i915_gem.c 132.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 250
				struct sg_table *pages,
				bool needs_clflush)
251
{
C
Chris Wilson 已提交
252
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
253

C
Chris Wilson 已提交
254 255
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
256

257 258
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260
		drm_clflush_sg(pages);
261 262 263 264 265 266 267 268 269

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
270
	__i915_gem_object_release_shmem(obj, pages, false);
271

C
Chris Wilson 已提交
272
	if (obj->mm.dirty) {
273
		struct address_space *mapping = obj->base.filp->f_mapping;
274
		char *vaddr = obj->phys_handle->vaddr;
275 276 277
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 279 280 281 282 283 284 285 286 287 288 289 290
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
291
			if (obj->mm.madv == I915_MADV_WILLNEED)
292
				mark_page_accessed(page);
293
			put_page(page);
294 295
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
296
		obj->mm.dirty = false;
297 298
	}

299 300
	sg_free_table(pages);
	kfree(pages);
301 302

	drm_pci_free(obj->base.dev, obj->phys_handle);
303 304 305 306 307
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
308
	i915_gem_object_unpin_pages(obj);
309 310 311 312 313 314 315 316
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

317
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
318 319 320
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
321 322 323
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
324

325 326 327 328
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
329
	 */
330 331 332 333 334 335
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
336 337 338 339 340
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

341 342 343 344 345 346 347 348 349 350 351 352 353
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

354 355 356 357 358
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
359
{
360
	struct drm_i915_gem_request *rq;
361

362
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
396 397
	}

398 399 400 401 402 403
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

404
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444 445 446
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
447

448 449 450 451 452 453 454 455
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458 459 460 461 462 463
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566 567
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
568
	int ret;
569

570 571
	if (align > obj->base.size)
		return -EINVAL;
572

573
	if (obj->ops == &i915_gem_phys_ops)
574 575
		return 0;

C
Chris Wilson 已提交
576
	if (obj->mm.madv != I915_MADV_WILLNEED)
577 578 579 580 581
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
582 583 584 585
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

586
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 588
	if (obj->mm.pages)
		return -EBUSY;
589 590 591

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
592
	return i915_gem_object_pin_pages(obj);
593 594 595 596 597
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
598
		     struct drm_file *file)
599 600
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
601
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
602 603 604 605

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
606
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
607 608
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
609

610
	drm_clflush_virt_range(vaddr, args->size);
611
	i915_gem_chipset_flush(to_i915(obj->base.dev));
612

613
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
614
	return 0;
615 616
}

617
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
618
{
619
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
620 621 622 623
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
624
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
625
	kmem_cache_free(dev_priv->objects, obj);
626 627
}

628 629
static int
i915_gem_create(struct drm_file *file,
630
		struct drm_i915_private *dev_priv,
631 632
		uint64_t size,
		uint32_t *handle_p)
633
{
634
	struct drm_i915_gem_object *obj;
635 636
	int ret;
	u32 handle;
637

638
	size = roundup(size, PAGE_SIZE);
639 640
	if (size == 0)
		return -EINVAL;
641 642

	/* Allocate the new object */
643
	obj = i915_gem_object_create(dev_priv, size);
644 645
	if (IS_ERR(obj))
		return PTR_ERR(obj);
646

647
	ret = drm_gem_handle_create(file, &obj->base, &handle);
648
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
649
	i915_gem_object_put(obj);
650 651
	if (ret)
		return ret;
652

653
	*handle_p = handle;
654 655 656
	return 0;
}

657 658 659 660 661 662
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
663
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
664
	args->size = args->pitch * args->height;
665
	return i915_gem_create(file, to_i915(dev),
666
			       args->size, &args->handle);
667 668 669 670
}

/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

714
static inline int
715 716
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

740 741 742 743 744 745
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
746
				    unsigned int *needs_clflush)
747 748 749
{
	int ret;

750
	lockdep_assert_held(&obj->base.dev->struct_mutex);
751

752
	*needs_clflush = 0;
753 754
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
755

756 757 758 759 760
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
761 762 763
	if (ret)
		return ret;

C
Chris Wilson 已提交
764
	ret = i915_gem_object_pin_pages(obj);
765 766 767
	if (ret)
		return ret;

768 769
	i915_gem_object_flush_gtt_write_domain(obj);

770 771 772 773 774 775
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
776 777
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
778 779 780

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
781 782 783
		if (ret)
			goto err_unpin;

784
		*needs_clflush = 0;
785 786
	}

787
	/* return with the pages pinned */
788
	return 0;
789 790 791 792

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
793 794 795 796 797 798 799
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

800 801
	lockdep_assert_held(&obj->base.dev->struct_mutex);

802 803 804 805
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

806 807 808 809 810 811
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
812 813 814
	if (ret)
		return ret;

C
Chris Wilson 已提交
815
	ret = i915_gem_object_pin_pages(obj);
816 817 818
	if (ret)
		return ret;

819 820
	i915_gem_object_flush_gtt_write_domain(obj);

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
838 839 840
		if (ret)
			goto err_unpin;

841 842 843 844 845 846 847
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
848
	obj->mm.dirty = true;
849
	/* return with the pages pinned */
850
	return 0;
851 852 853 854

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
855 856
}

857 858 859 860
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
861
	if (unlikely(swizzled)) {
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

879 880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
882
shmem_pread_slow(struct page *page, int offset, int length,
883 884 885 886 887 888 889 890
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
891
		shmem_clflush_swizzled_range(vaddr + offset, length,
892
					     page_do_bit17_swizzling);
893 894

	if (page_do_bit17_swizzling)
895
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
896
	else
897
		ret = __copy_to_user(user_data, vaddr + offset, length);
898 899
	kunmap(page);

900
	return ret ? - EFAULT : 0;
901 902
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
979 980
{
	void *vaddr;
981
	unsigned long unwritten;
982 983

	/* We can use the cpu mem copy function because this is X86. */
984 985 986 987 988 989 990 991 992
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
993 994 995 996
	return unwritten;
}

static int
997 998
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
999
{
1000 1001
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1002
	struct drm_mm_node node;
1003 1004 1005
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1006 1007
	int ret;

1008 1009 1010 1011 1012 1013 1014
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1015 1016 1017
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1018
		ret = i915_vma_put_fence(vma);
1019 1020 1021 1022 1023
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1024
	if (IS_ERR(vma)) {
1025
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1026
		if (ret)
1027 1028
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1029 1030 1031 1032 1033 1034
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1035
	mutex_unlock(&i915->drm.struct_mutex);
1036

1037 1038 1039
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1056
					       node.start, I915_CACHE_NONE, 0);
1057 1058 1059 1060
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1061 1062 1063

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1064 1065 1066 1067 1068 1069 1070 1071 1072
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1073
	mutex_lock(&i915->drm.struct_mutex);
1074 1075 1076 1077
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1078
				       node.start, node.size);
1079 1080
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1081
		i915_vma_unpin(vma);
1082
	}
1083 1084 1085
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1086

1087 1088 1089
	return ret;
}

1090 1091
/**
 * Reads data from the object referenced by handle.
1092 1093 1094
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1095 1096 1097 1098 1099
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1100
		     struct drm_file *file)
1101 1102
{
	struct drm_i915_gem_pread *args = data;
1103
	struct drm_i915_gem_object *obj;
1104
	int ret;
1105

1106 1107 1108 1109
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1110
		       u64_to_user_ptr(args->data_ptr),
1111 1112 1113
		       args->size))
		return -EFAULT;

