i915_gem_execbuffer.c 90.2 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gpu_commands.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_buffer_pool.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24 25
#include "pxp/intel_pxp.h"

26
#include "i915_drv.h"
27
#include "i915_gem_clflush.h"
28
#include "i915_gem_context.h"
29
#include "i915_gem_ioctls.h"
30
#include "i915_trace.h"
31
#include "i915_user_extensions.h"
32

33 34 35 36 37 38 39 40 41 42 43 44 45
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

46 47 48 49 50 51 52
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

53 54 55
/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
56 57 58 59
#define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61 62

#define __EXEC_HAS_RELOC	BIT(31)
63
#define __EXEC_ENGINE_PINNED	BIT(30)
64 65
#define __EXEC_USERPTR_USED	BIT(29)
#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
66
#define UPDATE			PIN_OFFSET_FIXED
67 68

#define BATCH_OFFSET_BIAS (256*1024)
69

70
#define __I915_EXEC_ILLEGAL_FLAGS \
71 72 73
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
74

75 76 77 78 79 80 81 82 83
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

235 236 237 238 239 240 241
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

242
struct i915_execbuffer {
243 244 245 246
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247
	struct eb_vma *vma;
248

M
Matthew Brost 已提交
249
	struct intel_gt *gt; /* gt for the execbuf */
250 251
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
252

M
Matthew Brost 已提交
253 254 255 256
	/** our requests to build */
	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
	/** identity of the batch obj/vma */
	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
257
	struct i915_vma *trampoline; /** trampoline used for chaining */
258

M
Matthew Brost 已提交
259 260 261
	/** used for excl fence in dma_resv objects when > 1 BB submitted */
	struct dma_fence *composite_fence;

262 263 264
	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

M
Matthew Brost 已提交
265 266 267
	/* number of batches in execbuf IOCTL */
	unsigned int num_batches;

268 269 270 271 272 273
	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

274 275
	struct i915_gem_ww_ctx ww;

276 277 278 279 280
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
281
	struct reloc_cache {
282
		struct drm_mm_node node; /** temporary GTT binding */
283 284
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
285
		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
286
		bool use_64bit_reloc : 1;
287 288 289
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
290
	} reloc_cache;
291 292 293

	u64 invalid_flags; /** Set of execobj.flags that are invalid */

M
Matthew Brost 已提交
294 295
	/** Length of batch within object */
	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
296 297
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
298
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299 300 301 302 303 304 305 306

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
307

308 309
	struct eb_fence *fences;
	unsigned long num_fences;
310 311 312
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
#endif
313 314
};

315
static int eb_parse(struct i915_execbuffer *eb);
M
Matthew Brost 已提交
316
static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
317
static void eb_unpin_engine(struct i915_execbuffer *eb);
318
static void eb_capture_release(struct i915_execbuffer *eb);
319

320 321
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
322 323
	return intel_engine_requires_cmd_parser(eb->context->engine) ||
		(intel_engine_using_cmd_parser(eb->context->engine) &&
324
		 eb->args->batch_len);
325 326
}

327
static int eb_create(struct i915_execbuffer *eb)
328
{
329 330
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
331

332 333 334 335 336 337 338 339 340 341 342
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
343
		do {
344
			gfp_t flags;
345 346 347 348 349 350 351

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
352
			flags = GFP_KERNEL;
353 354 355
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

356
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
357
					      flags);
358 359 360 361
			if (eb->buckets)
				break;
		} while (--size);

362
		if (unlikely(!size))
363
			return -ENOMEM;
364

365
		eb->lut_size = size;
366
	} else {
367
		eb->lut_size = -eb->buffer_count;
368
	}
369

370
	return 0;
371 372
}

373 374
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
375 376
		 const struct i915_vma *vma,
		 unsigned int flags)
377 378 379 380 381 382 383
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

384
	if (flags & EXEC_OBJECT_PINNED &&
385 386 387
	    vma->node.start != entry->offset)
		return true;

388
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
389 390 391
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

392
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
393
	    (vma->node.start + vma->node.size + 4095) >> 32)
394 395
		return true;

396 397 398 399
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

400 401 402
	return false;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

429
static inline int
430
eb_pin_vma(struct i915_execbuffer *eb,
431
	   const struct drm_i915_gem_exec_object2 *entry,
432
	   struct eb_vma *ev)
433
{
434
	struct i915_vma *vma = ev->vma;
435
	u64 pin_flags;
436
	int err;
437

438
	if (vma->node.size)
439
		pin_flags = vma->node.start;
440
	else
441
		pin_flags = entry->offset & PIN_OFFSET_MASK;
442

443
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
444
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
445
		pin_flags |= PIN_GLOBAL;
446

447
	/* Attempt to reuse the current location if available */
448 449 450 451 452
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
	if (err == -EDEADLK)
		return err;

	if (unlikely(err)) {
453
		if (entry->flags & EXEC_OBJECT_PINNED)
454
			return err;
455 456

