i915_gem.c 49.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
43
#include "gem/i915_gem_ioctls.h"
44 45
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
46 47
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt_pm.h"
48 49 50 51
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"

52
#include "i915_drv.h"
53
#include "i915_scatterlist.h"
54 55 56
#include "i915_trace.h"
#include "i915_vgpu.h"

57
#include "intel_display.h"
58 59
#include "intel_drv.h"
#include "intel_frontbuffer.h"
60
#include "intel_pm.h"
61

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
68 69 70
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
81
			    struct drm_file *file)
82
{
83
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
84
	struct drm_i915_gem_get_aperture *args = data;
85
	struct i915_vma *vma;
86
	u64 pinned;
87

88 89
	mutex_lock(&ggtt->vm.mutex);

90
	pinned = ggtt->vm.reserved;
91
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
92
		if (i915_vma_is_pinned(vma))
93
			pinned += vma->node.size;
94 95

	mutex_unlock(&ggtt->vm.mutex);
96

97
	args->aper_size = ggtt->vm.total;
98
	args->aper_available_size = args->aper_size - pinned;
99

100 101 102
	return 0;
}

103
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
104 105 106
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
107
	int ret = 0;
108 109

	lockdep_assert_held(&obj->base.dev->struct_mutex);
110

111 112 113 114
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
115
		list_move_tail(&vma->obj_link, &still_in_list);
116 117
		spin_unlock(&obj->vma.lock);

118
		ret = i915_vma_unbind(vma);
119 120

		spin_lock(&obj->vma.lock);
121
	}
122 123
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
124 125 126 127

	return ret;
}

128 129 130
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
131
		     struct drm_file *file)
132 133
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
134
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
135 136 137 138

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
139
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
140 141
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
142

143
	drm_clflush_virt_range(vaddr, args->size);
144
	i915_gem_chipset_flush(to_i915(obj->base.dev));
145

146
	intel_fb_obj_flush(obj, ORIGIN_CPU);
147
	return 0;
148 149
}

150 151
static int
i915_gem_create(struct drm_file *file,
152
		struct drm_i915_private *dev_priv,
153
		u64 *size_p,
154
		u32 *handle_p)
155
{
156
	struct drm_i915_gem_object *obj;
157
	u32 handle;
158 159
	u64 size;
	int ret;
160

161
	size = round_up(*size_p, PAGE_SIZE);
162 163
	if (size == 0)
		return -EINVAL;
164 165

	/* Allocate the new object */
166
	obj = i915_gem_object_create_shmem(dev_priv, size);
167 168
	if (IS_ERR(obj))
		return PTR_ERR(obj);
169

170
	ret = drm_gem_handle_create(file, &obj->base, &handle);
171
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
172
	i915_gem_object_put(obj);
173 174
	if (ret)
		return ret;
175

176
	*handle_p = handle;
177
	*size_p = size;
178 179 180
	return 0;
}

181 182 183 184 185
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

203
	/* have to work out size/pitch and return them */
204 205 206 207 208 209 210
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

211
	args->size = args->pitch * args->height;
212
	return i915_gem_create(file, to_i915(dev),
213
			       &args->size, &args->handle);
214 215 216 217
}

/**
 * Creates a new mm object and returns a handle to it.
218 219 220
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
221 222 223 224 225
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
226
	struct drm_i915_private *dev_priv = to_i915(dev);
227
	struct drm_i915_gem_create *args = data;
228

229
	i915_gem_flush_free_objects(dev_priv);
230

231
	return i915_gem_create(file, dev_priv,
232
			       &args->size, &args->handle);
233 234
}

235
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
236
{
237 238
	intel_wakeref_t wakeref;

239 240 241 242 243
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
244 245 246 247 248 249 250 251 252 253
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
254 255
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
256
	 */
257

258 259 260 261 262
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

263
	i915_gem_chipset_flush(dev_priv);
264

265 266
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
267

268
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
269

270 271
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
272 273
}

274
static int
275 276
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
277 278 279 280 281 282
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

283 284
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
285

286
	ret = __copy_to_user(user_data, vaddr + offset, len);
287

288
	kunmap(page);
289

290
	return ret ? -EFAULT : 0;
291 292 293 294 295 296 297 298
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
299 300 301
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
302 303
	int ret;

304
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
305 306 307
	if (ret)
		return ret;

308 309 310 311 312
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

313 314 315 316 317
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
318
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
319 320 321 322 323 324 325 326 327 328 329

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

330
	i915_gem_object_unlock_fence(obj, fence);
331 332 333 334 335 336 337
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
338
{
339
	void __iomem *vaddr;
340
	unsigned long unwritten;
341 342

	/* We can use the cpu mem copy function because this is X86. */
343 344 345 346
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
347 348
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
349 350 351 352
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
353 354
		io_mapping_unmap(vaddr);
	}
355 356 357 358
	return unwritten;
}

static int
359 360
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
361
{
362 363
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
364
	intel_wakeref_t wakeref;
365
	struct drm_mm_node node;
366
	struct dma_fence *fence;
367
	void __user *user_data;
368
	struct i915_vma *vma;
369
	u64 remain, offset;
370 371
	int ret;

372 373 374 375
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

376
	wakeref = intel_runtime_pm_get(i915);
377
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
378 379 380
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
381 382 383
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
384
		ret = i915_vma_put_fence(vma);
385 386 387 388 389
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
390
	if (IS_ERR(vma)) {
391
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
392
		if (ret)
393 394
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
395 396
	}

397 398 399
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
400 401 402
	if (ret)
		goto out_unpin;

403 404 405 406 407 408 409 410 411 412 413 414
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
415

416 417 418
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
419 420 421 422 423 424 425 426 427 428 429 430 431 432

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
433 434 435
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
436 437 438 439
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
440

441
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
442
				  user_data, page_length)) {
443 444 445 446 447 448 449 450 451
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

452
	i915_gem_object_unlock_fence(obj, fence);
453
out_unpin:
454
	mutex_lock(&i915->drm.struct_mutex);
455 456
	if (node.allocated) {
		wmb();
457
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
458 459
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
460
		i915_vma_unpin(vma);
461
	}
462
out_unlock:
463
	intel_runtime_pm_put(i915, wakeref);
464
	mutex_unlock(&i915->drm.struct_mutex);
465

466 467 468
	return ret;
}

469 470
/**
 * Reads data from the object referenced by handle.
471 472 473
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
474 475 476 477 478
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
479
		     struct drm_file *file)
480 481
{
	struct drm_i915_gem_pread *args = data;
482
	struct drm_i915_gem_object *obj;
483
	int ret;
484

485 486 487
	if (args->size == 0)
		return 0;

488
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
489 490 491
		       args->size))
		return -EFAULT;

492
	obj = i915_gem_object_lookup(file, args->handle);
493 494
	if (!obj)
		return -ENOENT;
495

496
	/* Bounds check source.  */
497
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
498
		ret = -EINVAL;
499
		goto out;
C
Chris Wilson 已提交
500 501
	}

C
Chris Wilson 已提交
502 503
	trace_i915_gem_object_pread(obj, args->offset, args->size);

504 505
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
506
				   MAX_SCHEDULE_TIMEOUT);
507
	if (ret)
508
		goto out;
509

510
	ret = i915_gem_object_pin_pages(obj);
511
	if (ret)
512
		goto out;
513

514
	ret = i915_gem_shmem_pread(obj, args);
515
	if (ret == -EFAULT || ret == -ENODEV)
516
		ret = i915_gem_gtt_pread(obj, args);
517

518 519
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
520
	i915_gem_object_put(obj);
521
	return ret;
522 523
}

524 525
/* This is the fast write path which cannot handle
 * page faults in the source data
526
 */
527

