i915_gem.c 161.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141 142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
144
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
165
	i915_timelines_park(i915);
166 167

	i915_pmu_gt_parked(i915);
168
	i915_vma_parked(i915);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

236 237
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238
			    struct drm_file *file)
239
{
240
	struct drm_i915_private *dev_priv = to_i915(dev);
241
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242
	struct drm_i915_gem_get_aperture *args = data;
243
	struct i915_vma *vma;
244
	u64 pinned;
245

246
	pinned = ggtt->base.reserved;
247
	mutex_lock(&dev->struct_mutex);
248
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249
		if (i915_vma_is_pinned(vma))
250
			pinned += vma->node.size;
251
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252
		if (i915_vma_is_pinned(vma))
253
			pinned += vma->node.size;
254
	mutex_unlock(&dev->struct_mutex);
255

256
	args->aper_size = ggtt->base.total;
257
	args->aper_available_size = args->aper_size - pinned;
258

259 260 261
	return 0;
}

262
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263
{
264
	struct address_space *mapping = obj->base.filp->f_mapping;
265
	drm_dma_handle_t *phys;
266 267
	struct sg_table *st;
	struct scatterlist *sg;
268
	char *vaddr;
269
	int i;
270
	int err;
271

272
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273
		return -EINVAL;
274

275 276 277 278 279
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
280
			     roundup_pow_of_two(obj->base.size),
281 282
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
283
		return -ENOMEM;
284 285

	vaddr = phys->vaddr;
286 287 288 289 290
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
291
		if (IS_ERR(page)) {
292
			err = PTR_ERR(page);
293 294
			goto err_phys;
		}
295 296 297 298 299 300

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

301
		put_page(page);
302 303 304
		vaddr += PAGE_SIZE;
	}

305
	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 307

	st = kmalloc(sizeof(*st), GFP_KERNEL);
308
	if (!st) {
309
		err = -ENOMEM;
310 311
		goto err_phys;
	}
312 313 314

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
315
		err = -ENOMEM;
316
		goto err_phys;
317 318 319 320 321
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
322

323
	sg_dma_address(sg) = phys->busaddr;
324 325
	sg_dma_len(sg) = obj->base.size;

326
	obj->phys_handle = phys;
327

328
	__i915_gem_object_set_pages(obj, st, sg->length);
329 330

	return 0;
331 332 333

err_phys:
	drm_pci_free(obj->base.dev, phys);
334 335

	return err;
336 337
}

338 339
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
340 341
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 343 344 345
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

346
static void
347
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 349
				struct sg_table *pages,
				bool needs_clflush)
350
{
C
Chris Wilson 已提交
351
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352

C
Chris Wilson 已提交
353 354
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
355

356
	if (needs_clflush &&
357
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359
		drm_clflush_sg(pages);
360

361
	__start_cpu_write(obj);
362 363 364 365 366 367
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
368
	__i915_gem_object_release_shmem(obj, pages, false);
369

C
Chris Wilson 已提交
370
	if (obj->mm.dirty) {
371
		struct address_space *mapping = obj->base.filp->f_mapping;
372
		char *vaddr = obj->phys_handle->vaddr;
373 374 375
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 377 378 379 380 381 382 383 384 385 386 387 388
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
389
			if (obj->mm.madv == I915_MADV_WILLNEED)
390
				mark_page_accessed(page);
391
			put_page(page);
392 393
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
394
		obj->mm.dirty = false;
395 396
	}

397 398
	sg_free_table(pages);
	kfree(pages);
399 400

	drm_pci_free(obj->base.dev, obj->phys_handle);
401 402 403 404 405
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
406
	i915_gem_object_unpin_pages(obj);
407 408 409 410 411 412 413 414
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

415 416
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

417
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 419 420
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
421 422 423
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
424

425 426 427 428
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
429
	 */
430
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 432 433
	if (ret)
		return ret;

434 435 436 437 438 439 440 441 442 443 444 445 446
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

447 448 449 450
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
451
			   struct intel_rps_client *rps_client)
452
{
453
	struct i915_request *rq;
454

455
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456

457 458 459 460 461 462 463 464 465
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
466
	if (i915_request_completed(rq))
467 468
		goto out;

469 470
	/*
	 * This client is about to stall waiting for the GPU. In many cases
471 472 473 474 475 476 477 478 479 480 481 482 483 484
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
485
	if (rps_client && !i915_request_started(rq)) {
486
		if (INTEL_GEN(rq->i915) >= 6)
487
			gen6_rps_boost(rq, rps_client);
488 489
	}

490
	timeout = i915_request_wait(rq, flags, timeout);
491 492

out:
493 494
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
495 496 497 498 499 500 501 502

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
503
				 struct intel_rps_client *rps_client)
504
{
505
	unsigned int seq = __read_seqcount_begin(&resv->seq);
506
	struct dma_fence *excl;
507
	bool prune_fences = false;
508 509 510 511

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
512 513
		int ret;

514 515
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
516 517 518
		if (ret)
			return ret;

519 520 521
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
522
							     rps_client);
523
			if (timeout < 0)
524
				break;
525

526 527 528 529 530 531
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
532

533 534 535 536 537 538 539 540 541
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
542
		prune_fences = count && timeout >= 0;
543 544
	} else {
		excl = reservation_object_get_excl_rcu(resv);
545 546
	}

547
	if (excl && timeout >= 0)
548 549
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
550 551 552

	dma_fence_put(excl);

553 554
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
555 556 557
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
558
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 560 561 562 563
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
564 565
	}

566
	return timeout;
567 568
}

569 570
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
571
{
572
	struct i915_request *rq;
573 574
	struct intel_engine_cs *engine;

575
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 577 578 579 580
		return;

	rq = to_request(fence);
	engine = rq->engine;

581 582
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
583
	if (engine->schedule)
584
		engine->schedule(rq, attr);
585
	rcu_read_unlock();
586
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
587 588
}

589 590
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
591 592 593 594 595 596 597
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
598
			__fence_set_priority(array->fences[i], attr);
599
	} else {
600
		__fence_set_priority(fence, attr);
601 602 603 604 605 606
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
607
			      const struct i915_sched_attr *attr)
608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
622
			fence_set_priority(shared[i], attr);
623 624 625 626 627 628 629 630 631
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
632
		fence_set_priority(excl, attr);
633 634 635 636 637
		dma_fence_put(excl);
	}
	return 0;
}

638 639 640 641 642
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
643
 * @rps_client: client (user process) to charge for any waitboosting
644
 */
645 646 647 648
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
649
		     struct intel_rps_client *rps_client)
650
{
651 652 653 654 655 656 657
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
658

659 660
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
661
						   rps_client);
662
	return timeout < 0 ? timeout : 0;
663 664 665 666 667 668
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

669
	return &fpriv->rps_client;
670 671
}

672 673 674
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
675
		     struct drm_file *file)
676 677
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
678
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
679 680 681 682

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
683
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
684 685
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
686

687
	drm_clflush_virt_range(vaddr, args->size);
688
	i915_gem_chipset_flush(to_i915(obj->base.dev));
689

690
	intel_fb_obj_flush(obj, ORIGIN_CPU);
691
	return 0;
692 693
}

694
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
695
{
696
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
697 698 699 700
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
701
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
702
	kmem_cache_free(dev_priv->objects, obj);
703 704
}

705 706
static int
i915_gem_create(struct drm_file *file,
707
		struct drm_i915_private *dev_priv,
708 709
		uint64_t size,
		uint32_t *handle_p)
710
{
711
	struct drm_i915_gem_object *obj;
712 713
	int ret;
	u32 handle;
714

715
	size = roundup(size, PAGE_SIZE);
716 717
	if (size == 0)
		return -EINVAL;
718 719

	/* Allocate the new object */
720
	obj = i915_gem_object_create(dev_priv, size);
721 722
	if (IS_ERR(obj))
		return PTR_ERR(obj);
723

724
	ret = drm_gem_handle_create(file, &obj->base, &handle);
725
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
726
	i915_gem_object_put(obj);
727 728
	if (ret)
		return ret;
729

730
	*handle_p = handle;
731 732 733
	return 0;
}

734 735 736 737 738 739
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
740
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
741
	args->size = args->pitch * args->height;
742
	return i915_gem_create(file, to_i915(dev),
743
			       args->size, &args->handle);
744 745
}

746 747 748 749 750 751
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

752 753
/**
 * Creates a new mm object and returns a handle to it.
754 755 756
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
757 758 759 760 761
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
762
	struct drm_i915_private *dev_priv = to_i915(dev);
763
	struct drm_i915_gem_create *args = data;
764

765
	i915_gem_flush_free_objects(dev_priv);
766

767
	return i915_gem_create(file, dev_priv,
768
			       args->size, &args->handle);
769 770
}

771 772 773 774 775 776 777
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

778
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
779
{
780 781 782 783 784
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
785 786 787 788 789 790 791 792 793 794
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
795 796
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
797
	 */
798

799 800
	wmb();

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

816
	if (!(obj->write_domain & flush_domains))
817 818
		return;

819
	switch (obj->write_domain) {
820
	case I915_GEM_DOMAIN_GTT:
821
		i915_gem_flush_ggtt_writes(dev_priv);
822 823 824

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
825

826
		for_each_ggtt_vma(vma, obj) {
827 828 829 830 831
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
832 833 834 835 836
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
837 838 839 840 841

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
842 843
	}

844
	obj->write_domain = 0;
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

873
static inline int
874 875
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

899 900 901 902 903 904
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
905
				    unsigned int *needs_clflush)
906 907 908
{
	int ret;