		/* Failing that pick any _free_ space if suitable */
457
		err = i915_vma_pin_ww(vma, &eb->ww,
458 459 460
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
461 462 463
					     PIN_USER | PIN_NOEVICT);
		if (unlikely(err))
			return err;
464
	}
465

466
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
467 468
		err = i915_vma_pin_fence(vma);
		if (unlikely(err)) {
469
			i915_vma_unpin(vma);
470
			return err;
471 472
		}

473
		if (vma->fence)
474
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
475 476
	}

477
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
478 479 480 481
	if (eb_vma_misplaced(entry, vma, ev->flags))
		return -EBADSLT;

	return 0;
482 483
}

484 485 486 487 488 489
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

490 491 492 493
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
494 495 496
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

497 498 499 500
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
501
{
502 503 504 505
	/* Relocations are disallowed for all platforms after TGL-LP.  This
	 * also covers all platforms with local memory.
	 */
	if (entry->relocation_count &&
506
	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
507 508
		return -EINVAL;

509 510
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
511

512 513
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
514 515 516 517 518 519 520
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
521
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
522 523 524 525 526 527 528 529
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
530
	}
531 532 533 534 535 536 537
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

538 539 540 541 542 543 544 545 546
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

547
	return 0;
548 549
}

M
Matthew Brost 已提交
550 551 552 553 554 555 556 557 558
static inline bool
is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
{
	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
		buffer_idx < eb->num_batches :
		buffer_idx >= eb->args->buffer_count - eb->num_batches;
}

static int
559
eb_add_vma(struct i915_execbuffer *eb,
M
Matthew Brost 已提交
560 561
	   unsigned int *current_batch,
	   unsigned int i,
562
	   struct i915_vma *vma)
563
{
M
Matthew Brost 已提交
564
	struct drm_i915_private *i915 = eb->i915;
565
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
566
	struct eb_vma *ev = &eb->vma[i];
567

568
	ev->vma = vma;
569 570 571
	ev->exec = entry;
	ev->flags = entry->flags;

572
	if (eb->lut_size > 0) {
573 574
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
575 576
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
577
	}
578

579
	if (entry->relocation_count)
580
		list_add_tail(&ev->reloc_link, &eb->relocs);
581

582 583 584 585 586 587 588 589 590
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
M
Matthew Brost 已提交
591
	if (is_batch_buffer(eb, i)) {
592
		if (entry->relocation_count &&
593 594
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
595
		if (eb->reloc_cache.has_fence)
596
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
597

M
Matthew Brost 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		eb->batches[*current_batch] = ev;

		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
			drm_dbg(&i915->drm,
				"Attempting to use self-modifying batch buffer\n");
			return -EINVAL;
		}

		if (range_overflows_t(u64,
				      eb->batch_start_offset,
				      eb->args->batch_len,
				      ev->vma->size)) {
			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
			return -EINVAL;
		}

		if (eb->args->batch_len == 0)
			eb->batch_len[*current_batch] = ev->vma->size -
				eb->batch_start_offset;
		else
			eb->batch_len[*current_batch] = eb->args->batch_len;
		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
			drm_dbg(&i915->drm, "Invalid batch length\n");
			return -EINVAL;
		}

		++*current_batch;
625
	}
M
Matthew Brost 已提交
626 627

	return 0;
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

647
static int eb_reserve_vma(struct i915_execbuffer *eb,
648
			  struct eb_vma *ev,
649
			  u64 pin_flags)
650
{
651 652
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
653 654
	int err;

655 656 657 658 659 660 661
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

662
	err = i915_vma_pin_ww(vma, &eb->ww,
663
			   entry->pad_to_size, entry->alignment,
664
			   eb_pin_flags(entry, ev->flags) | pin_flags);
665 666 667 668 669 670 671 672
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

673
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
674
		err = i915_vma_pin_fence(vma);
675 676 677 678 679
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

680
		if (vma->fence)
681
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
682 683
	}

684
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
685
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
686

687 688 689 690 691 692
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
693
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
694
	struct list_head last;
695
	struct eb_vma *ev;
696
	unsigned int i, pass;
697
	int err = 0;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
714 715
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
716 717 718
			if (err)
				break;
		}
719
		if (err != -ENOSPC)
720
			return err;
721 722 723 724 725

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
726
			unsigned int flags;
727

728 729
			ev = &eb->vma[i];
			flags = ev->flags;
730 731
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
732 733
				continue;

734
			eb_unreserve_vma(ev);
735

736
			if (flags & EXEC_OBJECT_PINNED)
737
				/* Pinned must have their slot */
738
				list_add(&ev->bind_link, &eb->unbound);
739
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
740
				/* Map require the lowest 256MiB (aperture) */
741
				list_add_tail(&ev->bind_link, &eb->unbound);
742 743
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
744
				list_add(&ev->bind_link, &last);
745
			else
746
				list_add_tail(&ev->bind_link, &last);
747 748 749 750 751 752 753 754 755
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
756
			mutex_lock(&eb->context->vm->mutex);
757
			err = i915_gem_evict_vm(eb->context->vm);
758
			mutex_unlock(&eb->context->vm->mutex);
759
			if (err)
760
				return err;
761 762 763
			break;

		default:
764
			return -ENOSPC;
765
		}
766 767

		pin_flags = PIN_USER;
768
	} while (1);
769
}
770

771 772 773 774 775
static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
776 777
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);
778