1114
	obj = i915_gem_object_lookup(file, args->handle);
1115 1116
	if (!obj)
		return -ENOENT;
1117

1118
	/* Bounds check source.  */
1119
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1120
		ret = -EINVAL;
1121
		goto out;
C
Chris Wilson 已提交
1122 1123
	}

C
Chris Wilson 已提交
1124 1125
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1126 1127 1128 1129
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1130
	if (ret)
1131
		goto out;
1132

1133
	ret = i915_gem_object_pin_pages(obj);
1134
	if (ret)
1135
		goto out;
1136

1137
	ret = i915_gem_shmem_pread(obj, args);
1138
	if (ret == -EFAULT || ret == -ENODEV)
1139
		ret = i915_gem_gtt_pread(obj, args);
1140

1141 1142
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1143
	i915_gem_object_put(obj);
1144
	return ret;
1145 1146
}

1147 1148
/* This is the fast write path which cannot handle
 * page faults in the source data
1149
 */
1150

1151 1152 1153 1154
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1155
{
1156
	void *vaddr;
1157
	unsigned long unwritten;
1158

1159
	/* We can use the cpu mem copy function because this is X86. */
1160 1161
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1162
						      user_data, length);
1163 1164 1165 1166 1167 1168 1169
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1170 1171 1172 1173

	return unwritten;
}

1174 1175 1176
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1177
 * @obj: i915 GEM object
1178
 * @args: pwrite arguments structure
1179
 */
1180
static int
1181 1182
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1183
{
1184
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1185 1186
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1187 1188 1189
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1190
	int ret;
1191

1192 1193 1194
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1195

1196
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1197
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198
				       PIN_MAPPABLE | PIN_NONBLOCK);
1199 1200 1201
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1202
		ret = i915_vma_put_fence(vma);
1203 1204 1205 1206 1207
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1208
	if (IS_ERR(vma)) {
1209
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1210
		if (ret)
1211 1212
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1213
	}
D
Daniel Vetter 已提交
1214 1215 1216 1217 1218

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1219 1220
	mutex_unlock(&i915->drm.struct_mutex);

1221
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1222

1223 1224 1225 1226
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1227 1228
		/* Operation in this page
		 *
1229 1230 1231
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1232
		 */
1233
		u32 page_base = node.start;
1234 1235
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1246
		/* If we get a fault while copying data, then (presumably) our
1247 1248
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1249 1250
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1251
		 */
1252 1253 1254 1255
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1256
		}
1257

1258 1259 1260
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1261
	}
1262
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1263 1264

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1265
out_unpin:
1266 1267 1268
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1269
				       node.start, node.size);
1270 1271
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1272
		i915_vma_unpin(vma);
1273
	}
1274
out_unlock:
1275
	intel_runtime_pm_put(i915);
1276
	mutex_unlock(&i915->drm.struct_mutex);
1277
	return ret;
1278 1279
}

1280
static int
1281
shmem_pwrite_slow(struct page *page, int offset, int length,
1282 1283 1284 1285
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1286
{
1287 1288
	char *vaddr;
	int ret;
1289

1290
	vaddr = kmap(page);
1291
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1292
		shmem_clflush_swizzled_range(vaddr + offset, length,
1293
					     page_do_bit17_swizzling);
1294
	if (page_do_bit17_swizzling)
1295 1296
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1297
	else
1298
		ret = __copy_from_user(vaddr + offset, user_data, length);
1299
	if (needs_clflush_after)
1300
		shmem_clflush_swizzled_range(vaddr + offset, length,
1301
					     page_do_bit17_swizzling);
1302
	kunmap(page);
1303

1304
	return ret ? -EFAULT : 0;
1305 1306
}

1307 1308 1309 1310 1311
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1312
static int
1313 1314 1315 1316
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1317
{
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1350
	unsigned int needs_clflush;
1351 1352
	unsigned int offset, idx;
	int ret;
1353

1354
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1355 1356 1357
	if (ret)
		return ret;

1358 1359 1360 1361
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1362

1363 1364 1365
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1366

1367 1368 1369 1370 1371 1372 1373
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1374

1375 1376 1377 1378 1379 1380
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1381

1382 1383 1384
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1385

1386 1387 1388 1389
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1390
		if (ret)
1391
			break;
1392

1393 1394 1395
		remain -= length;
		user_data += length;
		offset = 0;
1396
	}
1397

1398
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1399
	i915_gem_obj_finish_shmem_access(obj);
1400
	return ret;
1401 1402 1403 1404
}

/**
 * Writes data to the object referenced by handle.
1405 1406 1407
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1408 1409 1410 1411 1412
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1413
		      struct drm_file *file)
1414 1415
{
	struct drm_i915_gem_pwrite *args = data;
1416
	struct drm_i915_gem_object *obj;
1417 1418 1419 1420 1421 1422
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1423
		       u64_to_user_ptr(args->data_ptr),
1424 1425 1426
		       args->size))
		return -EFAULT;

1427
	obj = i915_gem_object_lookup(file, args->handle);
1428 1429
	if (!obj)
		return -ENOENT;
1430

1431
	/* Bounds check destination. */
1432
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1433
		ret = -EINVAL;
1434
		goto err;
C
Chris Wilson 已提交
1435 1436
	}

C
Chris Wilson 已提交
1437 1438
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1439 1440 1441 1442 1443
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1444 1445 1446
	if (ret)
		goto err;

1447
	ret = i915_gem_object_pin_pages(obj);
1448
	if (ret)
1449
		goto err;
1450

D
Daniel Vetter 已提交
1451
	ret = -EFAULT;
1452 1453 1454 1455 1456 1457
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1458
	if (!i915_gem_object_has_struct_page(obj) ||
1459
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1460 1461
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1462 1463
		 * textures). Fallback to the shmem path in that case.
		 */
1464
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465

1466
	if (ret == -EFAULT || ret == -ENOSPC) {
1467 1468
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1469
		else
1470
			ret = i915_gem_shmem_pwrite(obj, args);
1471
	}
1472

1473
	i915_gem_object_unpin_pages(obj);
1474
err:
C
Chris Wilson 已提交
1475
	i915_gem_object_put(obj);
1476
	return ret;
1477 1478
}

1479
static inline enum fb_op_origin
1480 1481
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1482 1483
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1494
			break;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507
	list_move_tail(&obj->global_link, list);
1508 1509
}

1510
/**
1511 1512
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1513 1514 1515
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1516 1517 1518
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519
			  struct drm_file *file)
1520 1521
{
	struct drm_i915_gem_set_domain *args = data;
1522
	struct drm_i915_gem_object *obj;
1523 1524
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1525
	int err;
1526

1527
	/* Only handle setting domains to types used by the CPU. */
1528
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 1530 1531 1532 1533 1534 1535 1536
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1537
	obj = i915_gem_object_lookup(file, args->handle);
1538 1539
	if (!obj)
		return -ENOENT;
1540

1541 1542 1543 1544
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1545
	err = i915_gem_object_wait(obj,
1546 1547 1548 1549
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1550
	if (err)
C
Chris Wilson 已提交
1551
		goto out;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1563
		goto out;
1564 1565 1566

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1567
		goto out_unpin;
1568

1569
	if (read_domains & I915_GEM_DOMAIN_GTT)
1570
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571
	else
1572
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573

1574 1575
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1576

1577
	mutex_unlock(&dev->struct_mutex);
1578

1579 1580 1581
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1582
out_unpin:
1583
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1584 1585
out:
	i915_gem_object_put(obj);
1586
	return err;
1587 1588 1589 1590
}

