelcore);
7517
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7518

7519 7520
void adjust_managed_page_count(struct page *page, long count)
{
7521
	atomic_long_add(count, &page_zone(page)->managed_pages);
7522
	totalram_pages_add(count);
7523 7524
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7525
		totalhigh_pages_add(count);
7526
#endif
7527
}
7528
EXPORT_SYMBOL(adjust_managed_page_count);
7529

7530
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7531
{
7532 7533
	void *pos;
	unsigned long pages = 0;
7534

7535 7536 7537
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7549
		if ((unsigned int)poison <= 0xFF)
7550 7551 7552
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7553 7554 7555
	}

	if (pages && s)
7556 7557
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7558 7559 7560 7561

	return pages;
}

7562 7563 7564 7565
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7566
	totalram_pages_inc();
7567
	atomic_long_inc(&page_zone(page)->managed_pages);
7568
	totalhigh_pages_inc();
7569 7570 7571
}
#endif

7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7594 7595 7596 7597
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7608
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7609
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7610
		", %luK highmem"
7611
#endif
J
Joe Perches 已提交
7612 7613 7614 7615 7616
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7617
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7618
		totalcma_pages << (PAGE_SHIFT - 10),
7619
#ifdef	CONFIG_HIGHMEM
7620
		totalhigh_pages() << (PAGE_SHIFT - 10),
7621
#endif
J
Joe Perches 已提交
7622
		str ? ", " : "", str ? str : "");
7623 7624
}

7625
/**
7626 7627
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7628
 *
7629
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7630 7631
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7632 7633 7634
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7635 7636 7637 7638 7639 7640
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7641
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7642 7643
{

7644 7645
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7646

7647 7648 7649 7650 7651 7652 7653
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7654

7655 7656 7657 7658 7659 7660 7661 7662 7663
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7664 7665
}

7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7679 7680
void __init page_alloc_init(void)
{
7681 7682
	int ret;

7683 7684 7685 7686 7687
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7688 7689 7690 7691
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7692 7693
}

7694
/*
7695
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7696 7697 7698 7699 7700 7701
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7702
	enum zone_type i, j;
7703 7704

	for_each_online_pgdat(pgdat) {
7705 7706 7707

		pgdat->totalreserve_pages = 0;

7708 7709
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7710
			long max = 0;
7711
			unsigned long managed_pages = zone_managed_pages(zone);
7712 7713 7714 7715 7716 7717 7718

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7719 7720
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7721

7722 7723
			if (max > managed_pages)
				max = managed_pages;
7724

7725
			pgdat->totalreserve_pages += max;
7726

7727 7728 7729 7730 7731 7732
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7733 7734
/*
 * setup_per_zone_lowmem_reserve - called whenever
7735
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7736 7737 7738 7739 7740 7741
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7742
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7743

7744
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7745 7746
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7747
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7748 7749 7750

			zone->lowmem_reserve[j] = 0;

7751 7752
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7753 7754
				struct zone *lower_zone;

7755
				idx--;
L
Linus Torvalds 已提交
7756
				lower_zone = pgdat->node_zones + idx;
7757

7758 7759
				if (!sysctl_lowmem_reserve_ratio[idx] ||
				    !zone_managed_pages(lower_zone)) {
7760
					lower_zone->lowmem_reserve[j] = 0;
7761
					continue;
7762 7763 7764 7765
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7766
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7767 7768 7769
			}
		}
	}
7770 7771 7772

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7773 7774
}

7775
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7776 7777 7778 7779 7780 7781 7782 7783 7784
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7785
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7786 7787 7788
	}

	for_each_zone(zone) {
7789 7790
		u64 tmp;

7791
		spin_lock_irqsave(&zone->lock, flags);
7792
		tmp = (u64)pages_min * zone_managed_pages(zone);
7793
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7794 7795
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7796 7797 7798 7799
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7800
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7801
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7802
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7803
			 */
7804
			unsigned long min_pages;
L
Linus Torvalds 已提交
7805

7806
			min_pages = zone_managed_pages(zone) / 1024;
7807
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7808
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7809
		} else {
N
Nick Piggin 已提交
7810 7811
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7812 7813
			 * proportionate to the zone's size.
			 */
7814
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7815 7816
		}

7817 7818 7819 7820 7821 7822
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7823
			    mult_frac(zone_managed_pages(zone),
7824 7825
				      watermark_scale_factor, 10000));

7826
		zone->watermark_boost = 0;
7827 7828
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7829

7830
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7831
	}
7832 7833 7834

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7835 7836
}

7837 7838 7839 7840 7841 7842 7843 7844 7845
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7846 7847 7848
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7849
	__setup_per_zone_wmarks();
7850
	spin_unlock(&lock);
7851 7852
}

L
Linus Torvalds 已提交
7853 7854 7855 7856
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
7857
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
7858 7859
 * bandwidth does not increase linearly with machine size.  We use
 *
7860
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7877
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7878 7879
{
	unsigned long lowmem_kbytes;
7880
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7881 7882