779
	eb->gem_context = ctx;
780
	if (i915_gem_context_has_full_ppgtt(ctx))
781
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
782 783 784 785

	return 0;
}

786 787
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
788
{
789 790
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
791
	int err;
792

793 794 795 796 797 798 799 800 801 802 803 804
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
805
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
806
		if (likely(!i915_gem_context_is_closed(ctx)))
807
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
808 809
		else
			err = -ENOENT;
810 811 812
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

813
			spin_lock(&obj->lut_lock);
814 815 816 817 818 819
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
820
			spin_unlock(&obj->lut_lock);
821
		}
822
		mutex_unlock(&ctx->lut_mutex);
823 824 825
	}
	if (unlikely(err))
		goto err;
826

827
	return 0;
828

829
err:
C
Chris Wilson 已提交
830
	i915_vma_close(vma);
831 832 833 834
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
835

836 837
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
838 839
	struct i915_address_space *vm = eb->context->vm;

840 841
	do {
		struct drm_i915_gem_object *obj;
842
		struct i915_vma *vma;
843
		int err;
844

845 846
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
847
		if (likely(vma && vma->vm == vm))
848 849 850 851
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
852

853
		obj = i915_gem_object_lookup(eb->file, handle);
854 855
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
856

857 858 859 860 861 862 863 864 865
		/*
		 * If the user has opted-in for protected-object tracking, make
		 * sure the object encryption can be used.
		 * We only need to do this when the object is first used with
		 * this context, because the context itself will be banned when
		 * the protected objects become invalid.
		 */
		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
		    i915_gem_object_is_protected(obj)) {
866
			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
867 868 869 870 871 872
			if (err) {
				i915_gem_object_put(obj);
				return ERR_PTR(err);
			}
		}

873
		vma = i915_vma_instance(obj, vm, NULL);
874
		if (IS_ERR(vma)) {
875 876
			i915_gem_object_put(obj);
			return vma;
877 878
		}

879 880 881
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
882

883 884 885 886 887
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
888

889 890
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
891
	unsigned int i, current_batch = 0;
892
	int err = 0;
893

894 895 896 897 898 899 900 901
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
902
			goto err;
903
		}
904

905
		err = eb_validate_vma(eb, &eb->exec[i], vma);
906 907
		if (unlikely(err)) {
			i915_vma_put(vma);
908
			goto err;
909
		}
910

M
Matthew Brost 已提交
911 912 913
		err = eb_add_vma(eb, &current_batch, i, vma);
		if (err)
			return err;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

		if (i915_gem_object_is_userptr(vma->obj)) {
			err = i915_gem_object_userptr_submit_init(vma->obj);
			if (err) {
				if (i + 1 < eb->buffer_count) {
					/*
					 * Execbuffer code expects last vma entry to be NULL,
					 * since we already initialized this entry,
					 * set the next value to NULL or we mess up
					 * cleanup handling.
					 */
					eb->vma[i + 1].vma = NULL;
				}

				return err;
			}

			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
			eb->args->flags |= __EXEC_USERPTR_USED;
		}
934 935
	}

936 937 938
	return 0;

err:
939
	eb->vma[i].vma = NULL;
940
	return err;
941 942
}

943
static int eb_lock_vmas(struct i915_execbuffer *eb)
944 945 946 947 948 949 950 951 952 953 954
{
	unsigned int i;
	int err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	}

	return 0;
}

static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	err = eb_lock_vmas(eb);
	if (err)
		return err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
975

976 977 978 979 980
		err = eb_pin_vma(eb, entry, ev);
		if (err == -EDEADLK)
			return err;

		if (!err) {
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

996
		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
997
			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
998 999 1000 1001
			if (err)
				return err;
		}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

1012
static struct eb_vma *
1013
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1014
{
1015 1016
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
1017
			return NULL;
1018
		return &eb->vma[handle];
1019 1020
	} else {
		struct hlist_head *head;
1021
		struct eb_vma *ev;
1022

1023
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1024 1025 1026
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
1027 1028 1029
		}
		return NULL;
	}
1030 1031
}

1032
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

1044
		eb_unreserve_vma(ev);
1045

1046 1047
		if (final)
			i915_vma_put(vma);
1048
	}
1049

1050
	eb_capture_release(eb);
1051
	eb_unpin_engine(eb);
1052 1053
}

1054
static void eb_destroy(const struct i915_execbuffer *eb)
1055
{
1056
	if (eb->lut_size > 0)
1057
		kfree(eb->buckets);
1058 1059
}

1060
static inline u64
1061
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1062
		  const struct i915_vma *target)
1063
{
1064
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1065 1066
}