/**
 * Called when user space has done writes to this buffer
1591 1592 1593
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1594 1595 1596
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597
			 struct drm_file *file)
1598 1599
{
	struct drm_i915_gem_sw_finish *args = data;
1600
	struct drm_i915_gem_object *obj;
1601
	int err = 0;
1602

1603
	obj = i915_gem_object_lookup(file, args->handle);
1604 1605
	if (!obj)
		return -ENOENT;
1606 1607

	/* Pinned buffers may be scanout, so flush the cache */
1608 1609 1610 1611 1612 1613 1614
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1615

C
Chris Wilson 已提交
1616
	i915_gem_object_put(obj);
1617
	return err;
1618 1619 1620
}

/**
1621 1622 1623 1624 1625
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1626 1627 1628
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1639 1640 1641
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642
		    struct drm_file *file)
1643 1644
{
	struct drm_i915_gem_mmap *args = data;
1645
	struct drm_i915_gem_object *obj;
1646 1647
	unsigned long addr;

1648 1649 1650
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1651
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 1653
		return -ENODEV;

1654 1655
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1656
		return -ENOENT;
1657

1658 1659 1660
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1661
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1662
		i915_gem_object_put(obj);
1663 1664 1665
		return -EINVAL;
	}

1666
	addr = vm_mmap(obj->base.filp, 0, args->size,
1667 1668
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1669 1670 1671 1672
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1673
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1674
			i915_gem_object_put(obj);
1675 1676
			return -EINTR;
		}
1677 1678 1679 1680 1681 1682 1683
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1684 1685

		/* This may race, but that's ok, it only gets set */
1686
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687
	}
C
Chris Wilson 已提交
1688
	i915_gem_object_put(obj);
1689 1690 1691 1692 1693 1694 1695 1696
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1697 1698
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1699
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1763 1764
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1765
		min_t(unsigned int, chunk,
1766
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1767 1768 1769 1770 1771 1772 1773 1774

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1775 1776
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1777
 * @area: CPU VMA in question
1778
 * @vmf: fault info
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1790 1791 1792
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1793
 */
C
Chris Wilson 已提交
1794
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1795
{
1796
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1797
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1798
	struct drm_device *dev = obj->base.dev;
1799 1800
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1801
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1802
	struct i915_vma *vma;
1803
	pgoff_t page_offset;
1804
	unsigned int flags;
1805
	int ret;
1806

1807
	/* We don't use vmf->pgoff since that has the fake offset */
1808
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812
	/* Try to flush the object off the GPU first without holding the lock.
1813
	 * Upon acquiring the lock, we will perform our sanity checks and then
1814 1815 1816
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1817 1818 1819 1820
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1821
	if (ret)
1822 1823
		goto err;

1824 1825 1826 1827
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1828 1829 1830 1831 1832
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1833

1834
	/* Access to snoopable pages through the GTT is incoherent. */
1835
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1836
		ret = -EFAULT;
1837
		goto err_unlock;
1838 1839
	}

1840 1841 1842 1843 1844 1845 1846 1847
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1848
	/* Now pin it into the GTT as needed */
1849
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1850 1851
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1852
		struct i915_ggtt_view view =
1853
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1854

1855 1856 1857 1858 1859
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1860 1861
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1862 1863
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1864
		goto err_unlock;
C
Chris Wilson 已提交
1865
	}
1866

1867 1868
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1869
		goto err_unpin;
1870

1871
	ret = i915_vma_get_fence(vma);
1872
	if (ret)
1873
		goto err_unpin;
1874

1875
	/* Mark as being mmapped into userspace for later revocation */
1876
	assert_rpm_wakelock_held(dev_priv);
1877 1878 1879
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1880
	/* Finally, remap it using the new GTT offset */
1881
	ret = remap_io_mapping(area,
1882
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1883 1884 1885
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1886

1887
err_unpin:
C
Chris Wilson 已提交
1888
	__i915_vma_unpin(vma);
1889
err_unlock:
1890
	mutex_unlock(&dev->struct_mutex);
1891 1892
err_rpm:
	intel_runtime_pm_put(dev_priv);
1893
	i915_gem_object_unpin_pages(obj);
1894
err:
1895
	switch (ret) {
1896
	case -EIO:
1897 1898 1899 1900 1901 1902 1903
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1904 1905 1906
			ret = VM_FAULT_SIGBUS;
			break;
		}
1907
	case -EAGAIN:
D
Daniel Vetter 已提交
1908 1909 1910 1911
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1912
		 */
1913 1914
	case 0:
	case -ERESTARTSYS:
1915
	case -EINTR:
1916 1917 1918 1919 1920
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1921 1922
		ret = VM_FAULT_NOPAGE;
		break;
1923
	case -ENOMEM:
1924 1925
		ret = VM_FAULT_OOM;
		break;
1926
	case -ENOSPC:
1927
	case -EFAULT:
1928 1929
		ret = VM_FAULT_SIGBUS;
		break;
1930
	default:
1931
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1932 1933
		ret = VM_FAULT_SIGBUS;
		break;
1934
	}
1935
	return ret;
1936 1937
}

1938 1939 1940 1941
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1942
 * Preserve the reservation of the mmapping with the DRM core code, but
1943 1944 1945 1946 1947 1948 1949 1950 1951
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1952
void
1953
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1954
{
1955 1956
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1957 1958 1959
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1960 1961 1962 1963
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1964
	 */
1965
	lockdep_assert_held(&i915->drm.struct_mutex);
1966
	intel_runtime_pm_get(i915);
1967

1968
	if (list_empty(&obj->userfault_link))
1969
		goto out;
1970

1971
	list_del_init(&obj->userfault_link);
1972 1973
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1974 1975 1976 1977 1978 1979 1980 1981 1982

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1983 1984 1985

out:
	intel_runtime_pm_put(i915);
1986 1987
}

1988
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1989
{
1990
	struct drm_i915_gem_object *obj, *on;
1991
	int i;
1992

1993 1994 1995 1996 1997 1998
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1999

2000 2001 2002
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2003 2004 2005
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2006 2007 2008 2009 2010 2011 2012 2013

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2024 2025 2026 2027 2028 2029 2030

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2031 2032
}

2033 2034
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2035
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2036
	int err;
2037

2038
	err = drm_gem_create_mmap_offset(&obj->base);
2039
	if (likely(!err))
2040
		return 0;
2041

2042 2043 2044 2045 2046
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2047

2048
		i915_gem_drain_freed_objects(dev_priv);
2049
		err = drm_gem_create_mmap_offset(&obj->base);
2050 2051 2052 2053
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2054

2055
	return err;
2056 2057 2058 2059 2060 2061 2062
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2063
int
2064 2065
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2066
		  uint32_t handle,
2067
		  uint64_t *offset)
2068
{
2069
	struct drm_i915_gem_object *obj;
2070 2071
	int ret;

2072
	obj = i915_gem_object_lookup(file, handle);
2073 2074
	if (!obj)
		return -ENOENT;
2075

2076
	ret = i915_gem_object_create_mmap_offset(obj);
2077 2078
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2079

C
Chris Wilson 已提交
2080
	i915_gem_object_put(obj);
2081
	return ret;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2105
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2106 2107
}

D
Daniel Vetter 已提交
2108 2109 2110
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2111
{
2112
	i915_gem_object_free_mmap_offset(obj);
2113

2114 2115
	if (obj->base.filp == NULL)
		return;
2116

D
Daniel Vetter 已提交
2117 2118 2119 2120 2121
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2122
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2123
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2124
}
2125

2126
/* Try to discard unwanted pages */
2127
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2128
{
2129 2130
	struct address_space *mapping;

2131 2132 2133
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2134
	switch (obj->mm.madv) {
2135 2136 2137 2138 2139 2140 2141 2142 2143
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2144
	mapping = obj->base.filp->f_mapping,
2145
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2146 2147
}

2148
static void
2149 2150
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2151
{
2152 2153
	struct sgt_iter sgt_iter;
	struct page *page;
2154

2155
	__i915_gem_object_release_shmem(obj, pages, true);
2156

2157
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2158

2159
	if (i915_gem_object_needs_bit17_swizzle(obj))
2160
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2161

2162
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2163
		if (obj->mm.dirty)
2164
			set_page_dirty(page);
2165

C
Chris Wilson 已提交
2166
		if (obj->mm.madv == I915_MADV_WILLNEED)
2167
			mark_page_accessed(page);
2168

2169
		put_page(page);
2170
	}
C
Chris Wilson 已提交
2171
	obj->mm.dirty = false;
2172

2173 2174
	sg_free_table(pages);
	kfree(pages);
2175
}
C
Chris Wilson 已提交
2176

2177 2178 2179 2180 2181
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2182 2183
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2184 2185
}

2186 2187
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2188
{
2189
	struct sg_table *pages;
2190

C
Chris Wilson 已提交
2191
	if (i915_gem_object_has_pinned_pages(obj))
2192
		return;
2193

2194
	GEM_BUG_ON(obj->bind_count);
2195 2196 2197 2198
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2199
	mutex_lock_nested(&obj->mm.lock, subclass);
2200 2201
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2202

2203 2204 2205
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2206 2207
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2208

C
Chris Wilson 已提交
2209
	if (obj->mm.mapping) {
2210 2211
		void *ptr;

C
Chris Wilson 已提交
2212
		ptr = ptr_mask_bits(obj->mm.mapping);
2213 2214
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2215
		else
2216 2217
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2218
		obj->mm.mapping = NULL;
2219 2220
	}

2221 2222
	__i915_gem_object_reset_page_iter(obj);

2223
	obj->ops->put_pages(obj, pages);
2224 2225
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2237
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2238 2239 2240 2241 2242 2243 2244 2245
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2246
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2247 2248 2249 2250 2251 2252

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2253
static struct sg_table *
C
Chris Wilson 已提交
2254
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2255
{
2256
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2257 2258
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2259
	struct address_space *mapping;
2260 2261
	struct sg_table *st;
	struct scatterlist *sg;
2262
	struct sgt_iter sgt_iter;
2263
	struct page *page;
2264
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2265
	unsigned int max_segment;
I
Imre Deak 已提交
2266
	int ret;
C
Chris Wilson 已提交
2267
	gfp_t gfp;
2268

C
Chris Wilson 已提交
2269 2270 2271 2272
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2273 2274
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2275

2276
	max_segment = swiotlb_max_segment();
2277
	if (!max_segment)
2278
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2279

2280 2281
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2282
		return ERR_PTR(-ENOMEM);
2283

2284
rebuild_st:
2285 2286
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2287
		return ERR_PTR(-ENOMEM);
2288
	}
2289

2290 2291 2292 2293 2294
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2295
	mapping = obj->base.filp->f_mapping;
2296
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2297
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2298 2299 2300
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2301 2302
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2303 2304 2305 2306 2307
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2308 2309 2310 2311 2312 2313 2314
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2315
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2316 2317
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2318
				goto err_sg;
I
Imre Deak 已提交
2319
			}
C
Chris Wilson 已提交
2320
		}
2321 2322 2323
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2324 2325 2326 2327 2328 2329 2330 2331
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2332 2333 2334

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2335
	}
2336
	if (sg) /* loop terminated early; short sg table */
2337
		sg_mark_end(sg);
2338

2339 2340 2341
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2342
	ret = i915_gem_gtt_prepare_pages(obj, st);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2362

2363
	if (i915_gem_object_needs_bit17_swizzle(obj))
2364
		i915_gem_object_do_bit_17_swizzle(obj, st);
2365

2366
	return st;
2367

2368
err_sg:
2369
	sg_mark_end(sg);
2370
err_pages:
2371 2372
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2373 2374
	sg_free_table(st);
	kfree(st);
2375 2376 2377 2378 2379 2380 2381 2382 2383

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2384 2385 2386
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2387 2388 2389 2390 2391 2392
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2393
	lockdep_assert_held(&obj->mm.lock);
2394 2395 2396 2397 2398

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2399 2400 2401 2402 2403 2404 2405

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2406 2407 2408 2409 2410 2411
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2412 2413
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2425 2426
}

2427
/* Ensure that the associated pages are gathered from the backing storage
2428
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2429
 * multiple times before they are released by a single call to
2430
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2431 2432 2433
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2434
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2435
{
2436
	int err;
2437

2438 2439 2440
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2441

2442 2443 2444 2445
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2446

2447 2448 2449
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2450

2451 2452
unlock:
	mutex_unlock(&obj->mm.lock);
2453
	return err;
2454 2455
}

2456
/* The 'mapping' part of i915_gem_object_pin_map() below */
2457 2458
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2459 2460
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2461
	struct sg_table *sgt = obj->mm.pages;
2462 2463
	struct sgt_iter sgt_iter;
	struct page *page;
2464 2465
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2466
	unsigned long i = 0;
2467
	pgprot_t pgprot;
2468 2469 2470
	void *addr;

	/* A single page can always be kmapped */
2471
	if (n_pages == 1 && type == I915_MAP_WB)
2472 2473
		return kmap(sg_page(sgt->sgl));

2474 2475 2476 2477 2478 2479
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2480

2481 2482
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2483 2484 2485 2486

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2487 2488 2489 2490 2491 2492 2493 2494 2495
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2496

2497 2498
	if (pages != stack_pages)
		drm_free_large(pages);
2499 2500 2501 2502 2503

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2504 2505
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2506
{
2507 2508 2509
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2510 2511
	int ret;

2512
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2513

2514
	ret = mutex_lock_interruptible(&obj->mm.lock);
2515 2516 2517
	if (ret)
		return ERR_PTR(ret);

2518 2519
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2520 2521 2522 2523
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2524

2525 2526 2527
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2528 2529 2530
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2531

C
Chris Wilson 已提交
2532
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2533 2534 2535
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2536
			goto err_unpin;
2537
		}
2538 2539 2540 2541 2542 2543

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2544
		ptr = obj->mm.mapping = NULL;
2545 2546
	}

2547 2548 2549 2550
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2551
			goto err_unpin;
2552 2553
		}

C
Chris Wilson 已提交
2554
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2555 2556
	}

2557 2558
out_unlock:
	mutex_unlock(&obj->mm.lock);
2559 2560
	return ptr;

2561 2562 2563 2564 2565
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2566 2567
}

2568
static bool ban_context(const struct i915_gem_context *ctx)
2569
{
2570 2571
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2572 2573
}

2574
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2575
{
2576
	ctx->guilty_count++;
2577 2578 2579
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2580 2581

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2582
			 ctx->name, ctx->ban_score,
2583
			 yesno(i915_gem_context_is_banned(ctx)));
2584

2585
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2586 2587
		return;

2588 2589 2590
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2591 2592 2593 2594
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2595
	ctx->active_count++;
2596 2597
}

2598
struct drm_i915_gem_request *
2599
i915_gem_find_active_request(struct intel_engine_cs *engine)
2600
{
2601 2602
	struct drm_i915_gem_request *request;

2603 2604 2605 2606 2607 2608 2609 2610
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2611
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2612
		if (__i915_gem_request_completed(request))
2613
			continue;
2614

2615
		GEM_BUG_ON(request->engine != engine);
2616
		return request;
2617
	}
2618 2619 2620 2621

	return NULL;
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2636
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2637 2638 2639
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2640
	int err = 0;
2641 2642

	/* Ensure irq handler finishes, and not run again. */
2643 2644 2645
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2646 2647
		tasklet_kill(&engine->irq_tasklet);

2648 2649 2650 2651 2652 2653 2654
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2655
	i915_gem_revoke_fences(dev_priv);
2656 2657

	return err;
2658 2659
}

2660
static void skip_request(struct drm_i915_gem_request *request)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2675 2676

	dma_fence_set_error(&request->fence, -EIO);
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2702 2703 2704 2705 2706 2707
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2740
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2741 2742 2743
{
	struct drm_i915_gem_request *request;

2744 2745 2746
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2747
	request = i915_gem_find_active_request(engine);
2748 2749 2750
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2751

2752 2753 2754 2755
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2756 2757 2758

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2759
}
2760

2761
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2762
{
2763
	struct intel_engine_cs *engine;
2764
	enum intel_engine_id id;
2765

2766 2767
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2768 2769
	i915_gem_retire_requests(dev_priv);

2770
	for_each_engine(engine, dev_priv, id)
2771 2772
		i915_gem_reset_engine(engine);

2773
	i915_gem_restore_fences(dev_priv);
2774 2775 2776 2777 2778 2779 2780

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2781 2782 2783 2784
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2785
	dma_fence_set_error(&request->fence, -EIO);
2786 2787
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2788 2789
}

2790
static void engine_set_wedged(struct intel_engine_cs *engine)
2791
{
2792 2793 2794
	struct drm_i915_gem_request *request;
	unsigned long flags;

2795 2796 2797 2798 2799 2800
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2801
	engine->submit_request = nop_submit_request;
2802

2803 2804 2805 2806 2807 2808
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2809 2810 2811 2812
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2813
	intel_engine_init_global_seqno(engine,
2814
				       intel_engine_last_submit(engine));
2815

2816 2817 2818 2819 2820 2821
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2822
	if (i915.enable_execlists) {
2823 2824 2825 2826
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2827 2828 2829
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2830 2831
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2832 2833

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2834
	}
2835 2836
}

2837
static int __i915_gem_set_wedged_BKL(void *data)
2838
{
2839
	struct drm_i915_private *i915 = data;
2840
	struct intel_engine_cs *engine;
2841
	enum intel_engine_id id;
2842

2843
	for_each_engine(engine, i915, id)
2844
		engine_set_wedged(engine);
2845 2846 2847 2848 2849 2850

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2851 2852
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2853

2854
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2855

2856
	i915_gem_context_lost(dev_priv);
2857
	i915_gem_retire_requests(dev_priv);
2858 2859

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2860 2861
}

2862
static void
2863 2864
i915_gem_retire_work_handler(struct work_struct *work)
{
2865
	struct drm_i915_private *dev_priv =
2866
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2867
	struct drm_device *dev = &dev_priv->drm;
2868

2869
	/* Come back later if the device is busy... */
2870
	if (mutex_trylock(&dev->struct_mutex)) {
2871
		i915_gem_retire_requests(dev_priv);
2872
		mutex_unlock(&dev->struct_mutex);
2873
	}
2874 2875 2876 2877 2878

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2879 2880
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2881 2882
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2883
				   round_jiffies_up_relative(HZ));
2884
	}
2885
}
2886

2887 2888 2889 2890
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2891
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2892
	struct drm_device *dev = &dev_priv->drm;
2893
	struct intel_engine_cs *engine;
2894
	enum intel_engine_id id;
2895 2896 2897 2898 2899
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2900 2901 2902 2903 2904 2905 2906
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2907
	if (READ_ONCE(dev_priv->gt.active_requests))
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2921 2922 2923 2924 2925 2926 2927
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2928
	if (dev_priv->gt.active_requests)
2929
		goto out_unlock;
2930

2931 2932 2933
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2934
	for_each_engine(engine, dev_priv, id)
2935
		i915_gem_batch_pool_fini(&engine->batch_pool);
2936

2937 2938 2939
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2940

2941 2942 2943 2944 2945
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2946

2947 2948 2949 2950
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2951
	}
2952 2953
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2964 2965 2966 2967 2968 2969

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2970 2971 2972
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2984 2985
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2986 2987 2988
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3013 3014
	ktime_t start;
	long ret;
3015

3016 3017 3018
	if (args->flags != 0)
		return -EINVAL;

3019
	obj = i915_gem_object_lookup(file, args->bo_handle);
3020
	if (!obj)
3021 3022
		return -ENOENT;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3034 3035
	}

C
Chris Wilson 已提交
3036
	i915_gem_object_put(obj);
3037
	return ret;
3038 3039
}

3040
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3041
{
3042
	int ret, i;
3043

3044 3045 3046 3047 3048
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3049

3050 3051 3052 3053 3054 3055 3056
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3069 3070 3071
		if (ret)
			return ret;
	}
3072

3073
	return 0;
3074 3075
}

3076 3077
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3078 3079 3080 3081 3082
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3083
	if (!obj->mm.pages)
3084
		return;
3085

3086 3087 3088 3089
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3090
	if (obj->stolen || obj->phys_handle)
3091
		return;
3092

3093 3094 3095 3096 3097 3098 3099 3100
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3101 3102
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3103
		return;
3104
	}
3105

C
Chris Wilson 已提交
3106
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3107
	drm_clflush_sg(obj->mm.pages);
3108
	obj->cache_dirty = false;
3109 3110 3111 3112
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3113
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3114
{
3115
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3116

3117
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3118 3119
		return;

3120
	/* No actual flushing is required for the GTT write domain.  Writes
3121
	 * to it "immediately" go to main memory as far as we know, so there's
3122
	 * no chipset flush.  It also doesn't land in render cache.
3123 3124 3125 3126
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3127 3128 3129 3130 3131 3132 3133
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3134
	 */
3135
	wmb();
3136
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3137
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3138

3139
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3140

3141
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3142
	trace_i915_gem_object_change_domain(obj,
3143
					    obj->base.read_domains,
3144
					    I915_GEM_DOMAIN_GTT);
3145 3146 3147 3148
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3149
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3150
{
3151
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3152 3153
		return;

3154
	i915_gem_clflush_object(obj, obj->pin_display);
3155
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3156

3157
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3158
	trace_i915_gem_object_change_domain(obj,
3159
					    obj->base.read_domains,
3160
					    I915_GEM_DOMAIN_CPU);
3161 3162
}

3163 3164
/**
 * Moves a single object to the GTT read, and possibly write domain.
3165 3166
 * @obj: object to act on
 * @write: ask for write access or read only
3167 3168 3169 3170
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3171
int
3172
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3173
{
C
Chris Wilson 已提交
3174
	uint32_t old_write_domain, old_read_domains;
3175
	int ret;
3176

3177
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3178

3179 3180 3181 3182 3183 3184
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3185 3186 3187
	if (ret)
		return ret;

3188 3189 3190
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3191 3192 3193 3194 3195 3196 3197 3198
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3199
	ret = i915_gem_object_pin_pages(obj);
3200 3201 3202
	if (ret)
		return ret;

3203
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3204

3205 3206 3207 3208 3209 3210 3211
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3212 3213
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3214

3215 3216 3217
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3218
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3219
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3220
	if (write) {
3221 3222
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3223
		obj->mm.dirty = true;
3224 3225
	}

C
Chris Wilson 已提交
3226 3227 3228 3229
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3230
	i915_gem_object_unpin_pages(obj);
3231 3232 3233
	return 0;
}

3234 3235
/**
 * Changes the cache-level of an object across all VMA.
3236 3237
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3249 3250 3251
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3252
	struct i915_vma *vma;
3253
	int ret;
3254

3255 3256
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3257
	if (obj->cache_level == cache_level)
3258
		return 0;
3259

3260 3261 3262 3263 3264
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3265 3266
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3267 3268 3269
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3270
		if (i915_vma_is_pinned(vma)) {
3271 3272 3273 3274
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3287 3288
	}

3289 3290 3291 3292 3293 3294 3295
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3296
	if (obj->bind_count) {
3297 3298 3299 3300
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3301 3302 3303 3304 3305 3306
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3307 3308 3309
		if (ret)
			return ret;

3310 3311
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3328 3329 3330 3331 3332
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3333 3334 3335 3336 3337 3338 3339 3340
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3341 3342
		}

3343
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3344 3345 3346 3347 3348 3349 3350
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3351 3352
	}

3353 3354 3355 3356
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3357
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3358 3359 3360
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3361 3362 3363
	return 0;
}

B
Ben Widawsky 已提交
3364 3365
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3366
{
B
Ben Widawsky 已提交
3367
	struct drm_i915_gem_caching *args = data;
3368
	struct drm_i915_gem_object *obj;
3369
	int err = 0;
3370

3371 3372 3373 3374 3375 3376
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3377

3378 3379 3380 3381 3382 3383
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3384 3385 3386 3387
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3388 3389 3390 3391
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3392 3393 3394
out:
	rcu_read_unlock();
	return err;
3395 3396
}

B
Ben Widawsky 已提交
3397 3398
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3399
{
3400
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3401
	struct drm_i915_gem_caching *args = data;
3402 3403
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3404
	int ret = 0;
3405

B
Ben Widawsky 已提交
3406 3407
	switch (args->caching) {
	case I915_CACHING_NONE:
3408 3409
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3410
	case I915_CACHING_CACHED:
3411 3412 3413 3414 3415 3416
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3417
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3418 3419
			return -ENODEV;

3420 3421
		level = I915_CACHE_LLC;
		break;
3422
	case I915_CACHING_DISPLAY:
3423
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3424
		break;
3425 3426 3427 3428
	default:
		return -EINVAL;
	}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3440
	if (ret)
3441
		goto out;
B
Ben Widawsky 已提交
3442

3443 3444 3445
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3446 3447 3448

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3449 3450 3451

out:
	i915_gem_object_put(obj);
3452 3453 3454
	return ret;
}

3455
/*
3456 3457 3458
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3459
 */
C
Chris Wilson 已提交
3460
struct i915_vma *
3461 3462
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3463
				     const struct i915_ggtt_view *view)
3464
{
C
Chris Wilson 已提交
3465
	struct i915_vma *vma;
3466
	u32 old_read_domains, old_write_domain;
3467 3468
	int ret;

3469 3470
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3471 3472 3473
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3474
	obj->pin_display++;
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3485
	ret = i915_gem_object_set_cache_level(obj,
3486 3487
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3488 3489
	if (ret) {
		vma = ERR_PTR(ret);
3490
		goto err_unpin_display;
C
Chris Wilson 已提交
3491
	}
3492

3493 3494
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3495 3496 3497 3498
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3499
	 */
3500
	vma = ERR_PTR(-ENOSPC);
3501
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3502 3503
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3520
	if (IS_ERR(vma))
3521
		goto err_unpin_display;
3522

3523 3524
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3525
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3526
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3527 3528 3529
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3530

3531
	old_write_domain = obj->base.write_domain;
3532
	old_read_domains = obj->base.read_domains;
3533 3534 3535 3536

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3537
	obj->base.write_domain = 0;
3538
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3539 3540 3541

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3542
					    old_write_domain);
3543

C
Chris Wilson 已提交
3544
	return vma;
3545 3546

err_unpin_display:
3547
	obj->pin_display--;
C
Chris Wilson 已提交
3548
	return vma;
3549 3550 3551
}

void
C
Chris Wilson 已提交
3552
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3553
{
3554
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3555

C
Chris Wilson 已提交
3556
	if (WARN_ON(vma->obj->pin_display == 0))
3557 3558
		return;

3559
	if (--vma->obj->pin_display == 0)
3560
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3561

3562
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3563
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3564

C
Chris Wilson 已提交
3565
	i915_vma_unpin(vma);
3566 3567
}

3568 3569
/**
 * Moves a single object to the CPU read, and possibly write domain.
3570 3571
 * @obj: object to act on
 * @write: requesting write or read-only access
3572 3573 3574 3575
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3576
int
3577
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3578
{
C
Chris Wilson 已提交
3579
	uint32_t old_write_domain, old_read_domains;
3580 3581
	int ret;

3582
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3583

3584 3585 3586 3587 3588 3589
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3590 3591 3592
	if (ret)
		return ret;

3593 3594 3595
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3596
	i915_gem_object_flush_gtt_write_domain(obj);
3597

3598 3599
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3600

3601
	/* Flush the CPU cache if it's still invalid. */
3602
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3603
		i915_gem_clflush_object(obj, false);
3604

3605
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3606 3607 3608 3609 3610
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3611
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3612 3613 3614 3615 3616

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3617 3618
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3619
	}
3620

C
Chris Wilson 已提交
3621 3622 3623 3624
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3625 3626 3627
	return 0;
}

3628 3629 3630
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3631 3632 3633 3634
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3635 3636 3637
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3638
static int
3639
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3640
{
3641
	struct drm_i915_private *dev_priv = to_i915(dev);
3642
	struct drm_i915_file_private *file_priv = file->driver_priv;
3643
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3644
	struct drm_i915_gem_request *request, *target = NULL;
3645
	long ret;
3646

3647 3648 3649
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3650

3651
	spin_lock(&file_priv->mm.lock);
3652
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3653 3654
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3655

3656 3657 3658 3659 3660 3661 3662
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3663
		target = request;
3664
	}
3665
	if (target)
3666
		i915_gem_request_get(target);
3667
	spin_unlock(&file_priv->mm.lock);
3668

3669
	if (target == NULL)
3670
		return 0;
3671

3672 3673 3674
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3675
	i915_gem_request_put(target);
3676

3677
	return ret < 0 ? ret : 0;
3678 3679
}

C
Chris Wilson 已提交
3680
struct i915_vma *
3681 3682
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3683
			 u64 size,
3684 3685
			 u64 alignment,
			 u64 flags)
3686
{
3687 3688
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3689 3690
	struct i915_vma *vma;
	int ret;
3691

3692 3693
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3694
	vma = i915_vma_instance(obj, vm, view);
3695
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3696
		return vma;
3697 3698 3699 3700

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3701
			return ERR_PTR(-ENOSPC);
3702

3703 3704 3705 3706 3707 3708 3709 3710
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3711
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3730
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3731 3732 3733
				return ERR_PTR(-ENOSPC);
		}

3734 3735
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3736 3737 3738
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3739
		     !!(flags & PIN_MAPPABLE),
3740
		     i915_vma_is_map_and_fenceable(vma));
3741 3742
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3743
			return ERR_PTR(ret);
3744 3745
	}

C
Chris Wilson 已提交
3746 3747 3748
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3749

C
Chris Wilson 已提交
3750
	return vma;
3751 3752
}

3753
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3768 3769 3770 3771 3772 3773 3774 3775 3776
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3777 3778
}

3779
static __always_inline unsigned int
3780
__busy_set_if_active(const struct dma_fence *fence,
3781 3782
		     unsigned int (*flag)(unsigned int id))
{
3783
	struct drm_i915_gem_request *rq;
3784

3785 3786 3787 3788
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3789
	 *
3790
	 * Note we only report on the status of native fences.
3791
	 */
3792 3793 3794 3795 3796 3797 3798 3799 3800
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3801 3802
}

3803
static __always_inline unsigned int
3804
busy_check_reader(const struct dma_fence *fence)
3805
{
3806
	return __busy_set_if_active(fence, __busy_read_flag);
3807 3808
}

3809
static __always_inline unsigned int
3810
busy_check_writer(const struct dma_fence *fence)
3811
{
3812 3813 3814 3815
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3816 3817
}

3818 3819
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3820
		    struct drm_file *file)
3821 3822
{
	struct drm_i915_gem_busy *args = data;
3823
	struct drm_i915_gem_object *obj;
3824 3825
	struct reservation_object_list *list;
	unsigned int seq;
3826
	int err;
3827

3828
	err = -ENOENT;
3829 3830
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3831
	if (!obj)
3832
		goto out;
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3852

3853 3854
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3855

3856 3857 3858 3859
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3860

3861 3862 3863 3864 3865 3866
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3867
	}
3868

3869 3870 3871 3872
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3873 3874 3875
out:
	rcu_read_unlock();
	return err;
3876 3877 3878 3879 3880 3881
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3882
	return i915_gem_ring_throttle(dev, file_priv);
3883 3884
}

3885 3886 3887 3888
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3889
	struct drm_i915_private *dev_priv = to_i915(dev);
3890
	struct drm_i915_gem_madvise *args = data;
3891
	struct drm_i915_gem_object *obj;
3892
	int err;
3893 3894 3895 3896 3897 3898 3899 3900 3901

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3902
	obj = i915_gem_object_lookup(file_priv, args->handle);
3903 3904 3905 3906 3907 3908
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3909

C
Chris Wilson 已提交
3910
	if (obj->mm.pages &&
3911
	    i915_gem_object_is_tiled(obj) &&
3912
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3913 3914
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3915
			__i915_gem_object_unpin_pages(obj);
3916 3917 3918
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3919
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3920
			__i915_gem_object_pin_pages(obj);
3921 3922
			obj->mm.quirked = true;
		}
3923 3924
	}

C
Chris Wilson 已提交
3925 3926
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3927

C
Chris Wilson 已提交
3928
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3929
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3930 3931
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3932
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3933
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3934

3935
out:
3936
	i915_gem_object_put(obj);
3937
	return err;
3938 3939
}

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3950 3951
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3952
{
3953 3954
	mutex_init(&obj->mm.lock);

3955
	INIT_LIST_HEAD(&obj->global_link);
3956
	INIT_LIST_HEAD(&obj->userfault_link);
3957
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3958
	INIT_LIST_HEAD(&obj->vma_list);
3959
	INIT_LIST_HEAD(&obj->batch_pool_link);
3960

3961 3962
	obj->ops = ops;

3963 3964 3965
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3966
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3967
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3968 3969 3970 3971

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3972

3973
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3974 3975
}

3976
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3977 3978
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3979 3980 3981 3982
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3983
struct drm_i915_gem_object *
3984
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3985
{
3986
	struct drm_i915_gem_object *obj;
3987
	struct address_space *mapping;
D
Daniel Vetter 已提交
3988
	gfp_t mask;
3989
	int ret;
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4002
	obj = i915_gem_object_alloc(dev_priv);
4003
	if (obj == NULL)
4004
		return ERR_PTR(-ENOMEM);
4005

4006
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4007 4008
	if (ret)
		goto fail;
4009

4010
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4011
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4012 4013 4014 4015 4016
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4017
	mapping = obj->base.filp->f_mapping;
4018
	mapping_set_gfp_mask(mapping, mask);
4019

4020
	i915_gem_object_init(obj, &i915_gem_object_ops);
4021

4022 4023
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4024

4025
	if (HAS_LLC(dev_priv)) {
4026
		/* On some devices, we can have the GPU use the LLC (the CPU
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4042 4043
	trace_i915_gem_object_create(obj);

4044
	return obj;
4045 4046 4047 4048

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4049 4050
}

4051 4052 4053 4054 4055 4056 4057 4058
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4059
	if (obj->mm.madv != I915_MADV_WILLNEED)
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4075 4076
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4077
{
4078
	struct drm_i915_gem_object *obj, *on;
4079

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4095 4096
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4097

4098
		list_del(&obj->global_link);
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4109

4110 4111
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4112
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4113 4114 4115 4116 4117
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4118
		reservation_object_fini(&obj->__builtin_resv);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4141

4142 4143 4144 4145 4146 4147 4148
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4149

4150 4151 4152
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4153

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4168

4169 4170 4171
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4172

4173 4174 4175
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4176
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4177
		obj->mm.madv = I915_MADV_DONTNEED;
4178

4179 4180 4181 4182 4183 4184
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4185 4186
}

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4198 4199 4200 4201 4202 4203
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4204 4205
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4206 4207
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4225
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4226
{
4227
	struct drm_device *dev = &dev_priv->drm;
4228
	int ret;
4229

4230 4231
	intel_suspend_gt_powersave(dev_priv);

4232
	mutex_lock(&dev->struct_mutex);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4246 4247 4248
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4249
	if (ret)
4250
		goto err;
4251

4252
	i915_gem_retire_requests(dev_priv);
4253
	GEM_BUG_ON(dev_priv->gt.active_requests);
4254

4255
	assert_kernel_context_is_current(dev_priv);
4256
	i915_gem_context_lost(dev_priv);
4257 4258
	mutex_unlock(&dev->struct_mutex);

4259
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4260
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4261 4262 4263 4264 4265 4266 4267 4268

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4269

4270 4271 4272
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4273
	WARN_ON(dev_priv->gt.awake);
4274
	WARN_ON(!intel_execlists_idle(dev_priv));
4275

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4295
	i915_gem_sanitize(dev_priv);
4296

4297
	return 0;
4298 4299 4300 4301

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4302 4303
}

4304
void i915_gem_resume(struct drm_i915_private *dev_priv)
4305
{
4306
	struct drm_device *dev = &dev_priv->drm;
4307

4308 4309
	WARN_ON(dev_priv->gt.awake);

4310
	mutex_lock(&dev->struct_mutex);
4311
	i915_gem_restore_gtt_mappings(dev_priv);
4312 4313 4314 4315 4316

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4317
	dev_priv->gt.resume(dev_priv);
4318 4319 4320 4321

	mutex_unlock(&dev->struct_mutex);
}

4322
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4323
{
4324
	if (INTEL_GEN(dev_priv) < 5 ||
4325 4326 4327 4328 4329 4330
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4331
	if (IS_GEN5(dev_priv))
4332 4333
		return;

4334
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4335
	if (IS_GEN6(dev_priv))
4336
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4337
	else if (IS_GEN7(dev_priv))
4338
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4339
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4340
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4341 4342
	else
		BUG();
4343
}
D
Daniel Vetter 已提交
4344

4345
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4346 4347 4348 4349 4350 4351 4352
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4353
static void init_unused_rings(struct drm_i915_private *dev_priv)
4354
{
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4367 4368 4369
	}
}

4370
static int __i915_gem_restart_engines(void *data)
4371
{
4372
	struct drm_i915_private *i915 = data;
4373
	struct intel_engine_cs *engine;
4374
	enum intel_engine_id id;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4388
	int ret;
4389

4390 4391
	dev_priv->gt.last_init_time = ktime_get();

4392 4393 4394
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4395
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4396
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4397

4398
	if (IS_HASWELL(dev_priv))
4399
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4400
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4401

4402
	if (HAS_PCH_NOP(dev_priv)) {
4403
		if (IS_IVYBRIDGE(dev_priv)) {
4404 4405 4406
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4407
		} else if (INTEL_GEN(dev_priv) >= 7) {
4408 4409 4410 4411
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4412 4413
	}

4414
	i915_gem_init_swizzling(dev_priv);
4415

4416 4417 4418 4419 4420 4421
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4422
	init_unused_rings(dev_priv);
4423

4424
	BUG_ON(!dev_priv->kernel_context);
4425

4426
	ret = i915_ppgtt_init_hw(dev_priv);
4427 4428 4429 4430 4431 4432
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4433 4434 4435
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4436

4437
	intel_mocs_init_l3cc_table(dev_priv);
4438

4439
	/* We can't enable contexts until all firmware is loaded */
4440
	ret = intel_guc_setup(dev_priv);
4441 4442
	if (ret)
		goto out;
4443

4444 4445
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4446
	return ret;
4447 4448
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4470
int i915_gem_init(struct drm_i915_private *dev_priv)
4471 4472 4473
{
	int ret;

4474
	mutex_lock(&dev_priv->drm.struct_mutex);
4475

4476
	if (!i915.enable_execlists) {
4477
		dev_priv->gt.resume = intel_legacy_submission_resume;
4478
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4479
	} else {
4480
		dev_priv->gt.resume = intel_lr_context_resume;
4481
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4482 4483
	}

4484 4485 4486 4487 4488 4489 4490 4491
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4492
	i915_gem_init_userptr(dev_priv);
4493 4494 4495 4496

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4497

4498
	ret = i915_gem_context_init(dev_priv);
4499 4500
	if (ret)
		goto out_unlock;
4501

4502
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4503
	if (ret)
4504
		goto out_unlock;
4505

4506
	ret = i915_gem_init_hw(dev_priv);
4507
	if (ret == -EIO) {
4508
		/* Allow engine initialisation to fail by marking the GPU as
4509 4510 4511 4512
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4513
		i915_gem_set_wedged(dev_priv);
4514
		ret = 0;
4515
	}
4516 4517

out_unlock:
4518
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4519
	mutex_unlock(&dev_priv->drm.struct_mutex);
4520

4521
	return ret;
4522 4523
}

4524 4525 4526 4527 4528
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4529
void
4530
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4531
{
4532
	struct intel_engine_cs *engine;
4533
	enum intel_engine_id id;
4534

4535
	for_each_engine(engine, dev_priv, id)
4536
		dev_priv->gt.cleanup_engine(engine);
4537 4538
}

4539 4540 4541
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4542
	int i;
4543 4544 4545 4546

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4547 4548 4549
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4550 4551 4552 4553
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4554
	if (intel_vgpu_active(dev_priv))
4555 4556 4557 4558
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4559 4560 4561 4562 4563 4564 4565
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4566
	i915_gem_restore_fences(dev_priv);
4567

4568
	i915_gem_detect_bit_6_swizzle(dev_priv);
4569 4570
}

4571
int
4572
i915_gem_load_init(struct drm_i915_private *dev_priv)
4573
{
4574
	int err = -ENOMEM;
4575

4576 4577
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4578 4579
		goto err_out;

4580 4581
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4582 4583
		goto err_objects;

4584 4585 4586 4587 4588
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4589 4590
		goto err_vmas;

4591 4592 4593 4594 4595 4596
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4597 4598
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4599
	err = i915_gem_timeline_init__global(dev_priv);
4600 4601
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4602
		goto err_dependencies;
4603

4604
	INIT_LIST_HEAD(&dev_priv->context_list);
4605 4606
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4607 4608
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4609
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4610
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4611
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4612
			  i915_gem_retire_work_handler);
4613
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4614
			  i915_gem_idle_work_handler);
4615
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4616
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4617

4618 4619
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4620
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4621

4622 4623
	dev_priv->mm.interruptible = true;

4624 4625
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4626
	spin_lock_init(&dev_priv->fb_tracking.lock);
4627 4628 4629

	return 0;

4630 4631
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4632 4633 4634 4635 4636 4637 4638 4639
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4640
}
4641

4642
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4643
{
4644 4645
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4646 4647 4648 4649 4650
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4651
	kmem_cache_destroy(dev_priv->dependencies);
4652 4653 4654
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4655 4656 4657

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4658 4659
}

4660 4661 4662 4663 4664 4665 4666 4667 4668
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4669 4670 4671
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4672 4673 4674 4675 4676
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4687 4688 4689
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4690 4691
	 */

4692 4693
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4694

4695
	for (p = phases; *p; p++) {
4696
		list_for_each_entry(obj, *p, global_link) {
4697 4698 4699
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4700
	}
4701
	mutex_unlock(&dev_priv->drm.struct_mutex);
4702 4703 4704 4705

	return 0;
}

4706
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4707
{
4708
	struct drm_i915_file_private *file_priv = file->driver_priv;
4709
	struct drm_i915_gem_request *request;
4710 4711 4712 4713 4714

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4715
	spin_lock(&file_priv->mm.lock);
4716
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4717
		request->file_priv = NULL;
4718
	spin_unlock(&file_priv->mm.lock);
4719

4720
	if (!list_empty(&file_priv->rps.link)) {
4721
		spin_lock(&to_i915(dev)->rps.client_lock);
4722
		list_del(&file_priv->rps.link);
4723
		spin_unlock(&to_i915(dev)->rps.client_lock);
4724
	}
4725 4726 4727 4728 4729
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4730
	int ret;
4731

4732
	DRM_DEBUG("\n");
4733 4734 4735 4736 4737 4738

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4739
	file_priv->dev_priv = to_i915(dev);
4740
	file_priv->file = file;
4741
	INIT_LIST_HEAD(&file_priv->rps.link);
4742 4743 4744 4745

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4746
	file_priv->bsd_engine = -1;
4747

4748 4749 4750
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4751

4752
	return ret;
4753 4754
}

4755 4756
/**
 * i915_gem_track_fb - update frontbuffer tracking
4757 4758 4759
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4760 4761 4762 4763
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4764 4765 4766 4767
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4768 4769 4770 4771 4772 4773 4774 4775 4776
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4777
	if (old) {
4778 4779
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4780 4781 4782
	}

	if (new) {
4783 4784
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4785 4786 4787
	}
}

4788 4789
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4790
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4791 4792 4793 4794 4795 4796 4797
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4798
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4799
	if (IS_ERR(obj))
4800 4801 4802 4803 4804 4805
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4806
	ret = i915_gem_object_pin_pages(obj);
4807 4808 4809
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4810
	sg = obj->mm.pages;
4811
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4812
	obj->mm.dirty = true; /* Backing store is now out of date */
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4824
	i915_gem_object_put(obj);
4825 4826
	return ERR_PTR(ret);
}
4827 4828 4829 4830 4831 4832

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4833
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4834 4835 4836 4837 4838
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4839
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4964
	if (!obj->mm.dirty)
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}