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7883 7884 7885 7886 7887 7888
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
7889 7890
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
7891 7892 7893 7894
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7895
	setup_per_zone_wmarks();
7896
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7897
	setup_per_zone_lowmem_reserve();
7898 7899 7900 7901 7902 7903

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

7904 7905
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
7906 7907
	return 0;
}
7908
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7909 7910

/*
7911
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7912 7913 7914
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7915
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7916
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7917
{
7918 7919 7920 7921 7922 7923
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7924 7925
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7926
		setup_per_zone_wmarks();
7927
	}
L
Linus Torvalds 已提交
7928 7929 7930
	return 0;
}

7931
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7932
		void *buffer, size_t *length, loff_t *ppos)
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7946
#ifdef CONFIG_NUMA
7947
static void setup_min_unmapped_ratio(void)
7948
{
7949
	pg_data_t *pgdat;
7950 7951
	struct zone *zone;

7952
	for_each_online_pgdat(pgdat)
7953
		pgdat->min_unmapped_pages = 0;
7954

7955
	for_each_zone(zone)
7956 7957
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7958
}
7959

7960 7961

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7962
		void *buffer, size_t *length, loff_t *ppos)
7963 7964 7965
{
	int rc;

7966
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7967 7968 7969
	if (rc)
		return rc;

7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7980 7981 7982
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7983
	for_each_zone(zone)
7984 7985
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7986 7987 7988
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7989
		void *buffer, size_t *length, loff_t *ppos)
7990 7991 7992 7993 7994 7995 7996 7997 7998
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7999 8000
	return 0;
}
8001 8002
#endif

L
Linus Torvalds 已提交
8003 8004 8005 8006 8007 8008
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8009
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8010 8011
 * if in function of the boot time zone sizes.
 */
8012
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8013
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8014
{
8015 8016
	int i;

8017
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8018 8019 8020 8021 8022 8023

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8024 8025 8026 8027
	setup_per_zone_lowmem_reserve();
	return 0;
}

8028 8029 8030 8031 8032 8033 8034 8035 8036
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8037 8038
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8039 8040
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8041
 */
8042
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8043
		void *buffer, size_t *length, loff_t *ppos)
8044 8045
{
	struct zone *zone;
8046
	int old_percpu_pagelist_fraction;
8047 8048
	int ret;

8049 8050 8051
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8052
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8067

8068 8069
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8070
out:
8071
	mutex_unlock(&pcp_batch_high_lock);
8072
	return ret;
8073 8074
}

8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8114 8115
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8116
{
8117
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8118 8119
	unsigned long log2qty, size;
	void *table = NULL;
8120
	gfp_t gfp_flags;
8121
	bool virt;
L
Linus Torvalds 已提交
8122 8123 8124 8125

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8126
		numentries = nr_kernel_pages;
8127
		numentries -= arch_reserved_kernel_pages();
8128 8129 8130 8131

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8132

P
Pavel Tatashin 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8143 8144 8145 8146 8147
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8148 8149

		/* Make sure we've got at least a 0-order allocation.. */
8150 8151 8152 8153 8154 8155 8156 8157
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8158
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8159
	}
8160
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8161 8162 8163 8164 8165 8166

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8167
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8168

8169 8170
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8171 8172 8173
	if (numentries > max)
		numentries = max;

8174
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8175

8176
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8177
	do {
8178
		virt = false;
L
Linus Torvalds 已提交
8179
		size = bucketsize << log2qty;
8180 8181
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8182
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8183
			else
8184 8185
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8186
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8187
			table = __vmalloc(size, gfp_flags);
8188
			virt = true;
8189
		} else {
8190 8191
			/*
			 * If bucketsize is not a power-of-two, we may free
8192 8193
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8194
			 */
8195 8196
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8197 8198 8199 8200 8201 8202
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8203 8204 8205
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8206 8207 8208 8209 8210 8211 8212 8213

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8214

K
KAMEZAWA Hiroyuki 已提交
8215
/*
8216 8217
 * This function checks whether pageblock includes unmovable pages or not.
 *
8218
 * PageLRU check without isolation or lru_lock could race so that
8219 8220 8221
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8222 8223
 *
 * Returns a page without holding a reference. If the caller wants to
8224
 * dereference that page (e.g., dumping), it has to make sure that it
8225 8226
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8227
 */
8228 8229
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8230
{
8231 8232
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8233
	unsigned long offset = pfn % pageblock_nr_pages;
8234

8235 8236 8237 8238 8239 8240 8241
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8242
			return NULL;
8243

8244
		return page;
8245
	}
8246

8247
	for (; iter < pageblock_nr_pages - offset; iter++) {
8248
		if (!pfn_valid_within(pfn + iter))
8249
			continue;
8250

8251
		page = pfn_to_page(pfn + iter);
8252

8253 8254 8255 8256 8257 8258
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8259
		if (PageReserved(page))
8260
			return page;
8261

8262 8263 8264 8265 8266 8267 8268 8269
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8270 8271
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8272
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8273
		 * We need not scan over tail pages because we don't
8274 8275
		 * handle each tail page individually in migration.
		 */
8276
		if (PageHuge(page) || PageTransCompound(page)) {
8277 8278
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8279