528 529 530 531
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
532
{
533
	void __iomem *vaddr;
534
	unsigned long unwritten;
535

536
	/* We can use the cpu mem copy function because this is X86. */
537 538
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
539
						      user_data, length);
540 541
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
542 543 544
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
545 546
		io_mapping_unmap(vaddr);
	}
547 548 549 550

	return unwritten;
}

551 552 553
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
554
 * @obj: i915 GEM object
555
 * @args: pwrite arguments structure
556
 */
557
static int
558 559
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
560
{
561
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
562
	struct i915_ggtt *ggtt = &i915->ggtt;
563
	intel_wakeref_t wakeref;
564
	struct drm_mm_node node;
565
	struct dma_fence *fence;
566 567 568
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
569
	int ret;
570

571 572 573
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
574

575 576 577 578 579 580 581 582
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
583 584
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
585 586 587 588 589
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
590
		wakeref = intel_runtime_pm_get(i915);
591 592
	}

C
Chris Wilson 已提交
593
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
594 595 596
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
597 598 599
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
600
		ret = i915_vma_put_fence(vma);
601 602 603 604 605
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
606
	if (IS_ERR(vma)) {
607
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
608
		if (ret)
609
			goto out_rpm;
610
		GEM_BUG_ON(!node.allocated);
611
	}
D
Daniel Vetter 已提交
612

613 614 615
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
616 617 618
	if (ret)
		goto out_unpin;

619 620 621 622 623 624 625 626 627 628 629 630
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
631

632
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
633

634 635 636 637
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
638 639
		/* Operation in this page
		 *
640 641 642
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
643
		 */
644
		u32 page_base = node.start;
645 646
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
647 648 649
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
650 651 652
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
653 654 655 656
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
657
		/* If we get a fault while copying data, then (presumably) our
658 659
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
660 661
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
662
		 */
663
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
664 665 666
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
667
		}
668

669 670 671
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
672
	}
673
	intel_fb_obj_flush(obj, ORIGIN_CPU);
674

675
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
676
out_unpin:
677
	mutex_lock(&i915->drm.struct_mutex);
678 679
	if (node.allocated) {
		wmb();
680
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
681 682
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
683
		i915_vma_unpin(vma);
684
	}
685
out_rpm:
686
	intel_runtime_pm_put(i915, wakeref);
687
out_unlock:
688
	mutex_unlock(&i915->drm.struct_mutex);
689
	return ret;
690 691
}

692 693 694 695 696
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
697
static int
698 699 700
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
701
{
702
	char *vaddr;
703 704
	int ret;

705
	vaddr = kmap(page);
706

707 708
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
709

710 711 712
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
713

714 715 716
	kunmap(page);

	return ret ? -EFAULT : 0;
717 718 719 720 721 722 723
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
724
	unsigned int needs_clflush;
725
	unsigned int offset, idx;
726 727 728
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
729
	int ret;
730

731
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
732 733
	if (ret)
		return ret;
734

735 736 737 738 739
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

740 741 742 743 744 745 746
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
747

748 749 750 751 752
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
753
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
754

755 756 757
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
758
		if (ret)
759
			break;
760

761 762 763
		remain -= length;
		user_data += length;
		offset = 0;
764
	}
765

766
	intel_fb_obj_flush(obj, ORIGIN_CPU);
767 768
	i915_gem_object_unlock_fence(obj, fence);

769
	return ret;
770 771 772 773
}

/**
 * Writes data to the object referenced by handle.
774 775 776
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
777 778 779 780 781
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
782
		      struct drm_file *file)
783 784
{
	struct drm_i915_gem_pwrite *args = data;
785
	struct drm_i915_gem_object *obj;
786 787 788 789 790
	int ret;

	if (args->size == 0)
		return 0;

791
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
792 793
		return -EFAULT;

794
	obj = i915_gem_object_lookup(file, args->handle);
795 796
	if (!obj)
		return -ENOENT;
797

798
	/* Bounds check destination. */
799
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
800
		ret = -EINVAL;
801
		goto err;
C
Chris Wilson 已提交
802 803
	}

804 805 806 807 808 809
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
810 811
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

812 813 814 815 816 817
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

818 819 820
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
821
				   MAX_SCHEDULE_TIMEOUT);
822 823 824
	if (ret)
		goto err;

825
	ret = i915_gem_object_pin_pages(obj);
826
	if (ret)
827
		goto err;
828

D
Daniel Vetter 已提交
829
	ret = -EFAULT;
830 831 832 833 834 835
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
836
	if (!i915_gem_object_has_struct_page(obj) ||
837
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
838 839
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
840 841
		 * textures). Fallback to the shmem path in that case.
		 */
842
		ret = i915_gem_gtt_pwrite_fast(obj, args);
843

844
	if (ret == -EFAULT || ret == -ENOSPC) {
845 846
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
847
		else
848
			ret = i915_gem_shmem_pwrite(obj, args);
849
	}
850

851
	i915_gem_object_unpin_pages(obj);
852
err:
C
Chris Wilson 已提交
853
	i915_gem_object_put(obj);
854
	return ret;
855 856 857 858
}

/**
 * Called when user space has done writes to this buffer
859 860 861
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
862 863 864
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
865
			 struct drm_file *file)
866 867
{
	struct drm_i915_gem_sw_finish *args = data;
868
	struct drm_i915_gem_object *obj;
869

870
	obj = i915_gem_object_lookup(file, args->handle);
871 872
	if (!obj)
		return -ENOENT;
873

T
Tina Zhang 已提交
874 875 876 877 878
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

879
	/* Pinned buffers may be scanout, so flush the cache */
880
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
881
	i915_gem_object_put(obj);
882 883

	return 0;
884 885
}

886
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
887
{
888
	struct drm_i915_gem_object *obj, *on;
889
	int i;
890

891 892 893 894 895 896
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
897

898
	list_for_each_entry_safe(obj, on,
899 900
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
901 902 903 904 905 906 907 908

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

909 910 911 912 913 914 915 916 917 918
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
919 920 921 922

		if (!reg->vma)
			continue;

923
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
924 925
		reg->dirty = true;
	}
926 927
}

928 929
static int wait_for_engines(struct drm_i915_private *i915)
{
930
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
931 932
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
933
		GEM_TRACE_DUMP();
934 935
		i915_gem_set_wedged(i915);
		return -EIO;
936 937 938 939 940
	}

	return 0;
}

941 942 943 944 945 946 947 948
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
949
	list_for_each_entry(tl, &gt->active_list, link) {
950 951
		struct i915_request *rq;

952
		rq = i915_active_request_get_unlocked(&tl->last_request);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
968
			gen6_rps_boost(rq);
969 970 971 972 973 974 975 976

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
977
		tl = list_entry(&gt->active_list, typeof(*tl), link);
978 979 980 981 982 983
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

984 985
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
986
{
987
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
988
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
989 990
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
991

992 993 994 995
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

996 997 998 999
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

1000
	if (flags & I915_WAIT_LOCKED) {
1001
		int err;
1002 1003 1004

		lockdep_assert_held(&i915->drm.struct_mutex);

1005 1006 1007 1008
		err = wait_for_engines(i915);
		if (err)
			return err;

1009
		i915_retire_requests(i915);
1010
	}
1011 1012

	return 0;
1013 1014
}

C
Chris Wilson 已提交
1015
struct i915_vma *
1016 1017
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
1018
			 u64 size,
1019 1020
			 u64 alignment,
			 u64 flags)
1021
{
1022
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1023
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
1024 1025
	struct i915_vma *vma;
	int ret;
1026

1027 1028
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1029 1030
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1061
	vma = i915_vma_instance(obj, vm, view);
1062
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1063
		return vma;
1064 1065

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1066 1067 1068
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1069

1070
			if (flags & PIN_MAPPABLE &&
1071
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1072 1073 1074
				return ERR_PTR(-ENOSPC);
		}

1075 1076
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1077 1078 1079
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1080
		     !!(flags & PIN_MAPPABLE),
1081
		     i915_vma_is_map_and_fenceable(vma));
1082 1083
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1084
			return ERR_PTR(ret);
1085 1086
	}

C
Chris Wilson 已提交
1087 1088 1089
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1090

C
Chris Wilson 已提交
1091
	return vma;
1092 1093
}

1094 1095 1096 1097
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1098
	struct drm_i915_private *i915 = to_i915(dev);
1099
	struct drm_i915_gem_madvise *args = data;
1100
	struct drm_i915_gem_object *obj;
1101
	int err;
1102 1103 1104 1105 1106 1107 1108 1109 1110

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1111
	obj = i915_gem_object_lookup(file_priv, args->handle);
1112 1113 1114 1115 1116 1117
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1118

1119
	if (i915_gem_object_has_pages(obj) &&
1120
	    i915_gem_object_is_tiled(obj) &&
1121
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1122 1123
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1124
			__i915_gem_object_unpin_pages(obj);
1125 1126 1127
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1128
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1129
			__i915_gem_object_pin_pages(obj);
1130 1131
			obj->mm.quirked = true;
		}
1132 1133
	}

C
Chris Wilson 已提交
1134 1135
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

		spin_lock(&i915->mm.obj_lock);
		if (obj->mm.madv != I915_MADV_WILLNEED)
			list = &i915->mm.purge_list;
		else if (obj->bind_count)
			list = &i915->mm.bound_list;
		else
			list = &i915->mm.unbound_list;
		list_move_tail(&obj->mm.link, list);
		spin_unlock(&i915->mm.obj_lock);
	}

C
Chris Wilson 已提交
1151
	/* if the object is no longer attached, discard its backing storage */
1152 1153
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1154
		i915_gem_object_truncate(obj);
1155

C
Chris Wilson 已提交
1156
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1157
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1158

1159
out:
1160
	i915_gem_object_put(obj);
1161
	return err;
1162 1163
}

1164 1165
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1166 1167
	intel_wakeref_t wakeref;

1168 1169
	GEM_TRACE("\n");

1170
	wakeref = intel_runtime_pm_get(i915);
1171
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1172 1173 1174 1175 1176 1177 1178

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1179
	if (i915_terminally_wedged(i915))
1180 1181
		i915_gem_unset_wedged(i915);

1182 1183 1184 1185 1186 1187
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1188
	 * of the reset, so this could be applied to even earlier gen.
1189
	 */
1190
	intel_gt_sanitize(i915, false);
1191

1192
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1193
	intel_runtime_pm_put(i915, wakeref);
1194

1195
	mutex_lock(&i915->drm.struct_mutex);
1196 1197
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1198 1199
}

1200
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
1201
{
1202
	if (INTEL_GEN(dev_priv) < 5 ||
1203 1204 1205 1206 1207 1208
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

1209
	if (IS_GEN(dev_priv, 5))
1210 1211
		return;

1212
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
1213
	if (IS_GEN(dev_priv, 6))
1214
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
1215
	else if (IS_GEN(dev_priv, 7))
1216
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
1217
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
1218
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
1219 1220
	else
		BUG();
1221
}
D
Daniel Vetter 已提交
1222

1223
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
1224 1225 1226 1227 1228 1229 1230
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

1231
static void init_unused_rings(struct drm_i915_private *dev_priv)
1232
{
1233 1234 1235 1236 1237 1238
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
1239
	} else if (IS_GEN(dev_priv, 2)) {
1240 1241
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
1242
	} else if (IS_GEN(dev_priv, 3)) {
1243 1244
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
1245 1246 1247
	}
}

1248 1249
int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
1250
	int ret;
1251

1252 1253
	dev_priv->gt.last_init_time = ktime_get();

1254
	/* Double layer security blanket, see i915_gem_init() */
1255
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1256

1257
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
1258
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
1259

1260
	if (IS_HASWELL(dev_priv))
1261
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
1262
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1263

1264
	/* Apply the GT workarounds... */
1265
	intel_gt_apply_workarounds(dev_priv);
1266 1267
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
1268

1269
	i915_gem_init_swizzling(dev_priv);
1270

1271 1272 1273 1274 1275 1276
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1277
	init_unused_rings(dev_priv);
1278

1279
	BUG_ON(!dev_priv->kernel_context);
1280 1281
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
1282
		goto out;
1283

1284
	ret = i915_ppgtt_init_hw(dev_priv);
1285
	if (ret) {
1286
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1287 1288 1289
		goto out;
	}

1290 1291 1292 1293 1294 1295
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

1296 1297
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
1298 1299
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
1300
		goto out;
1301
	}
1302

1303
	intel_mocs_init_l3cc_table(dev_priv);
1304

1305
	/* Only when the HW is re-initialised, can we replay the requests */
1306
	ret = intel_engines_resume(dev_priv);
1307 1308
	if (ret)
		goto cleanup_uc;
1309

1310
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1311

1312
	intel_engines_set_scheduler_caps(dev_priv);
1313
	return 0;
1314 1315 1316

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
1317
out:
1318
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1319 1320

	return ret;
1321 1322
}

1323 1324 1325
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
1326 1327
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
1328
	enum intel_engine_id id;
1329
	int err = 0;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

1344 1345
	e = i915_gem_context_lock_engines(ctx);

1346
	for_each_engine(engine, i915, id) {
1347
		struct intel_context *ce = e->engines[id];
1348
		struct i915_request *rq;
1349

1350
		rq = intel_context_create_request(ce);
1351 1352
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1353
			goto err_active;
1354 1355
		}

1356
		err = 0;
1357 1358
		if (rq->engine->init_context)
			err = rq->engine->init_context(rq);
1359

1360
		i915_request_add(rq);
1361 1362 1363 1364
		if (err)
			goto err_active;
	}

1365
	/* Flush the default context image to memory, and enable powersaving. */
1366
	if (!i915_gem_load_power_context(i915)) {
1367
		err = -EIO;
1368
		goto err_active;
1369
	}
1370 1371

	for_each_engine(engine, i915, id) {
1372 1373
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
1374
		void *vaddr;
1375 1376 1377 1378

		if (!state)
			continue;

1379
		GEM_BUG_ON(intel_context_is_pinned(ce));
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

1393
		i915_gem_object_lock(state->obj);
1394
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1395
		i915_gem_object_unlock(state->obj);
1396 1397 1398 1399
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
1400 1401
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
1402 1403 1404

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
1405
						I915_MAP_FORCE_WB);
1406 1407 1408 1409 1410 1411
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
1433
	i915_gem_context_unlock_engines(ctx);
1434 1435 1436 1437 1438 1439 1440
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
1441 1442
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1443
	 */
1444
	i915_gem_set_wedged(i915);
1445 1446 1447
	goto out_ctx;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1503
int i915_gem_init(struct drm_i915_private *dev_priv)
1504 1505 1506
{
	int ret;

1507 1508
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1509 1510 1511
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1512
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1513

1514 1515
	i915_timelines_init(dev_priv);

1516 1517 1518 1519
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1520
	ret = intel_uc_init_misc(dev_priv);
1521 1522 1523
	if (ret)
		return ret;

1524
	ret = intel_wopcm_init(&dev_priv->wopcm);
1525
	if (ret)
1526
		goto err_uc_misc;
1527

1528 1529 1530 1531 1532 1533
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1534
	mutex_lock(&dev_priv->drm.struct_mutex);
1535
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1536

1537
	ret = i915_gem_init_ggtt(dev_priv);
1538 1539 1540 1541
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1542

1543
	ret = i915_gem_init_scratch(dev_priv,
1544
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1545 1546 1547 1548
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1549

1550 1551 1552 1553 1554 1555
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1556 1557 1558 1559 1560 1561
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1562
	ret = intel_engines_init(dev_priv);
1563 1564 1565 1566
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1567

1568 1569
	intel_init_gt_powersave(dev_priv);

1570
	ret = intel_uc_init(dev_priv);
1571
	if (ret)
1572
		goto err_pm;
1573

1574 1575 1576 1577
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1589 1590 1591 1592
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
		goto err_init_hw;

1593
	ret = __intel_engines_record_defaults(dev_priv);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

1607
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
1619 1620
	mutex_unlock(&dev_priv->drm.struct_mutex);

1621
	i915_gem_set_wedged(dev_priv);
1622
	i915_gem_suspend(dev_priv);
1623 1624
	i915_gem_suspend_late(dev_priv);

1625 1626
	i915_gem_drain_workqueue(dev_priv);

1627
	mutex_lock(&dev_priv->drm.struct_mutex);
1628
	intel_uc_fini_hw(dev_priv);
1629 1630
err_uc_init:
	intel_uc_fini(dev_priv);
1631 1632 1633
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1634
		intel_engines_cleanup(dev_priv);
1635 1636 1637 1638
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1639 1640
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1641 1642
err_ggtt:
err_unlock:
1643
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1644 1645
	mutex_unlock(&dev_priv->drm.struct_mutex);

1646
err_uc_misc:
1647
	intel_uc_fini_misc(dev_priv);
1648

1649
	if (ret != -EIO) {
1650
		i915_gem_cleanup_userptr(dev_priv);
1651 1652
		i915_timelines_fini(dev_priv);
	}
1653

1654
	if (ret == -EIO) {
1655 1656
		mutex_lock(&dev_priv->drm.struct_mutex);

1657 1658
		/*
		 * Allow engine initialisation to fail by marking the GPU as
1659 1660 1661
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
1662
		if (!i915_reset_failed(dev_priv)) {
1663 1664
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
1665 1666
			i915_gem_set_wedged(dev_priv);
		}
1667 1668 1669 1670 1671 1672 1673 1674

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1675 1676
	}

1677
	i915_gem_drain_freed_objects(dev_priv);
1678
	return ret;
1679 1680
}

1681
void i915_gem_fini_hw(struct drm_i915_private *dev_priv)
1682
{
1683 1684
	GEM_BUG_ON(dev_priv->gt.awake);

1685 1686
	intel_wakeref_auto_fini(&dev_priv->mm.userfault_wakeref);

1687
	i915_gem_suspend_late(dev_priv);
1688
	intel_disable_gt_powersave(dev_priv);
1689 1690 1691 1692 1693 1694 1695

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
1696 1697 1698 1699 1700 1701 1702 1703
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1704
	intel_engines_cleanup(dev_priv);
1705
	i915_gem_contexts_fini(dev_priv);
1706
	i915_gem_fini_scratch(dev_priv);
1707 1708
	mutex_unlock(&dev_priv->drm.struct_mutex);

1709 1710
	intel_wa_list_free(&dev_priv->gt_wa_list);

1711 1712
	intel_cleanup_gt_powersave(dev_priv);

1713 1714
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
1715
	i915_timelines_fini(dev_priv);
1716 1717 1718 1719 1720 1721

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1722 1723 1724 1725 1726
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1727 1728 1729
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
1730
	int i;
1731

1732
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
1733 1734
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
1735
	else if (INTEL_GEN(dev_priv) >= 4 ||
1736 1737
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
1738 1739 1740 1741
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

1742
	if (intel_vgpu_active(dev_priv))
1743 1744 1745 1746
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
1747 1748 1749 1750 1751 1752 1753
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
1754
	i915_gem_restore_fences(dev_priv);
1755

1756
	i915_gem_detect_bit_6_swizzle(dev_priv);
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

1767
	INIT_LIST_HEAD(&i915->mm.purge_list);
1768 1769 1770
	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
1771

1772
	INIT_LIST_HEAD(&i915->mm.userfault_list);
1773
	intel_wakeref_auto_init(&i915->mm.userfault_wakeref, i915);
1774

1775
	i915_gem_init__objects(i915);
1776 1777
}

1778
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1779
{
1780
	int err;
1781

1782 1783
	intel_gt_pm_init(dev_priv);

1784
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
1785
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
1786

1787
	i915_gem_init__mm(dev_priv);
1788
	i915_gem_init__pm(dev_priv);
1789

1790
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1791
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
1792
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
1793
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
1794

1795 1796
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

1797
	spin_lock_init(&dev_priv->fb_tracking.lock);
1798

M
Matthew Auld 已提交
1799 1800 1801 1802
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1803
	return 0;
1804
}
1805

1806
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1807
{
1808
	i915_gem_drain_freed_objects(dev_priv);
1809 1810
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1811
	WARN_ON(dev_priv->mm.object_count);
1812

1813 1814
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
1815
	i915_gemfs_fini(dev_priv);
1816 1817
}

1818 1819
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1820 1821 1822
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1823 1824 1825 1826 1827
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1828
int i915_gem_freeze_late(struct drm_i915_private *i915)
1829 1830
{
	struct drm_i915_gem_object *obj;
1831
	struct list_head *phases[] = {
1832 1833
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
1834
		NULL
1835
	}, **phase;
1836

1837 1838
	/*
	 * Called just before we write the hibernation image.
1839 1840 1841 1842 1843 1844 1845 1846
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1847 1848
	 *
	 * To try and reduce the hibernation image, we manually shrink
1849
	 * the objects as well, see i915_gem_freeze()
1850 1851
	 */

1852 1853
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
1854

1855
	for (phase = phases; *phase; phase++) {
1856 1857
		list_for_each_entry(obj, *phase, mm.link) {
			i915_gem_object_lock(obj);
1858
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1859 1860
			i915_gem_object_unlock(obj);
		}
1861
	}
1862
	GEM_BUG_ON(!list_empty(&i915->mm.purge_list));
1863 1864 1865 1866

	return 0;
}

1867
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1868
{
1869
	struct drm_i915_file_private *file_priv = file->driver_priv;
1870
	struct i915_request *request;
1871 1872 1873 1874 1875

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1876
	spin_lock(&file_priv->mm.lock);
1877
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1878
		request->file_priv = NULL;
1879
	spin_unlock(&file_priv->mm.lock);
1880 1881
}

1882
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1883 1884
{
	struct drm_i915_file_private *file_priv;
1885
	int ret;
1886

1887
	DRM_DEBUG("\n");
1888 1889 1890 1891 1892 1893

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1894
	file_priv->dev_priv = i915;
1895
	file_priv->file = file;
1896 1897 1898 1899

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1900
	file_priv->bsd_engine = -1;
1901
	file_priv->hang_timestamp = jiffies;
1902

1903
	ret = i915_gem_context_open(i915, file);
1904 1905
	if (ret)
		kfree(file_priv);
1906

1907
	return ret;
1908 1909
}

1910 1911
/**
 * i915_gem_track_fb - update frontbuffer tracking
1912 1913 1914
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1915 1916 1917 1918
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1919 1920 1921 1922
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1923 1924 1925 1926 1927 1928 1929
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1930
		     BITS_PER_TYPE(atomic_t));
1931

1932
	if (old) {
1933 1934
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1935 1936 1937
	}

	if (new) {
1938 1939
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1940 1941 1942
	}
}

1943
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1944
#include "selftests/mock_gem_device.c"
1945
#include "selftests/i915_gem.c"
1946
#endif