1067 1068
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
1069
{
1070 1071
	cache->page = -1;
	cache->vaddr = 0;
1072
	/* Must be a variable in the struct to allow GCC to unroll. */
1073
	cache->graphics_ver = GRAPHICS_VER(i915);
1074
	cache->has_llc = HAS_LLC(i915);
1075
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1076
	cache->has_fence = cache->graphics_ver < 4;
1077
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1078
	cache->node.flags = 0;
1079
}
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1097
	return to_gt(i915)->ggtt;
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static void reloc_cache_unmap(struct reloc_cache *cache)
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP)
		kunmap_atomic(vaddr);
	else
		io_mapping_unmap_atomic((void __iomem *)vaddr);
}

static void reloc_cache_remap(struct reloc_cache *cache,
			      struct drm_i915_gem_object *obj)
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	if (cache->vaddr & KMAP) {
		struct page *page = i915_gem_object_get_page(obj, cache->page);

		vaddr = kmap_atomic(page);
		cache->vaddr = unmask_flags(cache->vaddr) |
			(unsigned long)vaddr;
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
		unsigned long offset;

		offset = cache->node.start;
		if (!drm_mm_node_allocated(&cache->node))
			offset += cache->page << PAGE_SHIFT;

		cache->vaddr = (unsigned long)
			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
	}
}

1141
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1142 1143 1144 1145 1146 1147 1148 1149
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1150 1151
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1152 1153 1154 1155
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1156
		i915_gem_object_finish_access(obj);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1181
			unsigned long pageno)
1182 1183
{
	void *vaddr;
1184
	struct page *page;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1205 1206 1207 1208 1209
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1210
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1211
	cache->page = pageno;
1212 1213 1214 1215 1216

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1217
			 struct i915_execbuffer *eb,
1218 1219
			 unsigned long page)
{
1220
	struct reloc_cache *cache = &eb->reloc_cache;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1242 1243 1244 1245 1246 1247 1248
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1284
			 struct i915_execbuffer *eb,
1285 1286
			 unsigned long page)
{
1287
	struct reloc_cache *cache = &eb->reloc_cache;
1288 1289 1290 1291 1292 1293 1294
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1295
			vaddr = reloc_iomap(obj, eb, page);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1326
static u64
1327
relocate_entry(struct i915_vma *vma,
1328
	       const struct drm_i915_gem_relocation_entry *reloc,
1329
	       struct i915_execbuffer *eb,
1330 1331 1332
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1333
	u64 offset = reloc->offset;
1334 1335
	bool wide = eb->reloc_cache.use_64bit_reloc;
	void *vaddr;
1336 1337

repeat:
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	vaddr = reloc_vaddr(vma->obj, eb,
			    offset >> PAGE_SHIFT);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_addr),
			eb->reloc_cache.vaddr);

	if (wide) {
		offset += sizeof(u32);
		target_addr >>= 32;
		wide = false;
		goto repeat;
1353
	}
1354

1355
	return target->node.start | UPDATE;
1356 1357
}

1358 1359
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1360
		  struct eb_vma *ev,
1361
		  const struct drm_i915_gem_relocation_entry *reloc)
1362
{
1363
	struct drm_i915_private *i915 = eb->i915;
1364
	struct eb_vma *target;
1365
	int err;
1366

1367
	/* we've already hold a reference to all valid objects */
1368 1369
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1370
		return -ENOENT;
1371

1372
	/* Validate that the target is in a valid r/w GPU domain */
1373
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1374
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1375
			  "target %d offset %d "
1376
			  "read %08x write %08x",
1377
			  reloc->target_handle,
1378 1379 1380
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1381
		return -EINVAL;
1382
	}
1383 1384
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1385
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1386
			  "target %d offset %d "
1387
			  "read %08x write %08x",
1388
			  reloc->target_handle,
1389 1390 1391
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1392
		return -EINVAL;
1393 1394
	}

1395
	if (reloc->write_domain) {
1396
		target->flags |= EXEC_OBJECT_WRITE;
1397

1398 1399 1400 1401 1402 1403 1404
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1405 1406 1407 1408 1409 1410
		    GRAPHICS_VER(eb->i915) == 6 &&
		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
			struct i915_vma *vma = target->vma;

			reloc_cache_unmap(&eb->reloc_cache);
			mutex_lock(&vma->vm->mutex);
1411 1412
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1413
					    PIN_GLOBAL, NULL, NULL);
1414 1415
			mutex_unlock(&vma->vm->mutex);
			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1416
			if (err)
1417 1418
				return err;
		}
1419
	}
1420

1421 1422
	/*
	 * If the relocation already has the right value in it, no
1423 1424
	 * more work needs to be done.
	 */
1425 1426
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1427
		return 0;
1428 1429

	/* Check that the relocation address is valid... */
1430
	if (unlikely(reloc->offset >
1431
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1432
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1433 1434 1435
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1436
			  (int)ev->vma->size);
1437
		return -EINVAL;
1438
	}
1439
	if (unlikely(reloc->offset & 3)) {
1440
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1441 1442 1443
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1444
		return -EINVAL;
1445 1446
	}

1447 1448 1449 1450 1451 1452
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1453
	 * out of our synchronisation.
1454
	 */
1455
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1456

1457
	/* and update the user's relocation entry */
1458
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1459 1460
}

1461
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1462
{
1463
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1464
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1465
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1466 1467 1468
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1469

1470
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1471
		return -EINVAL;
1472

1473 1474 1475 1476 1477
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1478
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1479 1480 1481 1482 1483
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1484
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1485
		unsigned int copied;
1486

1487 1488
		/*
		 * This is the fast path and we cannot handle a pagefault
1489 1490 1491 1492 1493 1494
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1495 1496 1497
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1498 1499 1500 1501
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1502

1503
		remain -= count;
1504
		do {
1505
			u64 offset = eb_relocate_entry(eb, ev, r);
1506

1507 1508
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1509 1510
				remain = (int)offset;
				goto out;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1534 1535
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1536
			}
1537 1538 1539
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1540
out:
1541
	reloc_cache_reset(&eb->reloc_cache, eb);
1542
	return remain;
1543 1544
}

1545 1546
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1547
{
1548 1549 1550 1551
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1552 1553
	int err;

1554 1555
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1556

1557 1558 1559 1560
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1561
	}
1562 1563
	err = 0;
err:
1564
	reloc_cache_reset(&eb->reloc_cache, eb);
1565 1566
	return err;
}
1567

1568 1569 1570 1571 1572
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1573

1574 1575 1576
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1577

1578 1579
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1593 1594
}

1595
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1596
{
1597
	struct drm_i915_gem_relocation_entry *relocs;
1598 1599
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1600
	int err;
1601

1602
	for (i = 0; i < count; i++) {
1603 1604 1605 1606
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1607

1608 1609
		if (nreloc == 0)
			continue;
1610

1611 1612 1613
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1614

1615 1616
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1617

1618 1619 1620 1621
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1622
		}
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static int eb_reinit_userptr(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int ret;

	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
		return 0;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];

		if (!i915_gem_object_is_userptr(ev->vma->obj))
			continue;

		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
		if (ret)
			return ret;

		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
	}

	return 0;
}

M
Matthew Brost 已提交
1717
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1718 1719 1720 1721 1722 1723 1724 1725 1726
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1727
	}
1728

1729
	/* We may process another execbuffer during the unlock... */
1730
	eb_release_vmas(eb, false);
1731 1732
	i915_gem_ww_ctx_fini(&eb->ww);

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1756
	if (!err)
1757
		err = eb_reinit_userptr(eb);
1758

1759
	i915_gem_ww_ctx_init(&eb->ww, true);
1760 1761 1762
	if (err)
		goto out;

1763 1764
	/* reacquire the objects */
repeat_validate:
M
Matthew Brost 已提交
1765 1766
	err = eb_pin_engine(eb, false);
	if (err)
1767 1768
		goto err;

1769
	err = eb_validate_vmas(eb);
1770
	if (err)
1771 1772
		goto err;

M
Matthew Brost 已提交
1773
	GEM_BUG_ON(!eb->batches[0]);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			err = eb_relocate_vma(eb, ev);
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1787 1788 1789
	if (err == -EDEADLK)
		goto err;

1790 1791 1792 1793 1794 1795
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1796 1797 1798 1799 1800
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1801 1802 1803 1804 1805 1806 1807 1808
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1809
	if (err == -EDEADLK) {
1810
		eb_release_vmas(eb, false);
1811 1812 1813 1814 1815
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err;
}

1840
static int eb_relocate_parse(struct i915_execbuffer *eb)
1841
{
1842
	int err;
1843
	bool throttle = true;
1844

1845
retry:
M
Matthew Brost 已提交
1846 1847
	err = eb_pin_engine(eb, throttle);
	if (err) {
1848 1849 1850 1851 1852 1853 1854 1855 1856
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

1857 1858 1859 1860 1861
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
1862 1863 1864

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1865
		struct eb_vma *ev;
1866

1867
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1868 1869
			err = eb_relocate_vma(eb, ev);
			if (err)
1870
				break;
1871
		}
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
1884
		eb_release_vmas(eb, false);
1885 1886 1887
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
1888 1889
	}

1890 1891 1892
	return err;

slow:
M
Matthew Brost 已提交
1893
	err = eb_relocate_parse_slow(eb);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
1905 1906
}

M
Matthew Brost 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/*
 * Using two helper loops for the order of which requests / batches are created
 * and added the to backend. Requests are created in order from the parent to
 * the last child. Requests are added in the reverse order, from the last child
 * to parent. This is done for locking reasons as the timeline lock is acquired
 * during request creation and released when the request is added to the
 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
 * the ordering.
 */
#define for_each_batch_create_order(_eb, _i) \
	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
#define for_each_batch_add_order(_eb, _i) \
	BUILD_BUG_ON(!typecheck(int, _i)); \
	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))

static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer *eb)
{
	int i;

	for_each_batch_add_order(eb, i)
		if (eb->requests[i])
			return eb->requests[i];