8280 8281 8282 8283
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8284
				return page;
8285
			}
8286

8287
			skip_pages = compound_nr(head) - (page - head);
8288
			iter += skip_pages - 1;
8289 8290 8291
			continue;
		}

8292 8293 8294 8295
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8296
		 * because their page->_refcount is zero at all time.
8297
		 */
8298
		if (!page_ref_count(page)) {
8299 8300 8301 8302
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8303

8304 8305 8306 8307
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8308
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8309 8310
			continue;

8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8324
		if (__PageMovable(page) || PageLRU(page))
8325 8326
			continue;

8327
		/*
8328 8329 8330
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8331
		 */
8332
		return page;
8333
	}
8334
	return NULL;
8335 8336
}

8337
#ifdef CONFIG_CONTIG_ALLOC
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8351 8352
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8353 8354
{
	/* This function is based on compact_zone() from compaction.c. */
8355
	unsigned int nr_reclaimed;
8356 8357 8358
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8359 8360 8361 8362
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8363

8364
	migrate_prep();
8365

8366
	while (pfn < end || !list_empty(&cc->migratepages)) {
8367 8368 8369 8370 8371
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8372 8373
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8374
			pfn = isolate_migratepages_range(cc, pfn, end);
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8385 8386 8387
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8388

8389 8390
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8391
	}
8392 8393 8394 8395 8396
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8397 8398 8399 8400 8401 8402
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8403 8404 8405 8406
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8407
 * @gfp_mask:	GFP mask to use during compaction
8408 8409
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8410
 * aligned.  The PFN range must belong to a single zone.
8411
 *
8412 8413 8414
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8415
 *
8416
 * Return: zero on success or negative error code.  On success all
8417 8418 8419
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8420
int alloc_contig_range(unsigned long start, unsigned long end,
8421
		       unsigned migratetype, gfp_t gfp_mask)
8422 8423
{
	unsigned long outer_start, outer_end;
8424 8425
	unsigned int order;
	int ret = 0;
8426

8427 8428 8429 8430
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8431
		.mode = MIGRATE_SYNC,
8432
		.ignore_skip_hint = true,
8433
		.no_set_skip_hint = true,
8434
		.gfp_mask = current_gfp_context(gfp_mask),
8435
		.alloc_contig = true,
8436 8437 8438
	};
	INIT_LIST_HEAD(&cc.migratepages);

8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8464
				       pfn_max_align_up(end), migratetype, 0);
8465
	if (ret < 0)
8466
		return ret;
8467

8468 8469
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8470 8471 8472 8473 8474 8475 8476
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8477
	 */
8478
	ret = __alloc_contig_migrate_range(&cc, start, end);
8479
	if (ret && ret != -EBUSY)
8480
		goto done;
8481
	ret =0;
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8506 8507
			outer_start = start;
			break;
8508 8509 8510 8511
		}
		outer_start &= ~0UL << order;
	}

8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8525
	/* Make sure the range is really isolated. */
8526
	if (test_pages_isolated(outer_start, end, 0)) {
8527
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8528
			__func__, outer_start, end);
8529 8530 8531 8532
		ret = -EBUSY;
		goto done;
	}

8533
	/* Grab isolated pages from freelists. */
8534
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8548
				pfn_max_align_up(end), migratetype);
8549 8550
	return ret;
}
8551
EXPORT_SYMBOL(alloc_contig_range);
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8653
#endif /* CONFIG_CONTIG_ALLOC */
8654

8655
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8656
{
8657 8658 8659 8660 8661 8662 8663 8664 8665
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8666
}
8667
EXPORT_SYMBOL(free_contig_range);
8668

8669 8670 8671 8672
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8673 8674
void __meminit zone_pcp_update(struct zone *zone)
{
8675
	mutex_lock(&pcp_batch_high_lock);
8676
	__zone_pcp_update(zone);
8677
	mutex_unlock(&pcp_batch_high_lock);
8678 8679
}

8680 8681 8682
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8683 8684
	int cpu;
	struct per_cpu_pageset *pset;
8685 8686 8687 8688

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8689 8690 8691 8692
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8693 8694 8695 8696 8697 8698
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8699
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8700
/*
8701 8702
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8703
 */
8704
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8705 8706 8707 8708
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8709
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8710 8711
	unsigned long pfn;
	unsigned long flags;
8712 8713
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8714 8715 8716 8717 8718
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8719 8720
		return offlined_pages;

8721
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8731 8732 8733 8734 8735 8736
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
8737
			offlined_pages++;
8738 8739
			continue;
		}
8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			offlined_pages++;
			continue;
		}
8751

K
KAMEZAWA Hiroyuki 已提交
8752 8753 8754
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8755
		offlined_pages += 1 << order;
8756
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8757 8758 8759
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8760 8761

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8762 8763
}
#endif
8764 8765 8766 8767 8768 8769

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8770
	unsigned int order;
8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif