i915_gem.c 49.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
43
#include "gem/i915_gem_ioctls.h"
44 45
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
46 47
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt_pm.h"
48 49 50 51
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"

52
#include "i915_drv.h"
53
#include "i915_scatterlist.h"
54 55 56
#include "i915_trace.h"
#include "i915_vgpu.h"

57
#include "intel_display.h"
58 59
#include "intel_drv.h"
#include "intel_frontbuffer.h"
60
#include "intel_pm.h"
61

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
68 69 70
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
81
			    struct drm_file *file)
82
{
83
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
84
	struct drm_i915_gem_get_aperture *args = data;
85
	struct i915_vma *vma;
86
	u64 pinned;
87

88 89
	mutex_lock(&ggtt->vm.mutex);

90
	pinned = ggtt->vm.reserved;
91
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
92
		if (i915_vma_is_pinned(vma))
93
			pinned += vma->node.size;
94 95

	mutex_unlock(&ggtt->vm.mutex);
96

97
	args->aper_size = ggtt->vm.total;
98
	args->aper_available_size = args->aper_size - pinned;
99

100 101 102
	return 0;
}

103
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
104 105 106
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
107
	int ret = 0;
108 109

	lockdep_assert_held(&obj->base.dev->struct_mutex);
110

111 112 113 114
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
115
		list_move_tail(&vma->obj_link, &still_in_list);
116 117
		spin_unlock(&obj->vma.lock);

118
		ret = i915_vma_unbind(vma);
119 120

		spin_lock(&obj->vma.lock);
121
	}
122 123
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
124 125 126 127

	return ret;
}

128 129 130
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
131
		     struct drm_file *file)
132 133
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
134
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
135 136 137 138

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
139
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
140 141
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
142

143
	drm_clflush_virt_range(vaddr, args->size);
144
	i915_gem_chipset_flush(to_i915(obj->base.dev));
145

146
	intel_fb_obj_flush(obj, ORIGIN_CPU);
147
	return 0;
148 149
}

150 151
static int
i915_gem_create(struct drm_file *file,
152
		struct drm_i915_private *dev_priv,
153
		u64 *size_p,
154
		u32 *handle_p)
155
{
156
	struct drm_i915_gem_object *obj;
157
	u32 handle;
158 159
	u64 size;
	int ret;
160

161
	size = round_up(*size_p, PAGE_SIZE);
162 163
	if (size == 0)
		return -EINVAL;
164 165

	/* Allocate the new object */
166
	obj = i915_gem_object_create_shmem(dev_priv, size);
167 168
	if (IS_ERR(obj))
		return PTR_ERR(obj);
169

170
	ret = drm_gem_handle_create(file, &obj->base, &handle);
171
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
172
	i915_gem_object_put(obj);
173 174
	if (ret)
		return ret;
175

176
	*handle_p = handle;
177
	*size_p = size;
178 179 180
	return 0;
}

181 182 183 184 185
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

203
	/* have to work out size/pitch and return them */
204 205 206 207 208 209 210
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

211
	args->size = args->pitch * args->height;
212
	return i915_gem_create(file, to_i915(dev),
213
			       &args->size, &args->handle);
214 215 216 217
}

/**
 * Creates a new mm object and returns a handle to it.
218 219 220
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
221 222 223 224 225
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
226
	struct drm_i915_private *dev_priv = to_i915(dev);
227
	struct drm_i915_gem_create *args = data;
228

229
	i915_gem_flush_free_objects(dev_priv);
230

231
	return i915_gem_create(file, dev_priv,
232
			       &args->size, &args->handle);
233 234
}

235
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
236
{
237 238
	intel_wakeref_t wakeref;

239 240 241 242 243
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
244 245 246 247 248 249 250 251 252 253
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
254 255
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
256
	 */
257

258 259 260 261 262
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

263
	i915_gem_chipset_flush(dev_priv);
264

265
	with_intel_runtime_pm(dev_priv, wakeref) {
266
		struct intel_uncore *uncore = &dev_priv->uncore;
267