	GEM_BUG_ON("Request not found");

	return NULL;
}

1936 1937 1938 1939
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)

/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
static void eb_capture_stage(struct i915_execbuffer *eb)
1940 1941
{
	const unsigned int count = eb->buffer_count;
1942
	unsigned int i = count, j;
1943 1944

	while (i--) {
1945 1946 1947
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1948

1949 1950
		if (!(flags & EXEC_OBJECT_CAPTURE))
			continue;
1951

1952
		for_each_batch_create_order(eb, j) {
1953
			struct i915_capture_list *capture;
1954

1955 1956 1957
			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (!capture)
				continue;
M
Matthew Brost 已提交
1958

1959
			capture->next = eb->capture_lists[j];
1960
			capture->vma_res = i915_vma_resource_get(vma->resource);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
			eb->capture_lists[j] = capture;
		}
	}
}

/* Commit once we're in the critical path */
static void eb_capture_commit(struct i915_execbuffer *eb)
{
	unsigned int j;

	for_each_batch_create_order(eb, j) {
		struct i915_request *rq = eb->requests[j];

		if (!rq)
			break;

		rq->capture_list = eb->capture_lists[j];
		eb->capture_lists[j] = NULL;
	}
}

/*
 * Release anything that didn't get committed due to errors.
 * The capture_list will otherwise be freed at request retire.
 */
static void eb_capture_release(struct i915_execbuffer *eb)
{
	unsigned int j;

	for_each_batch_create_order(eb, j) {
		if (eb->capture_lists[j]) {
			i915_request_free_capture_list(eb->capture_lists[j]);
			eb->capture_lists[j] = NULL;
1994
		}
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	}
}

static void eb_capture_list_clear(struct i915_execbuffer *eb)
{
	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
}

#else

static void eb_capture_stage(struct i915_execbuffer *eb)
{
}

static void eb_capture_commit(struct i915_execbuffer *eb)
{
}

static void eb_capture_release(struct i915_execbuffer *eb)
{
}

static void eb_capture_list_clear(struct i915_execbuffer *eb)
{
}

#endif

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i = count;
	int err = 0, j;

	while (i--) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
		struct drm_i915_gem_object *obj = vma->obj;

		assert_vma_held(vma);
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		 *
		 * FIXME: There is also sync flushing in set_pages(), which
		 * serves a different purpose(some of the time at least).
		 *
		 * We should consider:
		 *
		 *   1. Rip out the async flush code.
		 *
		 *   2. Or make the sync flushing use the async clflush path
		 *   using mandatory fences underneath. Currently the below
		 *   async flush happens after we bind the object.
2059 2060
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2061
			if (i915_gem_clflush_object(obj, 0))
2062
				flags &= ~EXEC_OBJECT_ASYNC;
2063 2064
		}

M
Matthew Brost 已提交
2065
		/* We only need to await on the first request */
2066 2067
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
M
Matthew Brost 已提交
2068 2069
				(eb_find_first_request_added(eb), obj,
				 flags & EXEC_OBJECT_WRITE);
2070
		}
2071

M
Matthew Brost 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
		for_each_batch_add_order(eb, j) {
			if (err)
				break;
			if (!eb->requests[j])
				continue;

			err = _i915_vma_move_to_active(vma, eb->requests[j],
						       j ? NULL :
						       eb->composite_fence ?
						       eb->composite_fence :
						       &eb->requests[j]->fence,
						       flags | __EXEC_OBJECT_NO_RESERVE);
		}
2085
	}
2086

2087 2088
#ifdef CONFIG_MMU_NOTIFIER
	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2089
		read_lock(&eb->i915->mm.notifier_lock);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

		/*
		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
		 * could not have been set
		 */
		for (i = 0; i < count; i++) {
			struct eb_vma *ev = &eb->vma[i];
			struct drm_i915_gem_object *obj = ev->vma->obj;

			if (!i915_gem_object_is_userptr(obj))
				continue;

			err = i915_gem_object_userptr_submit_done(obj);
			if (err)
				break;
		}

2107
		read_unlock(&eb->i915->mm.notifier_lock);
2108 2109 2110
	}
#endif

2111 2112 2113
	if (unlikely(err))
		goto err_skip;

2114
	/* Unconditionally flush any chipset caches (for streaming writes). */
M
Matthew Brost 已提交
2115
	intel_gt_chipset_flush(eb->gt);
2116 2117
	eb_capture_commit(eb);

2118
	return 0;
2119 2120

err_skip:
M
Matthew Brost 已提交
2121 2122 2123 2124 2125 2126
	for_each_batch_create_order(eb, j) {
		if (!eb->requests[j])
			break;

		i915_request_set_error_once(eb->requests[j], err);
	}
2127
	return err;
2128 2129
}

T
Tvrtko Ursulin 已提交
2130
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2131
{
2132
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2133
		return -EINVAL;
2134