909
	lockdep_assert_held(&obj->base.dev->struct_mutex);
910

911
	*needs_clflush = 0;
912 913
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
914

915 916 917 918 919
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
920 921 922
	if (ret)
		return ret;

C
Chris Wilson 已提交
923
	ret = i915_gem_object_pin_pages(obj);
924 925 926
	if (ret)
		return ret;

927 928
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
929 930 931 932 933 934 935
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

936
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
937

938 939 940 941 942
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
943
	if (!obj->cache_dirty &&
944
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
945
		*needs_clflush = CLFLUSH_BEFORE;
946

947
out:
948
	/* return with the pages pinned */
949
	return 0;
950 951 952 953

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
954 955 956 957 958 959 960
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

961 962
	lockdep_assert_held(&obj->base.dev->struct_mutex);

963 964 965 966
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

967 968 969 970 971 972
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
973 974 975
	if (ret)
		return ret;

C
Chris Wilson 已提交
976
	ret = i915_gem_object_pin_pages(obj);
977 978 979
	if (ret)
		return ret;

980 981
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
982 983 984 985 986 987 988
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

989
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
990

991 992 993 994 995
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
996
	if (!obj->cache_dirty) {
997
		*needs_clflush |= CLFLUSH_AFTER;
998

999 1000 1001 1002
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1003
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1004 1005
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1006

1007
out:
1008
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1009
	obj->mm.dirty = true;
1010
	/* return with the pages pinned */
1011
	return 0;
1012 1013 1014 1015

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1016 1017
}

1018 1019 1020 1021
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1022
	if (unlikely(swizzled)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1040 1041 1042
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1043
shmem_pread_slow(struct page *page, int offset, int length,
1044 1045 1046 1047 1048 1049 1050 1051
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1052
		shmem_clflush_swizzled_range(vaddr + offset, length,
1053
					     page_do_bit17_swizzling);
1054 1055

	if (page_do_bit17_swizzling)
1056
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1057
	else
1058
		ret = __copy_to_user(user_data, vaddr + offset, length);
1059 1060
	kunmap(page);

1061
	return ret ? - EFAULT : 0;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1140
{
1141
	void __iomem *vaddr;
1142
	unsigned long unwritten;
1143 1144

	/* We can use the cpu mem copy function because this is X86. */
1145 1146 1147 1148
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1149 1150
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1151 1152 1153 1154
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1155 1156
		io_mapping_unmap(vaddr);
	}
1157 1158 1159 1160
	return unwritten;
}

static int
1161 1162
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1163
{
1164 1165
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1166
	struct drm_mm_node node;
1167 1168 1169
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1170 1171
	int ret;

1172 1173 1174 1175 1176 1177
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1178 1179 1180
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1181 1182 1183
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1184
		ret = i915_vma_put_fence(vma);
1185 1186 1187 1188 1189
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1190
	if (IS_ERR(vma)) {
1191
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1192
		if (ret)
1193 1194
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1195 1196 1197 1198 1199 1200
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1201
	mutex_unlock(&i915->drm.struct_mutex);
1202

1203 1204 1205
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1222
					       node.start, I915_CACHE_NONE, 0);
1223 1224 1225 1226
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1227

1228
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1229
				  user_data, page_length)) {
1230 1231 1232 1233 1234 1235 1236 1237 1238
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1239
	mutex_lock(&i915->drm.struct_mutex);
1240 1241 1242 1243
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1244
				       node.start, node.size);
1245 1246
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1247
		i915_vma_unpin(vma);
1248
	}
1249 1250 1251
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1252

1253 1254 1255
	return ret;
}

1256 1257
/**
 * Reads data from the object referenced by handle.
1258 1259 1260
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1261 1262 1263 1264 1265
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1266
		     struct drm_file *file)
1267 1268
{
	struct drm_i915_gem_pread *args = data;
1269
	struct drm_i915_gem_object *obj;
1270
	int ret;
1271

1272 1273 1274 1275
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1276
		       u64_to_user_ptr(args->data_ptr),
1277 1278 1279
		       args->size))
		return -EFAULT;

1280
	obj = i915_gem_object_lookup(file, args->handle);
1281 1282
	if (!obj)
		return -ENOENT;
1283

1284
	/* Bounds check source.  */
1285
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1286
		ret = -EINVAL;
1287
		goto out;
C
Chris Wilson 已提交
1288 1289
	}

C
Chris Wilson 已提交
1290 1291
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1292 1293 1294 1295
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1296
	if (ret)
1297
		goto out;
1298

1299
	ret = i915_gem_object_pin_pages(obj);
1300
	if (ret)
1301
		goto out;
1302

1303
	ret = i915_gem_shmem_pread(obj, args);
1304
	if (ret == -EFAULT || ret == -ENODEV)
1305
		ret = i915_gem_gtt_pread(obj, args);
1306

1307 1308
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1309
	i915_gem_object_put(obj);
1310
	return ret;
1311 1312
}

1313 1314
/* This is the fast write path which cannot handle
 * page faults in the source data
1315
 */
1316

1317 1318 1319 1320
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1321
{
1322
	void __iomem *vaddr;
1323
	unsigned long unwritten;
1324

1325
	/* We can use the cpu mem copy function because this is X86. */
1326 1327
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1328
						      user_data, length);
1329 1330
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1331 1332 1333
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1334 1335
		io_mapping_unmap(vaddr);
	}
1336 1337 1338 1339

	return unwritten;
}

1340 1341 1342
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1343
 * @obj: i915 GEM object
1344
 * @args: pwrite arguments structure
1345
 */
1346
static int
1347 1348
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1349
{
1350
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1351 1352
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1353 1354 1355
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1356
	int ret;
1357

1358 1359 1360
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1379
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1380 1381 1382
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1383 1384 1385
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1386
		ret = i915_vma_put_fence(vma);
1387 1388 1389 1390 1391
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1392
	if (IS_ERR(vma)) {
1393
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1394
		if (ret)
1395
			goto out_rpm;
1396
		GEM_BUG_ON(!node.allocated);
1397
	}
D
Daniel Vetter 已提交
1398 1399 1400 1401 1402

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1403 1404
	mutex_unlock(&i915->drm.struct_mutex);

1405
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1406

1407 1408 1409 1410
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1411 1412
		/* Operation in this page
		 *
1413 1414 1415
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1416
		 */
1417
		u32 page_base = node.start;
1418 1419
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1430
		/* If we get a fault while copying data, then (presumably) our
1431 1432
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1433 1434
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1435
		 */
1436
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1437 1438 1439
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1440
		}
1441

1442 1443 1444
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1445
	}
1446
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 1448

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1449
out_unpin:
1450 1451 1452
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1453
				       node.start, node.size);
1454 1455
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1456
		i915_vma_unpin(vma);
1457
	}
1458
out_rpm:
1459
	intel_runtime_pm_put(i915);
1460
out_unlock:
1461
	mutex_unlock(&i915->drm.struct_mutex);
1462
	return ret;
1463 1464
}

1465
static int
1466
shmem_pwrite_slow(struct page *page, int offset, int length,
1467 1468 1469 1470
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1471
{
1472 1473
	char *vaddr;
	int ret;
1474

1475
	vaddr = kmap(page);
1476
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1477
		shmem_clflush_swizzled_range(vaddr + offset, length,
1478
					     page_do_bit17_swizzling);
1479
	if (page_do_bit17_swizzling)
1480 1481
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1482
	else
1483
		ret = __copy_from_user(vaddr + offset, user_data, length);
1484
	if (needs_clflush_after)
1485
		shmem_clflush_swizzled_range(vaddr + offset, length,
1486
					     page_do_bit17_swizzling);
1487
	kunmap(page);
1488

1489
	return ret ? -EFAULT : 0;
1490 1491
}

1492 1493 1494 1495 1496
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1497
static int
1498 1499 1500 1501
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1502
{
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1535
	unsigned int needs_clflush;
1536 1537
	unsigned int offset, idx;
	int ret;
1538

1539
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1540 1541 1542
	if (ret)
		return ret;

1543 1544 1545 1546
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1547

1548 1549 1550
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1551

1552 1553 1554 1555 1556 1557 1558
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1559

1560 1561 1562 1563 1564 1565
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1566

1567 1568 1569
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1570

1571 1572 1573 1574
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1575
		if (ret)
1576
			break;
1577

1578 1579 1580
		remain -= length;
		user_data += length;
		offset = 0;
1581
	}
1582

1583
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584
	i915_gem_obj_finish_shmem_access(obj);
1585
	return ret;
1586 1587 1588 1589
}

/**
 * Writes data to the object referenced by handle.
1590 1591 1592
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1593 1594 1595 1596 1597
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598
		      struct drm_file *file)
1599 1600
{
	struct drm_i915_gem_pwrite *args = data;
1601
	struct drm_i915_gem_object *obj;
1602 1603 1604 1605 1606 1607
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1608
		       u64_to_user_ptr(args->data_ptr),
1609 1610 1611
		       args->size))
		return -EFAULT;

1612
	obj = i915_gem_object_lookup(file, args->handle);
1613 1614
	if (!obj)
		return -ENOENT;
1615

1616
	/* Bounds check destination. */
1617
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1618
		ret = -EINVAL;
1619
		goto err;
C
Chris Wilson 已提交
1620 1621
	}

C
Chris Wilson 已提交
1622 1623
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1624 1625 1626 1627 1628 1629
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1630 1631 1632 1633 1634
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1635 1636 1637
	if (ret)
		goto err;

1638
	ret = i915_gem_object_pin_pages(obj);
1639
	if (ret)
1640
		goto err;
1641

D
Daniel Vetter 已提交
1642
	ret = -EFAULT;
1643 1644 1645 1646 1647 1648
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1649
	if (!i915_gem_object_has_struct_page(obj) ||
1650
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1651 1652
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1653 1654
		 * textures). Fallback to the shmem path in that case.
		 */
1655
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1656

1657
	if (ret == -EFAULT || ret == -ENOSPC) {
1658 1659
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1660
		else
1661
			ret = i915_gem_shmem_pwrite(obj, args);
1662
	}
1663

1664
	i915_gem_object_unpin_pages(obj);
1665
err:
C
Chris Wilson 已提交
1666
	i915_gem_object_put(obj);
1667
	return ret;
1668 1669
}

1670 1671 1672 1673 1674 1675
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1676 1677
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1678
	for_each_ggtt_vma(vma, obj) {
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1689
	spin_lock(&i915->mm.obj_lock);
1690
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1691 1692
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1693 1694
}

1695
/**
1696 1697
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1698 1699 1700
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1701 1702 1703
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1704
			  struct drm_file *file)
1705 1706
{
	struct drm_i915_gem_set_domain *args = data;
1707
	struct drm_i915_gem_object *obj;
1708 1709
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1710
	int err;
1711

1712
	/* Only handle setting domains to types used by the CPU. */
1713
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1714 1715 1716 1717 1718 1719 1720 1721
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1722
	obj = i915_gem_object_lookup(file, args->handle);
1723 1724
	if (!obj)
		return -ENOENT;
1725

1726 1727 1728 1729
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1730
	err = i915_gem_object_wait(obj,
1731 1732 1733 1734
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1735
	if (err)
C
Chris Wilson 已提交
1736
		goto out;
1737

T
Tina Zhang 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1751 1752 1753 1754 1755 1756 1757 1758 1759
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1760
		goto out;
1761 1762 1763

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1764
		goto out_unpin;
1765

1766 1767 1768 1769
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1770
	else
1771
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1772

1773 1774
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1775

1776
	mutex_unlock(&dev->struct_mutex);
1777

1778
	if (write_domain != 0)
1779 1780
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1781

C
Chris Wilson 已提交
1782
out_unpin:
1783
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1784 1785
out:
	i915_gem_object_put(obj);
1786
	return err;
1787 1788 1789 1790
}

/**
 * Called when user space has done writes to this buffer
1791 1792 1793
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1794 1795 1796
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1797
			 struct drm_file *file)
1798 1799
{
	struct drm_i915_gem_sw_finish *args = data;
1800
	struct drm_i915_gem_object *obj;
1801

1802
	obj = i915_gem_object_lookup(file, args->handle);
1803 1804
	if (!obj)
		return -ENOENT;
1805

T
Tina Zhang 已提交
1806 1807 1808 1809 1810
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1811
	/* Pinned buffers may be scanout, so flush the cache */
1812
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1813
	i915_gem_object_put(obj);
1814 1815

	return 0;
1816 1817 1818
}

/**
1819 1820 1821 1822 1823
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1824 1825 1826
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1837 1838 1839
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1840
		    struct drm_file *file)
1841 1842
{
	struct drm_i915_gem_mmap *args = data;
1843
	struct drm_i915_gem_object *obj;
1844 1845
	unsigned long addr;

1846 1847 1848
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1849
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1850 1851
		return -ENODEV;

1852 1853
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1854
		return -ENOENT;
1855

1856 1857 1858
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1859
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1860
		i915_gem_object_put(obj);
1861
		return -ENXIO;
1862 1863
	}

1864
	addr = vm_mmap(obj->base.filp, 0, args->size,
1865 1866
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1867 1868 1869 1870
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1871
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1872
			i915_gem_object_put(obj);
1873 1874
			return -EINTR;
		}
1875 1876 1877 1878 1879 1880 1881
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1882 1883

		/* This may race, but that's ok, it only gets set */
1884
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1885
	}
C
Chris Wilson 已提交
1886
	i915_gem_object_put(obj);
1887 1888 1889 1890 1891 1892 1893 1894
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1895 1896
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1897
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1920 1921 1922
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1950
	return 2;
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1964 1965
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1966
		min_t(unsigned int, chunk,
1967
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1968 1969 1970 1971 1972 1973 1974 1975

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1976 1977
/**
 * i915_gem_fault - fault a page into the GTT
1978
 * @vmf: fault info
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1990 1991 1992
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1993
 */
1994
int i915_gem_fault(struct vm_fault *vmf)
1995
{
1996
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1997
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1998
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1999
	struct drm_device *dev = obj->base.dev;
2000 2001
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2002
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2003
	struct i915_vma *vma;
2004
	pgoff_t page_offset;
2005
	unsigned int flags;
2006
	int ret;
2007

2008
	/* We don't use vmf->pgoff since that has the fake offset */
2009
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2010

C
Chris Wilson 已提交
2011 2012
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2013
	/* Try to flush the object off the GPU first without holding the lock.
2014
	 * Upon acquiring the lock, we will perform our sanity checks and then
2015 2016 2017
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2018 2019 2020 2021
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2022
	if (ret)
2023 2024
		goto err;

2025 2026 2027 2028
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2029 2030 2031 2032 2033
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2034

2035
	/* Access to snoopable pages through the GTT is incoherent. */
2036
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2037
		ret = -EFAULT;
2038
		goto err_unlock;
2039 2040
	}

2041 2042 2043 2044 2045 2046 2047 2048
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2049
	/* Now pin it into the GTT as needed */
2050
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2051 2052
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2053
		struct i915_ggtt_view view =
2054
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2055

2056 2057 2058 2059 2060
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2061 2062
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2063 2064
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2065
		goto err_unlock;
C
Chris Wilson 已提交
2066
	}
2067

2068 2069
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2070
		goto err_unpin;
2071

2072
	ret = i915_vma_pin_fence(vma);
2073
	if (ret)
2074
		goto err_unpin;
2075

2076
	/* Finally, remap it using the new GTT offset */
2077
	ret = remap_io_mapping(area,
2078
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2079
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2080
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2081
			       &ggtt->iomap);
2082 2083
	if (ret)
		goto err_fence;
2084

2085 2086 2087 2088 2089 2090
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2091 2092
	i915_vma_set_ggtt_write(vma);

2093
err_fence:
2094
	i915_vma_unpin_fence(vma);
2095
err_unpin:
C
Chris Wilson 已提交
2096
	__i915_vma_unpin(vma);
2097
err_unlock:
2098
	mutex_unlock(&dev->struct_mutex);
2099 2100
err_rpm:
	intel_runtime_pm_put(dev_priv);
2101
	i915_gem_object_unpin_pages(obj);
2102
err:
2103
	switch (ret) {
2104
	case -EIO:
2105 2106 2107 2108 2109 2110 2111
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2112 2113 2114
			ret = VM_FAULT_SIGBUS;
			break;
		}
2115
	case -EAGAIN:
D
Daniel Vetter 已提交
2116 2117 2118 2119
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2120
		 */
2121 2122
	case 0:
	case -ERESTARTSYS:
2123
	case -EINTR:
2124 2125 2126 2127 2128
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2129 2130
		ret = VM_FAULT_NOPAGE;
		break;
2131
	case -ENOMEM:
2132 2133
		ret = VM_FAULT_OOM;
		break;
2134
	case -ENOSPC:
2135
	case -EFAULT:
2136 2137
		ret = VM_FAULT_SIGBUS;
		break;
2138
	default:
2139
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2140 2141
		ret = VM_FAULT_SIGBUS;
		break;
2142
	}
2143
	return ret;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2157
	for_each_ggtt_vma(vma, obj)
2158 2159 2160
		i915_vma_unset_userfault(vma);
}

2161 2162 2163 2164
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2165
 * Preserve the reservation of the mmapping with the DRM core code, but
2166 2167 2168 2169 2170 2171 2172 2173 2174
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2175
void
2176
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2177
{
2178 2179
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2180 2181 2182
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2183 2184 2185 2186
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2187
	 */
2188
	lockdep_assert_held(&i915->drm.struct_mutex);
2189
	intel_runtime_pm_get(i915);
2190

2191
	if (!obj->userfault_count)
2192
		goto out;
2193

2194
	__i915_gem_object_release_mmap(obj);
2195 2196 2197 2198 2199 2200 2201 2202 2203

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2204 2205 2206

out:
	intel_runtime_pm_put(i915);
2207 2208
}

2209
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2210
{
2211
	struct drm_i915_gem_object *obj, *on;
2212
	int i;
2213

2214 2215 2216 2217 2218 2219
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2220

2221
	list_for_each_entry_safe(obj, on,
2222 2223
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2224 2225 2226 2227 2228 2229 2230 2231

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2242 2243 2244 2245

		if (!reg->vma)
			continue;

2246
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2247 2248
		reg->dirty = true;
	}
2249 2250
}

2251 2252
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2253
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2254
	int err;
2255

2256
	err = drm_gem_create_mmap_offset(&obj->base);
2257
	if (likely(!err))
2258
		return 0;
2259

2260 2261 2262 2263 2264
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2265

2266
		i915_gem_drain_freed_objects(dev_priv);
2267
		err = drm_gem_create_mmap_offset(&obj->base);
2268 2269 2270 2271
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2272

2273
	return err;
2274 2275 2276 2277 2278 2279 2280
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2281
int
2282 2283
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2284
		  uint32_t handle,
2285
		  uint64_t *offset)
2286
{
2287
	struct drm_i915_gem_object *obj;
2288 2289
	int ret;

2290
	obj = i915_gem_object_lookup(file, handle);
2291 2292
	if (!obj)
		return -ENOENT;
2293

2294
	ret = i915_gem_object_create_mmap_offset(obj);
2295 2296
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2297

C
Chris Wilson 已提交
2298
	i915_gem_object_put(obj);
2299
	return ret;
2300 2301
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2323
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 2325
}

D
Daniel Vetter 已提交
2326 2327 2328
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329
{
2330
	i915_gem_object_free_mmap_offset(obj);
2331

2332 2333
	if (obj->base.filp == NULL)
		return;
2334

D
Daniel Vetter 已提交
2335 2336 2337 2338 2339
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2340
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2341
	obj->mm.madv = __I915_MADV_PURGED;
2342
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2343
}
2344

2345
/* Try to discard unwanted pages */
2346
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2347
{
2348 2349
	struct address_space *mapping;

2350
	lockdep_assert_held(&obj->mm.lock);
2351
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2352

C
Chris Wilson 已提交
2353
	switch (obj->mm.madv) {
2354 2355 2356 2357 2358 2359 2360 2361 2362
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2363
	mapping = obj->base.filp->f_mapping,
2364
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2365 2366
}

2367
static void
2368 2369
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2370
{
2371 2372
	struct sgt_iter sgt_iter;
	struct page *page;
2373

2374
	__i915_gem_object_release_shmem(obj, pages, true);
2375

2376
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2377

2378
	if (i915_gem_object_needs_bit17_swizzle(obj))
2379
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2380

2381
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2382
		if (obj->mm.dirty)
2383
			set_page_dirty(page);
2384

C
Chris Wilson 已提交
2385
		if (obj->mm.madv == I915_MADV_WILLNEED)
2386
			mark_page_accessed(page);
2387

2388
		put_page(page);
2389
	}
C
Chris Wilson 已提交
2390
	obj->mm.dirty = false;
2391

2392 2393
	sg_free_table(pages);
	kfree(pages);
2394
}
C
Chris Wilson 已提交
2395

2396 2397 2398
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2399
	void __rcu **slot;
2400

2401
	rcu_read_lock();
C
Chris Wilson 已提交
2402 2403
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2404
	rcu_read_unlock();
2405 2406
}

2407 2408
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2409
{
2410
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2411
	struct sg_table *pages;
2412

C
Chris Wilson 已提交
2413
	if (i915_gem_object_has_pinned_pages(obj))
2414
		return;
2415

2416
	GEM_BUG_ON(obj->bind_count);
2417
	if (!i915_gem_object_has_pages(obj))
2418 2419 2420
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2421
	mutex_lock_nested(&obj->mm.lock, subclass);
2422 2423
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2424

2425 2426 2427
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2428 2429
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2430

2431 2432 2433 2434
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2435
	if (obj->mm.mapping) {
2436 2437
		void *ptr;

2438
		ptr = page_mask_bits(obj->mm.mapping);
2439 2440
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2441
		else
2442 2443
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2444
		obj->mm.mapping = NULL;
2445 2446
	}

2447 2448
	__i915_gem_object_reset_page_iter(obj);

2449 2450 2451
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2452 2453
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2454 2455
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2456 2457
}

2458
static bool i915_sg_trim(struct sg_table *orig_st)
2459 2460 2461 2462 2463 2464
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2465
		return false;
2466

2467
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2468
		return false;
2469 2470 2471 2472 2473 2474 2475

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2476
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2477 2478 2479 2480

	sg_free_table(orig_st);

	*orig_st = new_st;
2481
	return true;
2482 2483
}

2484
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485
{
2486
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 2488
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2489
	struct address_space *mapping;
2490 2491
	struct sg_table *st;
	struct scatterlist *sg;
2492
	struct sgt_iter sgt_iter;
2493
	struct page *page;
2494
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2495
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2496
	unsigned int sg_page_sizes;
2497
	gfp_t noreclaim;
I
Imre Deak 已提交
2498
	int ret;
2499

C
Chris Wilson 已提交
2500 2501 2502 2503
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2504 2505
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2506

2507 2508
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2509
		return -ENOMEM;
2510

2511
rebuild_st:
2512 2513
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2514
		return -ENOMEM;
2515
	}
2516

2517 2518 2519 2520 2521
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2522
	mapping = obj->base.filp->f_mapping;
2523
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2524 2525
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2526 2527
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2528
	sg_page_sizes = 0;
2529
	for (i = 0; i < page_count; i++) {
2530 2531 2532 2533 2534 2535 2536
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2537
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2538 2539 2540 2541 2542 2543 2544 2545
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2546
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2547
			cond_resched();
2548

C
Chris Wilson 已提交
2549 2550 2551
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2552 2553 2554 2555
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2556
			 */
2557 2558 2559
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2572
				 * this we want __GFP_RETRY_MAYFAIL.
2573
				 */
M
Michal Hocko 已提交
2574
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2575
			}
2576 2577
		} while (1);

2578 2579 2580
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2581
			if (i) {
M
Matthew Auld 已提交
2582
				sg_page_sizes |= sg->length;
2583
				sg = sg_next(sg);
2584
			}
2585 2586 2587 2588 2589 2590
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2591 2592 2593

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2594
	}
2595
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2596
		sg_page_sizes |= sg->length;
2597
		sg_mark_end(sg);
2598
	}
2599

2600 2601 2602
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2603
	ret = i915_gem_gtt_prepare_pages(obj, st);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2623

2624
	if (i915_gem_object_needs_bit17_swizzle(obj))
2625
		i915_gem_object_do_bit_17_swizzle(obj, st);
2626

M
Matthew Auld 已提交
2627
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2628 2629

	return 0;
2630

2631
err_sg:
2632
	sg_mark_end(sg);
2633
err_pages:
2634 2635
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2636 2637
	sg_free_table(st);
	kfree(st);
2638 2639 2640 2641 2642 2643 2644 2645 2646

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2647 2648 2649
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2650
	return ret;
2651 2652 2653
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2654
				 struct sg_table *pages,
M
Matthew Auld 已提交
2655
				 unsigned int sg_page_sizes)
2656
{
2657 2658 2659 2660
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2661
	lockdep_assert_held(&obj->mm.lock);
2662 2663 2664 2665 2666

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2667 2668

	if (i915_gem_object_is_tiled(obj) &&
2669
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2670 2671 2672 2673
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2674

M
Matthew Auld 已提交
2675 2676
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2677 2678

	/*
M
Matthew Auld 已提交
2679 2680 2681 2682 2683 2684
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2685 2686 2687 2688 2689 2690 2691
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2692 2693 2694 2695

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2696 2697 2698 2699
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2700
	int err;
2701 2702 2703 2704 2705 2706

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2707
	err = obj->ops->get_pages(obj);
2708
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2709

2710
	return err;
2711 2712
}

2713
/* Ensure that the associated pages are gathered from the backing storage
2714
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2715
 * multiple times before they are released by a single call to
2716
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717 2718 2719
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2720
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721
{
2722
	int err;
2723

2724 2725 2726
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2727

2728
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2729 2730
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2731 2732 2733
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2734

2735 2736 2737
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2738

2739 2740
unlock:
	mutex_unlock(&obj->mm.lock);
2741
	return err;
2742 2743
}

2744
/* The 'mapping' part of i915_gem_object_pin_map() below */
2745 2746
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2747 2748
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2749
	struct sg_table *sgt = obj->mm.pages;
2750 2751
	struct sgt_iter sgt_iter;
	struct page *page;
2752 2753
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2754
	unsigned long i = 0;
2755
	pgprot_t pgprot;
2756 2757 2758
	void *addr;

	/* A single page can always be kmapped */
2759
	if (n_pages == 1 && type == I915_MAP_WB)
2760 2761
		return kmap(sg_page(sgt->sgl));

2762 2763
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2764
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2765 2766 2767
		if (!pages)
			return NULL;
	}
2768

2769 2770
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2771 2772 2773 2774

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2775
	switch (type) {
2776 2777 2778
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2779 2780 2781 2782 2783 2784 2785 2786
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2787

2788
	if (pages != stack_pages)
M
Michal Hocko 已提交
2789
		kvfree(pages);
2790 2791 2792 2793 2794

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2795 2796
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2797
{
2798 2799 2800
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2801 2802
	int ret;

T
Tina Zhang 已提交
2803 2804
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2805

2806
	ret = mutex_lock_interruptible(&obj->mm.lock);
2807 2808 2809
	if (ret)
		return ERR_PTR(ret);

2810 2811 2812
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2813
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2814
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2815 2816
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2817 2818 2819
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2820

2821 2822 2823
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2824 2825
		pinned = false;
	}
2826
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2827

2828
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2829 2830 2831
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2832
			goto err_unpin;
2833
		}
2834 2835 2836 2837 2838 2839

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2840
		ptr = obj->mm.mapping = NULL;
2841 2842
	}

2843 2844 2845 2846
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2847
			goto err_unpin;
2848 2849
		}

2850
		obj->mm.mapping = page_pack_bits(ptr, type);
2851 2852
	}

2853 2854
out_unlock:
	mutex_unlock(&obj->mm.lock);
2855 2856
	return ptr;

2857 2858 2859 2860 2861
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2862 2863
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2881
	if (i915_gem_object_has_pages(obj))
2882 2883
		return -ENODEV;

2884 2885 2886
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2936
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2937
{
2938
	bool banned;
2939

2940
	atomic_inc(&ctx->guilty_count);
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2953
	if (!banned)
2954 2955
		return;

2956 2957 2958 2959 2960 2961
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2962 2963 2964 2965
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2966
	atomic_inc(&ctx->active_count);
2967 2968
}

2969
struct i915_request *
2970
i915_gem_find_active_request(struct intel_engine_cs *engine)
2971
{
2972
	struct i915_request *request, *active = NULL;
2973
	unsigned long flags;
2974

2975 2976 2977 2978 2979 2980 2981 2982
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2983 2984
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2985
		if (__i915_request_completed(request, request->global_seqno))
2986
			continue;
2987

2988
		GEM_BUG_ON(request->engine != engine);
2989 2990
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2991 2992 2993

		active = request;
		break;
2994
	}
2995
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2996

2997
	return active;
2998 2999
}

3000 3001 3002 3003
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3004
struct i915_request *
3005 3006
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3007
	struct i915_request *request = NULL;
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

3030 3031
	/*
	 * Prevent request submission to the hardware until we have
3032 3033
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
3034
	 * to a second via its execlists->tasklet *just* as we are
3035
	 * calling engine->init_hw() and also writing the ELSP.
3036
	 * Turning off the execlists->tasklet until the reset is over
3037 3038
	 * prevents the race.
	 */
3039
	__tasklet_disable_sync_once(&engine->execlists.tasklet);
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

3051 3052 3053
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

3054 3055 3056
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3057 3058 3059 3060

	return request;
}

3061
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3062 3063
{
	struct intel_engine_cs *engine;
3064
	struct i915_request *request;
3065
	enum intel_engine_id id;
3066
	int err = 0;
3067

3068
	for_each_engine(engine, dev_priv, id) {
3069 3070 3071 3072
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3073
		}
3074 3075

		engine->hangcheck.active_request = request;
3076 3077
	}

3078
	i915_gem_revoke_fences(dev_priv);
3079
	intel_uc_sanitize(dev_priv);
3080 3081

	return err;
3082 3083
}

3084
static void skip_request(struct i915_request *request)
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3099 3100

	dma_fence_set_error(&request->fence, -EIO);
3101 3102
}

3103
static void engine_skip_context(struct i915_request *request)
3104 3105 3106
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
3107
	struct i915_timeline *timeline = request->timeline;
3108 3109
	unsigned long flags;

3110
	GEM_BUG_ON(timeline == &engine->timeline);
3111

3112
	spin_lock_irqsave(&engine->timeline.lock, flags);
3113
	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3114

3115
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3116 3117 3118 3119 3120 3121 3122
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
3123
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3124 3125
}

3126
/* Returns the request if it was guilty of the hang */
3127
static struct i915_request *
3128
i915_gem_reset_request(struct intel_engine_cs *engine,
3129 3130
		       struct i915_request *request,
		       bool stalled)
3131
{
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3153 3154 3155 3156 3157 3158 3159 3160 3161
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
3162 3163
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3164 3165 3166 3167

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3168
	} else {
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
3180
			spin_lock_irq(&engine->timeline.lock);
3181
			request = list_prev_entry(request, link);
3182
			if (&request->link == &engine->timeline.requests)
3183
				request = NULL;
3184
			spin_unlock_irq(&engine->timeline.lock);
3185
		}
3186 3187
	}

3188
	return request;
3189 3190
}

3191
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3192 3193
			   struct i915_request *request,
			   bool stalled)
3194
{
3195 3196 3197 3198 3199 3200
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3201

3202
	if (request)
3203
		request = i915_gem_reset_request(engine, request, stalled);
3204 3205

	if (request) {
3206 3207 3208
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3209 3210 3211

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3212
}
3213

3214 3215
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3216
{
3217
	struct intel_engine_cs *engine;
3218
	enum intel_engine_id id;
3219

3220 3221
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3222
	i915_retire_requests(dev_priv);
3223

3224 3225 3226
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3227 3228
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3229
				      stalled_mask & ENGINE_MASK(id));
3230 3231
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
3232
			intel_context_unpin(ctx, engine);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3244
		if (intel_engine_is_idle(engine)) {
3245
			struct i915_request *rq;
3246

3247 3248
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3249
			if (!IS_ERR(rq))
3250
				__i915_request_add(rq, false);
3251
		}
3252
	}
3253

3254
	i915_gem_restore_fences(dev_priv);
3255 3256
}

3257 3258
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3259
	tasklet_enable(&engine->execlists.tasklet);
3260
	kthread_unpark(engine->breadcrumbs.signaler);
3261 3262

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3263 3264
}

3265 3266
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3267 3268 3269
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3270
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3271

3272
	for_each_engine(engine, dev_priv, id) {
3273
		engine->hangcheck.active_request = NULL;
3274
		i915_gem_reset_finish_engine(engine);
3275
	}
3276 3277
}

3278
static void nop_submit_request(struct i915_request *request)
3279
{
3280 3281 3282
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3283 3284
	dma_fence_set_error(&request->fence, -EIO);

3285
	i915_request_submit(request);
3286 3287
}

3288
static void nop_complete_submit_request(struct i915_request *request)
3289
{
3290 3291
	unsigned long flags;

3292 3293 3294
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3295
	dma_fence_set_error(&request->fence, -EIO);
3296

3297
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3298
	__i915_request_submit(request);
3299
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3300
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3301 3302
}

3303
void i915_gem_set_wedged(struct drm_i915_private *i915)
3304
{
3305 3306 3307
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3308 3309
	GEM_TRACE("start\n");

3310
	if (GEM_SHOW_DEBUG()) {
3311 3312 3313 3314 3315 3316
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3317 3318 3319
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3320 3321 3322 3323 3324
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3325 3326
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3327

3328
		engine->submit_request = nop_submit_request;
3329
		engine->schedule = NULL;
3330
	}
3331
	i915->caps.scheduler = 0;
3332

3333 3334 3335
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3336 3337 3338 3339
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3340
	 */
3341
	synchronize_rcu();
3342

3343 3344 3345
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3358
	 */
3359
	synchronize_rcu();
3360

3361 3362
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3363

3364 3365
		/*
		 * Mark all pending requests as complete so that any concurrent
3366 3367 3368
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3369
		spin_lock_irqsave(&engine->timeline.lock, flags);
3370 3371
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3372
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3373 3374

		i915_gem_reset_finish_engine(engine);
3375
	}
3376

3377 3378
	GEM_TRACE("end\n");

3379
	wake_up_all(&i915->gpu_error.reset_queue);
3380 3381
}

3382 3383
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3384
	struct i915_timeline *tl;
3385 3386 3387 3388 3389

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3390 3391
	GEM_TRACE("start\n");

3392 3393
	/*
	 * Before unwedging, make sure that all pending operations
3394 3395 3396 3397 3398 3399 3400 3401 3402
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3403
		struct i915_request *rq;
3404

3405 3406 3407 3408
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3424
	}
3425 3426
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3427

3428 3429
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3430 3431 3432 3433 3434 3435 3436 3437
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3438
	i915_gem_contexts_lost(i915);
3439

3440 3441
	GEM_TRACE("end\n");

3442 3443 3444 3445 3446 3447
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3448
static void
3449 3450
i915_gem_retire_work_handler(struct work_struct *work)
{
3451
	struct drm_i915_private *dev_priv =
3452
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3453
	struct drm_device *dev = &dev_priv->drm;
3454

3455
	/* Come back later if the device is busy... */
3456
	if (mutex_trylock(&dev->struct_mutex)) {
3457
		i915_retire_requests(dev_priv);
3458
		mutex_unlock(&dev->struct_mutex);
3459
	}
3460

3461 3462
	/*
	 * Keep the retire handler running until we are finally idle.
3463 3464 3465
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3466
	if (READ_ONCE(dev_priv->gt.awake))
3467 3468
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3469
				   round_jiffies_up_relative(HZ));
3470
}
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3531 3532 3533 3534 3535 3536 3537
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3538 3539 3540 3541
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3542
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3543
	unsigned int epoch = I915_EPOCH_INVALID;
3544 3545 3546 3547 3548
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3549 3550
	/*
	 * Wait for last execlists context complete, but bail out in case a
3551 3552 3553 3554 3555
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3556
	 */
3557 3558 3559 3560
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3561 3562 3563 3564

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3565
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3566 3567 3568 3569 3570 3571 3572
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3573 3574 3575 3576
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3577
	if (new_requests_since_last_retire(dev_priv))
3578
		goto out_unlock;
3579

3580
	epoch = __i915_gem_park(dev_priv);
3581

3582 3583
	rearm_hangcheck = false;
out_unlock:
3584
	mutex_unlock(&dev_priv->drm.struct_mutex);
3585

3586 3587 3588 3589
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3590
	}
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3608 3609
}

3610 3611
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3612
	struct drm_i915_private *i915 = to_i915(gem->dev);
3613 3614
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3615
	struct i915_lut_handle *lut, *ln;
3616

3617 3618 3619 3620 3621 3622
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3623
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3624 3625 3626 3627
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3628 3629 3630 3631 3632 3633 3634
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3635
			i915_vma_close(vma);
3636

3637 3638
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3639

3640 3641
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3642
	}
3643 3644

	mutex_unlock(&i915->drm.struct_mutex);
3645 3646
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3658 3659
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3660 3661 3662
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3663 3664 3665 3666 3667 3668 3669
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3670
 *  -EAGAIN: incomplete, restart syscall
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3687 3688
	ktime_t start;
	long ret;
3689

3690 3691 3692
	if (args->flags != 0)
		return -EINVAL;

3693
	obj = i915_gem_object_lookup(file, args->bo_handle);
3694
	if (!obj)
3695 3696
		return -ENOENT;

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3718 3719 3720 3721

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3722 3723
	}

C
Chris Wilson 已提交
3724
	i915_gem_object_put(obj);
3725
	return ret;
3726 3727
}

3728
static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3729
{
3730
	return i915_gem_active_wait(&tl->last_request, flags);
3731 3732
}

3733 3734
static int wait_for_engines(struct drm_i915_private *i915)
{
3735
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3736 3737
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3738
		GEM_TRACE_DUMP();
3739 3740
		i915_gem_set_wedged(i915);
		return -EIO;
3741 3742 3743 3744 3745
	}

	return 0;
}

3746 3747
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
3748 3749 3750 3751
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3752
	if (flags & I915_WAIT_LOCKED) {
3753 3754
		struct i915_timeline *tl;
		int err;
3755 3756 3757 3758

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3759 3760 3761
			err = wait_for_timeline(tl, flags);
			if (err)
				return err;
3762
		}
3763
		i915_retire_requests(i915);
3764

3765
		return wait_for_engines(i915);
3766
	} else {
3767 3768 3769
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
		int err;
3770

3771 3772 3773 3774 3775 3776 3777 3778
		for_each_engine(engine, i915, id) {
			err = wait_for_timeline(&engine->timeline, flags);
			if (err)
				return err;
		}

		return 0;
	}
3779 3780
}

3781 3782
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3783 3784 3785 3786 3787 3788 3789
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3790
	obj->write_domain = 0;
3791 3792 3793 3794
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3795
	if (!READ_ONCE(obj->pin_global))
3796 3797 3798 3799 3800 3801 3802
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3827
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3848
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3849 3850 3851 3852 3853
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3854 3855
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3856
	if (write) {
3857 3858
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3859 3860 3861 3862 3863 3864 3865
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3866 3867
/**
 * Moves a single object to the GTT read, and possibly write domain.
3868 3869
 * @obj: object to act on
 * @write: ask for write access or read only
3870 3871 3872 3873
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3874
int
3875
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3876
{
3877
	int ret;
3878

3879
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3880

3881 3882 3883 3884 3885 3886
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3887 3888 3889
	if (ret)
		return ret;

3890
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3891 3892
		return 0;

3893 3894 3895 3896 3897 3898 3899 3900
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3901
	ret = i915_gem_object_pin_pages(obj);
3902 3903 3904
	if (ret)
		return ret;

3905
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3906

3907 3908 3909 3910
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3911
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3912 3913
		mb();

3914 3915 3916
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3917 3918
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3919
	if (write) {
3920 3921
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3922
		obj->mm.dirty = true;
3923 3924
	}

C
Chris Wilson 已提交
3925
	i915_gem_object_unpin_pages(obj);
3926 3927 3928
	return 0;
}

3929 3930
/**
 * Changes the cache-level of an object across all VMA.
3931 3932
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3944 3945 3946
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3947
	struct i915_vma *vma;
3948
	int ret;
3949

3950 3951
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3952
	if (obj->cache_level == cache_level)
3953
		return 0;
3954

3955 3956 3957 3958 3959
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3960 3961
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3962 3963 3964
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3965
		if (i915_vma_is_pinned(vma)) {
3966 3967 3968 3969
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3970 3971
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3983 3984
	}

3985 3986 3987 3988 3989 3990 3991
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3992
	if (obj->bind_count) {
3993 3994 3995 3996
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3997 3998 3999 4000 4001 4002
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4003 4004 4005
		if (ret)
			return ret;

4006 4007
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4024
			for_each_ggtt_vma(vma, obj) {
4025 4026 4027 4028
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4029 4030 4031 4032 4033 4034 4035 4036
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4037 4038
		}

4039
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4040 4041 4042 4043 4044 4045 4046
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4047 4048
	}

4049
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4050
		vma->node.color = cache_level;
4051
	i915_gem_object_set_cache_coherency(obj, cache_level);
4052
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4053

4054 4055 4056
	return 0;
}

B
Ben Widawsky 已提交
4057 4058
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4059
{
B
Ben Widawsky 已提交
4060
	struct drm_i915_gem_caching *args = data;
4061
	struct drm_i915_gem_object *obj;
4062
	int err = 0;
4063

4064 4065 4066 4067 4068 4069
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4070

4071 4072 4073 4074 4075 4076
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4077 4078 4079 4080
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4081 4082 4083 4084
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4085 4086 4087
out:
	rcu_read_unlock();
	return err;
4088 4089
}

B
Ben Widawsky 已提交
4090 4091
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4092
{
4093
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4094
	struct drm_i915_gem_caching *args = data;
4095 4096
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4097
	int ret = 0;
4098

B
Ben Widawsky 已提交
4099 4100
	switch (args->caching) {
	case I915_CACHING_NONE:
4101 4102
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4103
	case I915_CACHING_CACHED:
4104 4105 4106 4107 4108 4109
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4110
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4111 4112
			return -ENODEV;

4113 4114
		level = I915_CACHE_LLC;
		break;
4115
	case I915_CACHING_DISPLAY:
4116
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4117
		break;
4118 4119 4120 4121
	default:
		return -EINVAL;
	}

4122 4123 4124 4125
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4135 4136 4137 4138 4139 4140 4141
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4142
	if (ret)
4143
		goto out;
B
Ben Widawsky 已提交
4144

4145 4146 4147
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4148 4149 4150

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4151 4152 4153

out:
	i915_gem_object_put(obj);
4154 4155 4156
	return ret;
}

4157
/*
4158 4159 4160 4161
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4162
 */
C
Chris Wilson 已提交
4163
struct i915_vma *
4164 4165
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4166 4167
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4168
{
C
Chris Wilson 已提交
4169
	struct i915_vma *vma;
4170 4171
	int ret;

4172 4173
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4174
	/* Mark the global pin early so that we account for the
4175 4176
	 * display coherency whilst setting up the cache domains.
	 */
4177
	obj->pin_global++;
4178

4179 4180 4181 4182 4183 4184 4185 4186 4187
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4188
	ret = i915_gem_object_set_cache_level(obj,
4189 4190
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4191 4192
	if (ret) {
		vma = ERR_PTR(ret);
4193
		goto err_unpin_global;
C
Chris Wilson 已提交
4194
	}
4195

4196 4197
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4198 4199 4200 4201
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4202
	 */
4203
	vma = ERR_PTR(-ENOSPC);
4204 4205
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4206
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4207 4208 4209 4210
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4211
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4212
	if (IS_ERR(vma))
4213
		goto err_unpin_global;
4214

4215 4216
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4217
	__i915_gem_object_flush_for_display(obj);
4218

4219 4220 4221
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4222
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4223

C
Chris Wilson 已提交
4224
	return vma;
4225

4226 4227
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4228
	return vma;
4229 4230 4231
}

void
C
Chris Wilson 已提交
4232
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4233
{
4234
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4235

4236
	if (WARN_ON(vma->obj->pin_global == 0))
4237 4238
		return;

4239
	if (--vma->obj->pin_global == 0)
4240
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4241

4242
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4243
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4244

C
Chris Wilson 已提交
4245
	i915_vma_unpin(vma);
4246 4247
}

4248 4249
/**
 * Moves a single object to the CPU read, and possibly write domain.
4250 4251
 * @obj: object to act on
 * @write: requesting write or read-only access
4252 4253 4254 4255
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4256
int
4257
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4258 4259 4260
{
	int ret;

4261
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4262

4263 4264 4265 4266 4267 4268
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4269 4270 4271
	if (ret)
		return ret;

4272
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4273

4274
	/* Flush the CPU cache if it's still invalid. */
4275
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4276
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4277
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4278 4279 4280 4281 4282
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4283
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4284 4285 4286 4287

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4288 4289
	if (write)
		__start_cpu_write(obj);
4290 4291 4292 4293

	return 0;
}

4294 4295 4296
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4297 4298 4299 4300
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4301 4302 4303
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4304
static int
4305
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4306
{
4307
	struct drm_i915_private *dev_priv = to_i915(dev);
4308
	struct drm_i915_file_private *file_priv = file->driver_priv;
4309
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4310
	struct i915_request *request, *target = NULL;
4311
	long ret;
4312

4313 4314 4315
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4316

4317
	spin_lock(&file_priv->mm.lock);
4318
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4319 4320
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4321

4322 4323 4324 4325
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4326

4327
		target = request;
4328
	}
4329
	if (target)
4330
		i915_request_get(target);
4331
	spin_unlock(&file_priv->mm.lock);
4332

4333
	if (target == NULL)
4334
		return 0;
4335

4336
	ret = i915_request_wait(target,
4337 4338
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4339
	i915_request_put(target);
4340

4341
	return ret < 0 ? ret : 0;
4342 4343
}

C
Chris Wilson 已提交
4344
struct i915_vma *
4345 4346
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4347
			 u64 size,
4348 4349
			 u64 alignment,
			 u64 flags)
4350
{
4351 4352
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4353 4354
	struct i915_vma *vma;
	int ret;
4355

4356 4357
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4358 4359
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4390
	vma = i915_vma_instance(obj, vm, view);
4391
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4392
		return vma;
4393 4394

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4395 4396 4397
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4398

4399
			if (flags & PIN_MAPPABLE &&
4400
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4401 4402 4403
				return ERR_PTR(-ENOSPC);
		}

4404 4405
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4406 4407 4408
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4409
		     !!(flags & PIN_MAPPABLE),
4410
		     i915_vma_is_map_and_fenceable(vma));
4411 4412
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4413
			return ERR_PTR(ret);
4414 4415
	}

C
Chris Wilson 已提交
4416 4417 4418
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4419

C
Chris Wilson 已提交
4420
	return vma;
4421 4422
}

4423
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4438 4439 4440 4441 4442 4443 4444 4445 4446
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4447 4448
}

4449
static __always_inline unsigned int
4450
__busy_set_if_active(const struct dma_fence *fence,
4451 4452
		     unsigned int (*flag)(unsigned int id))
{
4453
	struct i915_request *rq;
4454

4455 4456 4457 4458
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4459
	 *
4460
	 * Note we only report on the status of native fences.
4461
	 */
4462 4463 4464 4465
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4466 4467
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4468 4469
		return 0;

4470
	return flag(rq->engine->uabi_id);
4471 4472
}

4473
static __always_inline unsigned int
4474
busy_check_reader(const struct dma_fence *fence)
4475
{
4476
	return __busy_set_if_active(fence, __busy_read_flag);
4477 4478
}

4479
static __always_inline unsigned int
4480
busy_check_writer(const struct dma_fence *fence)
4481
{
4482 4483 4484 4485
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4486 4487
}

4488 4489
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4490
		    struct drm_file *file)
4491 4492
{
	struct drm_i915_gem_busy *args = data;
4493
	struct drm_i915_gem_object *obj;
4494 4495
	struct reservation_object_list *list;
	unsigned int seq;
4496
	int err;
4497

4498
	err = -ENOENT;
4499 4500
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4501
	if (!obj)
4502
		goto out;
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4522

4523 4524
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4525

4526 4527 4528 4529
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4530

4531 4532 4533 4534 4535 4536
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4537
	}
4538

4539 4540 4541 4542
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4543 4544 4545
out:
	rcu_read_unlock();
	return err;
4546 4547 4548 4549 4550 4551
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4552
	return i915_gem_ring_throttle(dev, file_priv);
4553 4554
}

4555 4556 4557 4558
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4559
	struct drm_i915_private *dev_priv = to_i915(dev);
4560
	struct drm_i915_gem_madvise *args = data;
4561
	struct drm_i915_gem_object *obj;
4562
	int err;
4563 4564 4565 4566 4567 4568 4569 4570 4571

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4572
	obj = i915_gem_object_lookup(file_priv, args->handle);
4573 4574 4575 4576 4577 4578
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4579

4580
	if (i915_gem_object_has_pages(obj) &&
4581
	    i915_gem_object_is_tiled(obj) &&
4582
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4583 4584
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4585
			__i915_gem_object_unpin_pages(obj);
4586 4587 4588
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4589
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4590
			__i915_gem_object_pin_pages(obj);
4591 4592
			obj->mm.quirked = true;
		}
4593 4594
	}

C
Chris Wilson 已提交
4595 4596
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4597

C
Chris Wilson 已提交
4598
	/* if the object is no longer attached, discard its backing storage */
4599 4600
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4601 4602
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4603
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4604
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4605

4606
out:
4607
	i915_gem_object_put(obj);
4608
	return err;
4609 4610
}

4611
static void
4612
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4613 4614 4615 4616
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4617
	intel_fb_obj_flush(obj, ORIGIN_CS);
4618 4619
}

4620 4621
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4622
{
4623 4624
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4625
	INIT_LIST_HEAD(&obj->vma_list);
4626
	INIT_LIST_HEAD(&obj->lut_list);
4627
	INIT_LIST_HEAD(&obj->batch_pool_link);
4628

4629 4630
	obj->ops = ops;

4631 4632 4633
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4634
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4635
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4636 4637 4638 4639

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4640

4641
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4642 4643
}

4644
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4645 4646
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4647

4648 4649
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4650 4651

	.pwrite = i915_gem_object_pwrite_gtt,
4652 4653
};

M
Matthew Auld 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4678
struct drm_i915_gem_object *
4679
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4680
{
4681
	struct drm_i915_gem_object *obj;
4682
	struct address_space *mapping;
4683
	unsigned int cache_level;
D
Daniel Vetter 已提交
4684
	gfp_t mask;
4685
	int ret;
4686

4687 4688 4689 4690 4691
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4692
	if (size >> PAGE_SHIFT > INT_MAX)
4693 4694 4695 4696 4697
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4698
	obj = i915_gem_object_alloc(dev_priv);
4699
	if (obj == NULL)
4700
		return ERR_PTR(-ENOMEM);
4701

M
Matthew Auld 已提交
4702
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4703 4704
	if (ret)
		goto fail;
4705

4706
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4707
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4708 4709 4710 4711 4712
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4713
	mapping = obj->base.filp->f_mapping;
4714
	mapping_set_gfp_mask(mapping, mask);
4715
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4716

4717
	i915_gem_object_init(obj, &i915_gem_object_ops);
4718

4719 4720
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4721

4722
	if (HAS_LLC(dev_priv))
4723
		/* On some devices, we can have the GPU use the LLC (the CPU
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4735 4736 4737
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4738

4739
	i915_gem_object_set_cache_coherency(obj, cache_level);
4740

4741 4742
	trace_i915_gem_object_create(obj);

4743
	return obj;
4744 4745 4746 4747

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4758
	if (obj->mm.madv != I915_MADV_WILLNEED)
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4774 4775
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4776
{
4777
	struct drm_i915_gem_object *obj, *on;
4778

4779
	intel_runtime_pm_get(i915);
4780
	llist_for_each_entry_safe(obj, on, freed, freed) {
4781 4782 4783 4784
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4785 4786
		mutex_lock(&i915->drm.struct_mutex);

4787 4788 4789 4790 4791
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4792
			i915_vma_destroy(vma);
4793
		}
4794 4795
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4796

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4809
		mutex_unlock(&i915->drm.struct_mutex);
4810 4811

		GEM_BUG_ON(obj->bind_count);
4812
		GEM_BUG_ON(obj->userfault_count);
4813
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4814
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4815 4816 4817

		if (obj->ops->release)
			obj->ops->release(obj);
4818

4819 4820
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4821
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4822
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4823 4824 4825 4826

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4827
		reservation_object_fini(&obj->__builtin_resv);
4828 4829 4830 4831 4832
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4833

4834 4835 4836
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4837 4838
		if (on)
			cond_resched();
4839
	}
4840
	intel_runtime_pm_put(i915);
4841 4842 4843 4844 4845 4846
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4857
		__i915_gem_free_objects(i915, freed);
4858
	}
4859 4860 4861 4862 4863 4864 4865
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4866

4867 4868
	/*
	 * All file-owned VMA should have been released by this point through
4869 4870 4871 4872 4873 4874
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4875

4876
	spin_lock(&i915->mm.free_lock);
4877
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4878 4879
		spin_unlock(&i915->mm.free_lock);

4880
		__i915_gem_free_objects(i915, freed);
4881
		if (need_resched())
4882 4883 4884
			return;

		spin_lock(&i915->mm.free_lock);
4885
	}
4886
	spin_unlock(&i915->mm.free_lock);
4887
}
4888

4889 4890 4891 4892 4893 4894
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4895 4896 4897 4898 4899 4900 4901 4902 4903
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4904 4905
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4906
		queue_work(i915->wq, &i915->mm.free_work);
4907
}
4908

4909 4910 4911
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4912

4913 4914 4915
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4916
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4917
		obj->mm.madv = I915_MADV_DONTNEED;
4918

4919 4920
	/*
	 * Before we free the object, make sure any pure RCU-only
4921 4922 4923 4924
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4925
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4926
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4927 4928
}

4929 4930 4931 4932
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4933 4934
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4935 4936 4937 4938 4939
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4940
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4941
{
4942
	struct i915_gem_context *kernel_context = i915->kernel_context;
4943 4944 4945
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4946
	for_each_engine(engine, i915, id) {
4947
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4948 4949
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4950 4951
}

4952 4953
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4954 4955 4956 4957 4958 4959
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4960 4961 4962 4963 4964 4965
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4966
	 * of the reset, so this could be applied to even earlier gen.
4967
	 */
4968 4969
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4970 4971
}

4972
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4973
{
4974
	struct drm_device *dev = &dev_priv->drm;
4975
	int ret;
4976

4977
	intel_runtime_pm_get(dev_priv);
4978 4979
	intel_suspend_gt_powersave(dev_priv);

4980
	mutex_lock(&dev->struct_mutex);
4981 4982 4983 4984 4985 4986 4987 4988 4989

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4990 4991 4992 4993
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
4994

4995 4996 4997 4998 4999
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
5000

5001 5002
		assert_kernel_context_is_current(dev_priv);
	}
5003
	i915_gem_contexts_lost(dev_priv);
5004 5005
	mutex_unlock(&dev->struct_mutex);

5006
	intel_uc_suspend(dev_priv);
5007

5008
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5009
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5010 5011 5012 5013

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5014
	drain_delayed_work(&dev_priv->gt.idle_work);
5015

5016 5017 5018
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5019
	WARN_ON(dev_priv->gt.awake);
5020 5021
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5022

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5042
	intel_uc_sanitize(dev_priv);
5043
	i915_gem_sanitize(dev_priv);
5044 5045 5046

	intel_runtime_pm_put(dev_priv);
	return 0;
5047

5048
err_unlock:
5049
	mutex_unlock(&dev->struct_mutex);
5050
	intel_runtime_pm_put(dev_priv);
5051
	return ret;
5052 5053
}

5054
void i915_gem_resume(struct drm_i915_private *i915)
5055
{
5056
	WARN_ON(i915->gt.awake);
5057

5058 5059
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5060

5061 5062
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5063

5064 5065
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5066 5067 5068
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5069
	i915->gt.resume(i915);
5070

5071 5072 5073
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5074
	intel_uc_resume(i915);
5075

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5086 5087 5088 5089
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5090
	goto out_unlock;
5091 5092
}

5093
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5094
{
5095
	if (INTEL_GEN(dev_priv) < 5 ||
5096 5097 5098 5099 5100 5101
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5102
	if (IS_GEN5(dev_priv))
5103 5104
		return;