268 269 270 271
		spin_lock_irq(&uncore->lock);
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
		spin_unlock_irq(&uncore->lock);
272
	}
273 274
}

275
static int
276 277
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
278 279 280 281 282 283
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

284 285
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
286

287
	ret = __copy_to_user(user_data, vaddr + offset, len);
288

289
	kunmap(page);
290

291
	return ret ? -EFAULT : 0;
292 293 294 295 296 297 298 299
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
300 301 302
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
303 304
	int ret;

305
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
306 307 308
	if (ret)
		return ret;

309 310 311 312 313
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

314 315 316 317 318
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
319
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
320 321 322 323 324 325 326 327 328 329 330

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

331
	i915_gem_object_unlock_fence(obj, fence);
332 333 334 335 336 337 338
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
339
{
340
	void __iomem *vaddr;
341
	unsigned long unwritten;
342 343

	/* We can use the cpu mem copy function because this is X86. */
344 345 346 347
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
348 349
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
350 351 352 353
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
354 355
		io_mapping_unmap(vaddr);
	}
356 357 358 359
	return unwritten;
}

static int
360 361
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
362
{
363 364
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
365
	intel_wakeref_t wakeref;
366
	struct drm_mm_node node;
367
	struct dma_fence *fence;
368
	void __user *user_data;
369
	struct i915_vma *vma;
370
	u64 remain, offset;
371 372
	int ret;

373 374 375 376
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

377
	wakeref = intel_runtime_pm_get(i915);
378
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
379 380 381
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
382 383 384
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
385
		ret = i915_vma_put_fence(vma);
386 387 388 389 390
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
391
	if (IS_ERR(vma)) {
392
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
393
		if (ret)
394 395
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
396 397
	}

398 399 400
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
401 402 403
	if (ret)
		goto out_unpin;

404 405 406 407 408 409 410 411 412 413 414 415
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
416

417 418 419
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
420 421 422 423 424 425 426 427 428 429 430 431 432 433

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
434 435 436
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
437 438 439 440
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
441

442
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
443
				  user_data, page_length)) {
444 445 446 447 448 449 450 451 452
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

453
	i915_gem_object_unlock_fence(obj, fence);
454
out_unpin:
455
	mutex_lock(&i915->drm.struct_mutex);
456 457
	if (node.allocated) {
		wmb();
458
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
459 460
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
461
		i915_vma_unpin(vma);
462
	}
463
out_unlock:
464
	intel_runtime_pm_put(i915, wakeref);
465
	mutex_unlock(&i915->drm.struct_mutex);
466

467 468 469
	return ret;
}

470 471
/**
 * Reads data from the object referenced by handle.
472 473 474
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
475 476 477 478 479
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
480
		     struct drm_file *file)
481 482
{
	struct drm_i915_gem_pread *args = data;
483
	struct drm_i915_gem_object *obj;
484
	int ret;
485

486 487 488
	if (args->size == 0)
		return 0;

489
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
490 491 492
		       args->size))
		return -EFAULT;

493
	obj = i915_gem_object_lookup(file, args->handle);
494 495
	if (!obj)
		return -ENOENT;
496

497
	/* Bounds check source.  */
498
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
499
		ret = -EINVAL;
500
		goto out;
C
Chris Wilson 已提交
501 502
	}

C
Chris Wilson 已提交
503 504
	trace_i915_gem_object_pread(obj, args->offset, args->size);

505 506
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
507
				   MAX_SCHEDULE_TIMEOUT);
508
	if (ret)
509
		goto out;
510

511
	ret = i915_gem_object_pin_pages(obj);
512
	if (ret)
513
		goto out;
514

515
	ret = i915_gem_shmem_pread(obj, args);
516
	if (ret == -EFAULT || ret == -ENODEV)
517
		ret = i915_gem_gtt_pread(obj, args);
518