C
Chris Wilson 已提交
2135
	/* Kernel clipping was a DRI1 misfeature */
2136 2137
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2138
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2139
			return -EINVAL;
2140
	}
C
Chris Wilson 已提交
2141 2142 2143 2144 2145 2146

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2147
		return -EINVAL;
C
Chris Wilson 已提交
2148 2149

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2150
		return -EINVAL;
C
Chris Wilson 已提交
2151

T
Tvrtko Ursulin 已提交
2152
	return 0;
2153 2154
}

2155
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2156
{
2157 2158
	u32 *cs;
	int i;
2159

2160
	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2161
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2162 2163
		return -EINVAL;
	}
2164

2165
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2166 2167
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2168

2169
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2170
	for (i = 0; i < 4; i++) {
2171 2172
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2173
	}
2174
	*cs++ = MI_NOOP;
2175
	intel_ring_advance(rq, cs);
2176 2177 2178 2179

	return 0;
}

2180
static struct i915_vma *
2181 2182
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2183 2184
		 struct i915_address_space *vm,
		 unsigned int flags)
2185
{
2186 2187
	struct i915_vma *vma;
	int err;
2188

2189 2190 2191 2192
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2193
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2194 2195 2196 2197
	if (err)
		return ERR_PTR(err);

	return vma;
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2212
static int eb_parse(struct i915_execbuffer *eb)
2213
{
2214
	struct drm_i915_private *i915 = eb->i915;
2215
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2216
	struct i915_vma *shadow, *trampoline, *batch;
2217
	unsigned long len;
2218
	int err;
2219

2220
	if (!eb_use_cmdparser(eb)) {
M
Matthew Brost 已提交
2221
		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2222 2223 2224 2225 2226
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2227

M
Matthew Brost 已提交
2228 2229 2230 2231
	if (intel_context_is_parallel(eb->context))
		return -EINVAL;

	len = eb->batch_len[0];
2232 2233 2234 2235 2236 2237
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2238 2239
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2240 2241 2242 2243 2244
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
M
Matthew Brost 已提交
2245
	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2246
		return -EINVAL;
2247

2248
	if (!pool) {
M
Matthew Brost 已提交
2249
		pool = intel_gt_get_buffer_pool(eb->gt, len,
2250
						I915_MAP_WB);
2251 2252 2253 2254
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2255

2256 2257 2258
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2259

2260
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2261 2262
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2263
		goto err;
2264
	}
2265
	intel_gt_buffer_pool_mark_used(pool);
2266
	i915_gem_object_set_readonly(shadow->obj);
2267
	shadow->private = pool;
2268 2269 2270 2271 2272

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2273
		shadow = shadow_batch_pin(eb, pool->obj,
M
Matthew Brost 已提交
2274
					  &eb->gt->ggtt->vm,
2275 2276 2277 2278 2279 2280
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2281
		shadow->private = pool;
2282 2283 2284

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2285

2286 2287 2288 2289 2290 2291
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2292
	err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2293 2294 2295
	if (err)
		goto err_trampoline;

M
Matthew Brost 已提交
2296 2297
	err = intel_engine_cmd_parser(eb->context->engine,
				      eb->batches[0]->vma,
2298
				      eb->batch_start_offset,
M
Matthew Brost 已提交
2299
				      eb->batch_len[0],
2300
				      shadow, trampoline);
2301
	if (err)
2302
		goto err_unpin_batch;
2303

M
Matthew Brost 已提交
2304 2305 2306
	eb->batches[0] = &eb->vma[eb->buffer_count++];
	eb->batches[0]->vma = i915_vma_get(shadow);
	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2307

2308
	eb->trampoline = trampoline;
2309 2310
	eb->batch_start_offset = 0;

2311 2312
secure_batch:
	if (batch) {
M
Matthew Brost 已提交
2313 2314 2315 2316 2317 2318
		if (intel_context_is_parallel(eb->context))
			return -EINVAL;

		eb->batches[0] = &eb->vma[eb->buffer_count++];
		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batches[0]->vma = i915_vma_get(batch);
2319
	}
2320
	return 0;
2321

2322 2323 2324
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2325 2326 2327 2328 2329
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2330
err:
2331
	return err;
2332
}
2333

M
Matthew Brost 已提交
2334 2335 2336 2337
static int eb_request_submit(struct i915_execbuffer *eb,
			     struct i915_request *rq,
			     struct i915_vma *batch,
			     u64 batch_len)
2338
{
2339
	int err;
2340

M
Matthew Brost 已提交
2341 2342
	if (intel_context_nopreempt(rq->context))
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2343

2344
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
M
Matthew Brost 已提交
2345
		err = i915_reset_gen7_sol_offsets(rq);
2346 2347
		if (err)
			return err;
2348 2349
	}

2350 2351 2352 2353 2354 2355
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
M
Matthew Brost 已提交
2356 2357
	if (rq->context->engine->emit_init_breadcrumb) {
		err = rq->context->engine->emit_init_breadcrumb(rq);
2358 2359 2360 2361
		if (err)
			return err;
	}