5105
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5106
	if (IS_GEN6(dev_priv))
5107
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5108
	else if (IS_GEN7(dev_priv))
5109
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5110
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5111
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5112 5113
	else
		BUG();
5114
}
D
Daniel Vetter 已提交
5115

5116
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5117 5118 5119 5120 5121 5122 5123
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5124
static void init_unused_rings(struct drm_i915_private *dev_priv)
5125
{
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5138 5139 5140
	}
}

5141
static int __i915_gem_restart_engines(void *data)
5142
{
5143
	struct drm_i915_private *i915 = data;
5144
	struct intel_engine_cs *engine;
5145
	enum intel_engine_id id;
5146 5147 5148 5149
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5150 5151 5152
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5153
			return err;
5154
		}
5155 5156 5157 5158 5159 5160 5161
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5162
	int ret;
5163

5164 5165
	dev_priv->gt.last_init_time = ktime_get();

5166 5167 5168
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5169
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5170
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5171

5172
	if (IS_HASWELL(dev_priv))
5173
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5174
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5175

5176
	if (HAS_PCH_NOP(dev_priv)) {
5177
		if (IS_IVYBRIDGE(dev_priv)) {
5178 5179 5180
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5181
		} else if (INTEL_GEN(dev_priv) >= 7) {
5182 5183 5184 5185
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5186 5187
	}

5188 5189
	intel_gt_workarounds_apply(dev_priv);

5190
	i915_gem_init_swizzling(dev_priv);
5191

5192 5193 5194 5195 5196 5197
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5198
	init_unused_rings(dev_priv);
5199

5200
	BUG_ON(!dev_priv->kernel_context);
5201 5202 5203 5204
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5205

5206
	ret = i915_ppgtt_init_hw(dev_priv);
5207
	if (ret) {
5208
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5209 5210 5211
		goto out;
	}

5212 5213 5214 5215 5216 5217
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5218 5219
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5220 5221
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5222
		goto out;
5223
	}
5224

5225
	intel_mocs_init_l3cc_table(dev_priv);
5226

5227 5228
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5229 5230
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5231
	return ret;
5232 5233
}

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5255
		struct i915_request *rq;
5256

5257
		rq = i915_request_alloc(engine, ctx);
5258 5259 5260 5261 5262
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5263
		err = 0;
5264 5265 5266
		if (engine->init_context)
			err = engine->init_context(rq);

5267
		__i915_request_add(rq, true);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5285
		state = to_intel_context(ctx, engine)->state;
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5348
int i915_gem_init(struct drm_i915_private *dev_priv)
5349 5350 5351
{
	int ret;

5352 5353 5354 5355 5356 5357 5358 5359 5360
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5361
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5362

5363
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5364
		dev_priv->gt.resume = intel_lr_context_resume;
5365
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5366 5367 5368
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5369 5370
	}

5371 5372 5373 5374
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5375 5376 5377 5378
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5379
	ret = intel_uc_init_misc(dev_priv);
5380 5381 5382
	if (ret)
		return ret;

5383 5384 5385 5386 5387 5388
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5389
	mutex_lock(&dev_priv->drm.struct_mutex);
5390 5391
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5392
	ret = i915_gem_init_ggtt(dev_priv);
5393 5394 5395 5396
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5397

5398
	ret = i915_gem_contexts_init(dev_priv);
5399 5400 5401 5402
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5403

5404
	ret = intel_engines_init(dev_priv);
5405 5406 5407 5408
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5409

5410 5411
	intel_init_gt_powersave(dev_priv);

5412
	ret = intel_uc_init(dev_priv);
5413
	if (ret)
5414
		goto err_pm;
5415

5416 5417 5418 5419
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5431
	ret = __intel_engines_record_defaults(dev_priv);
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5460 5461
err_uc_init:
	intel_uc_fini(dev_priv);
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5475
	intel_uc_fini_misc(dev_priv);
5476

5477 5478 5479
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5480
	if (ret == -EIO) {
5481 5482
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5483 5484 5485
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5486 5487 5488 5489
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5490
		ret = 0;
5491 5492
	}

5493
	i915_gem_drain_freed_objects(dev_priv);
5494
	return ret;
5495 5496
}

5497 5498 5499 5500 5501
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5502
void
5503
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5504
{
5505
	struct intel_engine_cs *engine;
5506
	enum intel_engine_id id;
5507

5508
	for_each_engine(engine, dev_priv, id)
5509
		dev_priv->gt.cleanup_engine(engine);
5510 5511
}

5512 5513 5514
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5515
	int i;
5516

5517
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5518 5519
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5520
	else if (INTEL_GEN(dev_priv) >= 4 ||
5521 5522
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5523 5524 5525 5526
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5527
	if (intel_vgpu_active(dev_priv))
5528 5529 5530 5531
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5532 5533 5534 5535 5536 5537 5538
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5539
	i915_gem_restore_fences(dev_priv);
5540

5541
	i915_gem_detect_bit_6_swizzle(dev_priv);
5542 5543
}

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5560
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5561
{
5562
	int err = -ENOMEM;
5563

5564 5565
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5566 5567
		goto err_out;

5568 5569
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5570 5571
		goto err_objects;

5572 5573 5574 5575
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5576
	dev_priv->requests = KMEM_CACHE(i915_request,
5577 5578
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5579
					SLAB_TYPESAFE_BY_RCU);
5580
	if (!dev_priv->requests)
5581
		goto err_luts;
5582

5583 5584 5585 5586 5587 5588
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5589 5590 5591 5592
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5593
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5594
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5595
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5596

5597
	i915_gem_init__mm(dev_priv);
5598

5599
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5600
			  i915_gem_retire_work_handler);
5601
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5602
			  i915_gem_idle_work_handler);
5603
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5604
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5605

5606 5607
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5608
	spin_lock_init(&dev_priv->fb_tracking.lock);
5609

M
Matthew Auld 已提交
5610 5611 5612 5613
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5614 5615
	return 0;

5616 5617
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5618 5619
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5620 5621
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5622 5623 5624 5625 5626 5627
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5628
}
5629

5630
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5631
{
5632
	i915_gem_drain_freed_objects(dev_priv);
5633 5634
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5635
	WARN_ON(dev_priv->mm.object_count);
5636 5637
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5638
	kmem_cache_destroy(dev_priv->priorities);
5639
	kmem_cache_destroy(dev_priv->dependencies);
5640
	kmem_cache_destroy(dev_priv->requests);
5641
	kmem_cache_destroy(dev_priv->luts);
5642 5643
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5644 5645 5646

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5647 5648

	i915_gemfs_fini(dev_priv);
5649 5650
}

5651 5652
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5653 5654 5655
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5656 5657 5658 5659 5660
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5661 5662 5663
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5664 5665 5666 5667 5668
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5679 5680
	 *
	 * To try and reduce the hibernation image, we manually shrink
5681
	 * the objects as well, see i915_gem_freeze()
5682 5683
	 */

5684
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5685
	i915_gem_drain_freed_objects(dev_priv);
5686

5687
	spin_lock(&dev_priv->mm.obj_lock);
5688
	for (p = phases; *p; p++) {
5689
		list_for_each_entry(obj, *p, mm.link)
5690
			__start_cpu_write(obj);
5691
	}
5692
	spin_unlock(&dev_priv->mm.obj_lock);
5693 5694 5695 5696

	return 0;
}

5697
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5698
{
5699
	struct drm_i915_file_private *file_priv = file->driver_priv;
5700
	struct i915_request *request;
5701 5702 5703 5704 5705

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5706
	spin_lock(&file_priv->mm.lock);
5707
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5708
		request->file_priv = NULL;
5709
	spin_unlock(&file_priv->mm.lock);
5710 5711
}

5712
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5713 5714
{
	struct drm_i915_file_private *file_priv;
5715
	int ret;
5716

5717
	DRM_DEBUG("\n");
5718 5719 5720 5721 5722 5723

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5724
	file_priv->dev_priv = i915;
5725
	file_priv->file = file;
5726 5727 5728 5729

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5730
	file_priv->bsd_engine = -1;
5731

5732
	ret = i915_gem_context_open(i915, file);
5733 5734
	if (ret)
		kfree(file_priv);
5735

5736
	return ret;
5737 5738
}

5739 5740
/**
 * i915_gem_track_fb - update frontbuffer tracking
5741 5742 5743
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5744 5745 5746 5747
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5748 5749 5750 5751
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5752 5753 5754 5755 5756 5757 5758 5759 5760
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5761
	if (old) {
5762 5763
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5764 5765 5766
	}

	if (new) {
5767 5768
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5769 5770 5771
	}
}

5772 5773
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5774
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5775 5776 5777
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5778 5779 5780
	struct file *file;
	size_t offset;
	int err;
5781

5782
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5783
	if (IS_ERR(obj))
5784 5785
		return obj;

5786
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5787

5788 5789 5790 5791 5792 5793
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5794

5795 5796 5797 5798 5799
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5800

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5815 5816 5817 5818

	return obj;

fail:
5819
	i915_gem_object_put(obj);
5820
	return ERR_PTR(err);
5821
}
5822 5823 5824 5825 5826 5827

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5828
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5829 5830 5831 5832 5833
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5834
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5959
	if (!obj->mm.dirty)
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5975

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6022 6023
	obj->ops = &i915_gem_phys_ops;

6024
	err = ____i915_gem_object_get_pages(obj);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6044 6045
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6046
#include "selftests/mock_gem_device.c"
6047
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6048
#include "selftests/huge_pages.c"
6049
#include "selftests/i915_gem_object.c"
6050
#include "selftests/i915_gem_coherency.c"
6051
#endif