519 520
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
521
	i915_gem_object_put(obj);
522
	return ret;
523 524
}

525 526
/* This is the fast write path which cannot handle
 * page faults in the source data
527
 */
528

529 530 531 532
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
533
{
534
	void __iomem *vaddr;
535
	unsigned long unwritten;
536

537
	/* We can use the cpu mem copy function because this is X86. */
538 539
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
540
						      user_data, length);
541 542
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
543 544 545
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
546 547
		io_mapping_unmap(vaddr);
	}
548 549 550 551

	return unwritten;
}

552 553 554
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
555
 * @obj: i915 GEM object
556
 * @args: pwrite arguments structure
557
 */
558
static int
559 560
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
561
{
562
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
563
	struct i915_ggtt *ggtt = &i915->ggtt;
564
	intel_wakeref_t wakeref;
565
	struct drm_mm_node node;
566
	struct dma_fence *fence;
567 568 569
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
570
	int ret;
571

572 573 574
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
575

576 577 578 579 580 581 582 583
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
584 585
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
586 587 588 589 590
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
591
		wakeref = intel_runtime_pm_get(i915);
592 593
	}

C
Chris Wilson 已提交
594
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
595 596 597
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
598 599 600
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
601
		ret = i915_vma_put_fence(vma);
602 603 604 605 606
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
607
	if (IS_ERR(vma)) {
608
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
609
		if (ret)
610
			goto out_rpm;
611
		GEM_BUG_ON(!node.allocated);
612
	}
D
Daniel Vetter 已提交
613

614 615 616
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
617 618 619
	if (ret)
		goto out_unpin;

620 621 622 623 624 625 626 627 628 629 630 631
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
632

633
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
634

635 636 637 638
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
639 640
		/* Operation in this page
		 *
641 642 643
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
644
		 */
645
		u32 page_base = node.start;
646 647
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
648 649 650
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
651 652 653
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
654 655 656 657
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
658
		/* If we get a fault while copying data, then (presumably) our
659 660
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
661 662
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
663
		 */
664
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
665 666 667
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
668
		}
669

670 671 672
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
673
	}
674
	intel_fb_obj_flush(obj, ORIGIN_CPU);
675

676
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
677
out_unpin:
678
	mutex_lock(&i915->drm.struct_mutex);
679 680
	if (node.allocated) {
		wmb();
681
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
682 683
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
684
		i915_vma_unpin(vma);
685
	}
686
out_rpm:
687
	intel_runtime_pm_put(i915, wakeref);
688
out_unlock:
689
	mutex_unlock(&i915->drm.struct_mutex);
690
	return ret;
691 692
}

693 694 695 696 697
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
698
static int
699 700 701
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
702
{
703
	char *vaddr;
704 705
	int ret;

706
	vaddr = kmap(page);
707

708 709
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
710

711 712 713
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
714

715 716 717
	kunmap(page);

	return ret ? -EFAULT : 0;
718 719 720 721 722 723 724
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
725
	unsigned int needs_clflush;
726
	unsigned int offset, idx;
727 728 729
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
730
	int ret;
731

732
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
733 734
	if (ret)
		return ret;
735

736 737 738 739 740
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

741 742 743 744 745 746 747
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
748

749 750 751 752 753
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
754
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
755

756 757 758
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
759
		if (ret)
760
			break;
761

762 763 764
		remain -= length;
		user_data += length;
		offset = 0;
765
	}
766

767
	intel_fb_obj_flush(obj, ORIGIN_CPU);
768 769
	i915_gem_object_unlock_fence(obj, fence);

770
	return ret;
771 772 773 774
}

/**
 * Writes data to the object referenced by handle.
775 776 777
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
778 779 780 781 782
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
783
		      struct drm_file *file)
784 785
{
	struct drm_i915_gem_pwrite *args = data;
786
	struct drm_i915_gem_object *obj;
787 788 789 790 791
	int ret;

	if (args->size == 0)
		return 0;

792
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
793 794
		return -EFAULT;

795
	obj = i915_gem_object_lookup(file, args->handle);
796 797
	if (!obj)
		return -ENOENT;
798

799
	/* Bounds check destination. */
800
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
801
		ret = -EINVAL;
802
		goto err;
C
Chris Wilson 已提交
803 804
	}

805 806 807 808 809 810
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
811 812
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

813 814 815 816 817 818
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

819 820 821
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
822
				   MAX_SCHEDULE_TIMEOUT);
823 824 825
	if (ret)
		goto err;

826
	ret = i915_gem_object_pin_pages(obj);
827
	if (ret)
828
		goto err;
829

D
Daniel Vetter 已提交
830
	ret = -EFAULT;
831 832 833 834 835 836
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
837
	if (!i915_gem_object_has_struct_page(obj) ||
838
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
839 840
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
841 842
		 * textures). Fallback to the shmem path in that case.
		 */
843
		ret = i915_gem_gtt_pwrite_fast(obj, args);
844

845
	if (ret == -EFAULT || ret == -ENOSPC) {
846 847
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
848
		else
849
			ret = i915_gem_shmem_pwrite(obj, args);
850
	}
851

852
	i915_gem_object_unpin_pages(obj);
853
err:
C
Chris Wilson 已提交
854
	i915_gem_object_put(obj);
855
	return ret;
856 857 858 859
}

/**
 * Called when user space has done writes to this buffer
860 861 862
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
863 864 865
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
866
			 struct drm_file *file)
867 868
{
	struct drm_i915_gem_sw_finish *args = data;
869
	struct drm_i915_gem_object *obj;
870

871
	obj = i915_gem_object_lookup(file, args->handle);
872 873
	if (!obj)
		return -ENOENT;
874

T
Tina Zhang 已提交
875 876 877 878 879
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

880
	/* Pinned buffers may be scanout, so flush the cache */
881
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
882
	i915_gem_object_put(obj);
883 884

	return 0;
885 886
}

887
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
888
{
889
	struct drm_i915_gem_object *obj, *on;
890
	int i;
891

892 893 894 895 896 897
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
898

899
	list_for_each_entry_safe(obj, on,
900 901
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
902 903 904 905 906 907 908 909

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

910 911 912 913 914 915 916 917 918 919
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
920 921 922 923

		if (!reg->vma)
			continue;

924
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
925 926
		reg->dirty = true;
	}
927 928
}

929 930
static int wait_for_engines(struct drm_i915_private *i915)
{
931
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
932 933
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
934
		GEM_TRACE_DUMP();
935 936
		i915_gem_set_wedged(i915);
		return -EIO;
937 938 939 940 941
	}

	return 0;
}

942 943 944 945 946 947 948 949
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
950
	list_for_each_entry(tl, &gt->active_list, link) {
951 952
		struct i915_request *rq;

953
		rq = i915_active_request_get_unlocked(&tl->last_request);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
969
			gen6_rps_boost(rq);
970 971 972 973 974 975 976 977

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
978
		tl = list_entry(&gt->active_list, typeof(*tl), link);
979 980 981 982 983 984
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

985 986
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
987
{
988
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
989
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
990 991
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
992

993 994 995 996
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

997 998 999 1000
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

1001
	if (flags & I915_WAIT_LOCKED) {
1002
		int err;
1003 1004 1005

		lockdep_assert_held(&i915->drm.struct_mutex);

1006 1007 1008 1009
		err = wait_for_engines(i915);
		if (err)
			return err;

1010
		i915_retire_requests(i915);
1011
	}
1012 1013

	return 0;
1014 1015
}

C
Chris Wilson 已提交
1016
struct i915_vma *
1017 1018
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
1019
			 u64 size,
1020 1021
			 u64 alignment,
			 u64 flags)
1022
{
1023
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1024
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
1025 1026
	struct i915_vma *vma;
	int ret;
1027

1028 1029
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1030 1031
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1062
	vma = i915_vma_instance(obj, vm, view);
1063
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1064
		return vma;
1065 1066

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1067 1068 1069
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1070

1071
			if (flags & PIN_MAPPABLE &&
1072
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1073 1074 1075
				return ERR_PTR(-ENOSPC);
		}

1076 1077
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1078 1079 1080
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1081
		     !!(flags & PIN_MAPPABLE),
1082
		     i915_vma_is_map_and_fenceable(vma));
1083 1084
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1085
			return ERR_PTR(ret);
1086 1087
	}

C
Chris Wilson 已提交
1088 1089 1090
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1091

C
Chris Wilson 已提交
1092
	return vma;
1093 1094
}

1095 1096 1097 1098
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1099
	struct drm_i915_private *i915 = to_i915(dev);
1100
	struct drm_i915_gem_madvise *args = data;
1101
	struct drm_i915_gem_object *obj;
1102
	int err;
1103 1104 1105 1106 1107 1108 1109 1110 1111

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1112
	obj = i915_gem_object_lookup(file_priv, args->handle);
1113 1114 1115 1116 1117 1118
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1119

1120
	if (i915_gem_object_has_pages(obj) &&
1121
	    i915_gem_object_is_tiled(obj) &&
1122
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1123 1124
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1125
			__i915_gem_object_unpin_pages(obj);
1126 1127 1128
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1129
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1130
			__i915_gem_object_pin_pages(obj);
1131 1132
			obj->mm.quirked = true;
		}
1133 1134
	}

C
Chris Wilson 已提交
1135 1136
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1137

1138 1139 1140
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1141
		if (i915_gem_object_is_shrinkable(obj)) {
1142 1143 1144 1145
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1146 1147 1148
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1149
				list = &i915->mm.shrink_list;
1150
			list_move_tail(&obj->mm.link, list);
1151 1152

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1153
		}
1154 1155
	}

C
Chris Wilson 已提交
1156
	/* if the object is no longer attached, discard its backing storage */
1157 1158
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1159
		i915_gem_object_truncate(obj);
1160

C
Chris Wilson 已提交
1161
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1162
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1163

1164
out:
1165
	i915_gem_object_put(obj);
1166
	return err;
1167 1168
}

1169 1170
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1171 1172
	intel_wakeref_t wakeref;

1173 1174
	GEM_TRACE("\n");

1175
	wakeref = intel_runtime_pm_get(i915);
1176
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1177 1178 1179 1180 1181 1182 1183

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1184
	if (i915_terminally_wedged(i915))
1185 1186
		i915_gem_unset_wedged(i915);

1187 1188 1189 1190 1191 1192
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1193
	 * of the reset, so this could be applied to even earlier gen.
1194
	 */
1195
	intel_gt_sanitize(i915, false);
1196

1197
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1198
	intel_runtime_pm_put(i915, wakeref);
1199

1200
	mutex_lock(&i915->drm.struct_mutex);
1201 1202
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1203 1204
}

1205
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
1206
{
1207
	if (INTEL_GEN(dev_priv) < 5 ||
1208 1209 1210 1211 1212 1213
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

1214
	if (IS_GEN(dev_priv, 5))
1215 1216
		return;

1217
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
1218
	if (IS_GEN(dev_priv, 6))
1219
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
1220
	else if (IS_GEN(dev_priv, 7))
1221
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
1222
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
1223
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
1224 1225
	else
		BUG();
1226
}
D
Daniel Vetter 已提交
1227

1228
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
1229 1230 1231 1232 1233 1234 1235
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

1236
static void init_unused_rings(struct drm_i915_private *dev_priv)
1237
{
1238 1239 1240 1241 1242 1243
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
1244
	} else if (IS_GEN(dev_priv, 2)) {
1245 1246
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
1247
	} else if (IS_GEN(dev_priv, 3)) {
1248 1249
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
1250 1251 1252
	}
}

1253 1254
int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
1255
	int ret;
1256

1257 1258
	dev_priv->gt.last_init_time = ktime_get();

1259
	/* Double layer security blanket, see i915_gem_init() */
1260
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1261

1262
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
1263
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
1264

1265
	if (IS_HASWELL(dev_priv))
1266
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
1267
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1268

1269
	/* Apply the GT workarounds... */
1270
	intel_gt_apply_workarounds(dev_priv);
1271 1272
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
1273

1274
	i915_gem_init_swizzling(dev_priv);
1275

1276 1277 1278 1279 1280 1281
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1282
	init_unused_rings(dev_priv);
1283

1284
	BUG_ON(!dev_priv->kernel_context);
1285 1286
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
1287
		goto out;
1288

1289
	ret = i915_ppgtt_init_hw(dev_priv);
1290
	if (ret) {
1291
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1292 1293 1294
		goto out;
	}

1295 1296 1297 1298 1299 1300
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

1301 1302
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
1303 1304
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
1305
		goto out;
1306
	}
1307

1308
	intel_mocs_init_l3cc_table(dev_priv);
1309

1310
	/* Only when the HW is re-initialised, can we replay the requests */
1311
	ret = intel_engines_resume(dev_priv);
1312 1313
	if (ret)
		goto cleanup_uc;
1314

1315
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1316

1317
	intel_engines_set_scheduler_caps(dev_priv);
1318
	return 0;
1319 1320 1321

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
1322
out:
1323
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1324 1325

	return ret;
1326 1327
}

1328 1329 1330
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
1331 1332
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
1333
	enum intel_engine_id id;
1334
	int err = 0;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

1349 1350
	e = i915_gem_context_lock_engines(ctx);

1351
	for_each_engine(engine, i915, id) {
1352
		struct intel_context *ce = e->engines[id];
1353
		struct i915_request *rq;
1354

1355
		rq = intel_context_create_request(ce);
1356 1357
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1358
			goto err_active;
1359 1360
		}

1361
		err = 0;
1362 1363
		if (rq->engine->init_context)
			err = rq->engine->init_context(rq);
1364

1365
		i915_request_add(rq);
1366 1367 1368 1369
		if (err)
			goto err_active;
	}

1370
	/* Flush the default context image to memory, and enable powersaving. */
1371
	if (!i915_gem_load_power_context(i915)) {
1372
		err = -EIO;
1373
		goto err_active;
1374
	}
1375 1376

	for_each_engine(engine, i915, id) {
1377 1378
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
1379
		void *vaddr;
1380 1381 1382 1383

		if (!state)
			continue;

1384
		GEM_BUG_ON(intel_context_is_pinned(ce));
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

1398
		i915_gem_object_lock(state->obj);
1399
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1400
		i915_gem_object_unlock(state->obj);
1401 1402 1403 1404
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
1405 1406
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
1407 1408 1409

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
1410
						I915_MAP_FORCE_WB);
1411 1412 1413 1414 1415 1416
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
1438
	i915_gem_context_unlock_engines(ctx);
1439 1440 1441 1442 1443 1444 1445
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
1446 1447
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1448
	 */
1449
	i915_gem_set_wedged(i915);
1450 1451 1452
	goto out_ctx;
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1508
int i915_gem_init(struct drm_i915_private *dev_priv)
1509 1510 1511
{
	int ret;

1512 1513
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1514 1515 1516
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1517
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1518

1519 1520
	i915_timelines_init(dev_priv);

1521 1522 1523 1524
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1525
	ret = intel_uc_init_misc(dev_priv);
1526 1527 1528
	if (ret)
		return ret;

1529
	ret = intel_wopcm_init(&dev_priv->wopcm);
1530
	if (ret)
1531
		goto err_uc_misc;
1532

1533 1534 1535 1536 1537 1538
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1539
	mutex_lock(&dev_priv->drm.struct_mutex);
1540
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1541

1542
	ret = i915_gem_init_ggtt(dev_priv);
1543 1544 1545 1546
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1547

1548
	ret = i915_gem_init_scratch(dev_priv,
1549
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1550 1551 1552 1553
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1554

1555 1556 1557 1558 1559 1560
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1561 1562 1563 1564 1565 1566
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1567
	ret = intel_engines_init(dev_priv);
1568 1569 1570 1571
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1572

1573 1574
	intel_init_gt_powersave(dev_priv);

1575
	ret = intel_uc_init(dev_priv);
1576
	if (ret)
1577
		goto err_pm;
1578

1579 1580 1581 1582
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1594 1595 1596 1597
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
		goto err_init_hw;

1598
	ret = __intel_engines_record_defaults(dev_priv);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

1612
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
1624 1625
	mutex_unlock(&dev_priv->drm.struct_mutex);

1626
	i915_gem_set_wedged(dev_priv);
1627
	i915_gem_suspend(dev_priv);
1628 1629
	i915_gem_suspend_late(dev_priv);

1630 1631
	i915_gem_drain_workqueue(dev_priv);

1632
	mutex_lock(&dev_priv->drm.struct_mutex);
1633
	intel_uc_fini_hw(dev_priv);
1634 1635
err_uc_init:
	intel_uc_fini(dev_priv);
1636 1637 1638
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1639
		intel_engines_cleanup(dev_priv);
1640 1641 1642 1643
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1644 1645
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1646 1647
err_ggtt:
err_unlock:
1648
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1649 1650
	mutex_unlock(&dev_priv->drm.struct_mutex);

1651
err_uc_misc:
1652
	intel_uc_fini_misc(dev_priv);
1653

1654
	if (ret != -EIO) {
1655
		i915_gem_cleanup_userptr(dev_priv);
1656 1657
		i915_timelines_fini(dev_priv);
	}
1658

1659
	if (ret == -EIO) {
1660 1661
		mutex_lock(&dev_priv->drm.struct_mutex);

1662 1663
		/*
		 * Allow engine initialisation to fail by marking the GPU as
1664 1665 1666
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
1667
		if (!i915_reset_failed(dev_priv)) {
1668 1669
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
1670 1671
			i915_gem_set_wedged(dev_priv);
		}
1672 1673 1674 1675 1676 1677 1678 1679

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1680 1681
	}

1682
	i915_gem_drain_freed_objects(dev_priv);
1683
	return ret;
1684 1685
}

1686
void i915_gem_fini_hw(struct drm_i915_private *dev_priv)
1687
{
1688 1689
	GEM_BUG_ON(dev_priv->gt.awake);

1690 1691
	intel_wakeref_auto_fini(&dev_priv->mm.userfault_wakeref);

1692
	i915_gem_suspend_late(dev_priv);
1693
	intel_disable_gt_powersave(dev_priv);
1694 1695 1696 1697 1698 1699 1700

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
1701 1702 1703 1704 1705 1706 1707 1708
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1709
	intel_engines_cleanup(dev_priv);
1710
	i915_gem_contexts_fini(dev_priv);
1711
	i915_gem_fini_scratch(dev_priv);
1712 1713
	mutex_unlock(&dev_priv->drm.struct_mutex);

1714 1715
	intel_wa_list_free(&dev_priv->gt_wa_list);

1716 1717
	intel_cleanup_gt_powersave(dev_priv);

1718 1719
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
1720
	i915_timelines_fini(dev_priv);
1721 1722 1723 1724 1725 1726

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1727 1728 1729 1730 1731
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1732 1733 1734
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
1735
	int i;
1736

1737
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
1738 1739
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
1740
	else if (INTEL_GEN(dev_priv) >= 4 ||
1741 1742
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
1743 1744 1745 1746
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

1747
	if (intel_vgpu_active(dev_priv))
1748 1749 1750 1751
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
1752 1753 1754 1755 1756 1757 1758
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
1759
	i915_gem_restore_fences(dev_priv);
1760

1761
	i915_gem_detect_bit_6_swizzle(dev_priv);
1762 1763
}

1764 1765 1766 1767 1768 1769 1770
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

1771
	INIT_LIST_HEAD(&i915->mm.purge_list);
1772
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1773
	INIT_LIST_HEAD(&i915->mm.fence_list);
1774

1775
	INIT_LIST_HEAD(&i915->mm.userfault_list);
1776
	intel_wakeref_auto_init(&i915->mm.userfault_wakeref, i915);
1777

1778
	i915_gem_init__objects(i915);
1779 1780
}

1781
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1782
{
1783
	static struct lock_class_key reset_key;
1784
	int err;
1785

1786 1787
	intel_gt_pm_init(dev_priv);

1788
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
1789
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
1790
	spin_lock_init(&dev_priv->gt.closed_lock);
1791 1792
	lockdep_init_map(&dev_priv->gt.reset_lockmap,
			 "i915.reset", &reset_key, 0);
1793

1794
	i915_gem_init__mm(dev_priv);
1795
	i915_gem_init__pm(dev_priv);
1796

1797
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1798
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
1799
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
1800
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
1801

1802 1803
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

1804
	spin_lock_init(&dev_priv->fb_tracking.lock);
1805

M
Matthew Auld 已提交
1806 1807 1808 1809
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1810
	return 0;
1811
}
1812

1813
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1814
{
1815
	i915_gem_drain_freed_objects(dev_priv);
1816 1817
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1818
	WARN_ON(dev_priv->mm.shrink_count);
1819

1820 1821
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
1822
	i915_gemfs_fini(dev_priv);
1823 1824
}

1825 1826
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1827 1828 1829
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1830 1831 1832 1833 1834
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1835
int i915_gem_freeze_late(struct drm_i915_private *i915)
1836 1837
{
	struct drm_i915_gem_object *obj;
1838
	intel_wakeref_t wakeref;
1839

1840 1841
	/*
	 * Called just before we write the hibernation image.
1842 1843 1844 1845 1846 1847 1848 1849
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1850 1851
	 *
	 * To try and reduce the hibernation image, we manually shrink
1852
	 * the objects as well, see i915_gem_freeze()
1853 1854
	 */

1855 1856 1857
	wakeref = intel_runtime_pm_get(i915);

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1858
	i915_gem_drain_freed_objects(i915);
1859

1860 1861 1862 1863
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1864
	}
1865 1866

	intel_runtime_pm_put(i915, wakeref);
1867 1868 1869 1870

	return 0;
}

1871
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1872
{
1873
	struct drm_i915_file_private *file_priv = file->driver_priv;
1874
	struct i915_request *request;
1875 1876 1877 1878 1879

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1880
	spin_lock(&file_priv->mm.lock);
1881
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1882
		request->file_priv = NULL;
1883
	spin_unlock(&file_priv->mm.lock);
1884 1885
}

1886
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1887 1888
{
	struct drm_i915_file_private *file_priv;
1889
	int ret;
1890

1891
	DRM_DEBUG("\n");
1892 1893 1894 1895 1896 1897

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1898
	file_priv->dev_priv = i915;
1899
	file_priv->file = file;
1900 1901 1902 1903

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1904
	file_priv->bsd_engine = -1;
1905
	file_priv->hang_timestamp = jiffies;
1906

1907
	ret = i915_gem_context_open(i915, file);
1908 1909
	if (ret)
		kfree(file_priv);
1910

1911
	return ret;
1912 1913
}

1914 1915
/**
 * i915_gem_track_fb - update frontbuffer tracking
1916 1917 1918
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1919 1920 1921 1922
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1923 1924 1925 1926
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1927 1928 1929 1930 1931 1932 1933
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1934
		     BITS_PER_TYPE(atomic_t));
1935

1936
	if (old) {
1937 1938
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1939 1940 1941
	}

	if (new) {
1942 1943
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1944 1945 1946
	}
}

1947
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1948
#include "selftests/mock_gem_device.c"
1949
#include "selftests/i915_gem.c"
1950
#endif