M
Matthew Brost 已提交
2362 2363 2364 2365 2366
	err = rq->context->engine->emit_bb_start(rq,
						 batch->node.start +
						 eb->batch_start_offset,
						 batch_len,
						 eb->batch_flags);
2367 2368
	if (err)
		return err;
2369

2370
	if (eb->trampoline) {
M
Matthew Brost 已提交
2371
		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2372
		GEM_BUG_ON(eb->batch_start_offset);
M
Matthew Brost 已提交
2373 2374 2375
		err = rq->context->engine->emit_bb_start(rq,
							 eb->trampoline->node.start +
							 batch_len, 0, 0);
2376 2377 2378 2379
		if (err)
			return err;
	}

C
Chris Wilson 已提交
2380
	return 0;
2381 2382
}

M
Matthew Brost 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static int eb_submit(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	err = eb_move_to_gpu(eb);

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
		if (!err)
			err = eb_request_submit(eb, eb->requests[i],
						eb->batches[i]->vma,
						eb->batch_len[i]);
	}

	return err;
}

2404
static int num_vcs_engines(struct drm_i915_private *i915)
2405
{
2406
	return hweight_long(VDBOX_MASK(to_gt(i915)));
2407 2408
}

2409
/*
2410
 * Find one BSD ring to dispatch the corresponding BSD command.
2411
 * The engine index is returned.
2412
 */
2413
static unsigned int
2414 2415
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2416 2417 2418
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2419
	/* Check whether the file_priv has already selected one ring. */
2420
	if ((int)file_priv->bsd_engine < 0)
2421 2422
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2423

2424
	return file_priv->bsd_engine;
2425 2426
}

2427
static const enum intel_engine_id user_ring_map[] = {
2428 2429 2430 2431 2432
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2433 2434
};

2435
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

M
Matthew Brost 已提交
2469 2470
static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
			   bool throttle)
2471 2472
{
	struct intel_timeline *tl;
2473
	struct i915_request *rq = NULL;
2474

2475 2476 2477 2478 2479 2480 2481 2482
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2483
	tl = intel_context_timeline_lock(ce);
M
Matthew Brost 已提交
2484 2485
	if (IS_ERR(tl))
		return PTR_ERR(tl);
2486 2487

	intel_context_enter(ce);
2488 2489
	if (throttle)
		rq = eb_throttle(eb, ce);
2490 2491
	intel_context_timeline_unlock(tl);

M
Matthew Brost 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;

		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      timeout) < 0) {
			i915_request_put(rq);

			tl = intel_context_timeline_lock(ce);
			intel_context_exit(ce);
			intel_context_timeline_unlock(tl);

			if (nonblock)
				return -EWOULDBLOCK;
			else
				return -EINTR;
		}
		i915_request_put(rq);
	}

	return 0;
}

static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
{
	struct intel_context *ce = eb->context, *child;
	int err;
	int i = 0, j = 0;

	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);

	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	err = intel_context_pin_ww(ce, &eb->ww);
	if (err)
		return err;
	for_each_child(ce, child) {
		err = intel_context_pin_ww(child, &eb->ww);
		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
	}

	for_each_child(ce, child) {
		err = eb_pin_timeline(eb, child, throttle);
		if (err)
			goto unwind;
		++i;
	}
	err = eb_pin_timeline(eb, ce, throttle);
	if (err)
		goto unwind;

2549
	eb->args->flags |= __EXEC_ENGINE_PINNED;
M
Matthew Brost 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	return 0;

unwind:
	for_each_child(ce, child) {
		if (j++ < i) {
			mutex_lock(&child->timeline->mutex);
			intel_context_exit(child);
			mutex_unlock(&child->timeline->mutex);
		}
	}
	for_each_child(ce, child)
		intel_context_unpin(child);
	intel_context_unpin(ce);
	return err;
2564 2565
}

2566
static void eb_unpin_engine(struct i915_execbuffer *eb)
2567
{
M
Matthew Brost 已提交
2568
	struct intel_context *ce = eb->context, *child;
2569

2570 2571 2572 2573 2574
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

M
Matthew Brost 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583
	for_each_child(ce, child) {
		mutex_lock(&child->timeline->mutex);
		intel_context_exit(child);
		mutex_unlock(&child->timeline->mutex);

		intel_context_unpin(child);
	}

	mutex_lock(&ce->timeline->mutex);
2584
	intel_context_exit(ce);
M
Matthew Brost 已提交
2585
	mutex_unlock(&ce->timeline->mutex);
2586

2587
	intel_context_unpin(ce);
2588
}
2589

2590
static unsigned int
2591
eb_select_legacy_ring(struct i915_execbuffer *eb)
2592
{
2593
	struct drm_i915_private *i915 = eb->i915;
2594
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2595 2596
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2597 2598
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2599 2600 2601
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2602
		return -1;
2603 2604
	}

2605
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2606 2607 2608
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2609
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2610 2611
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2612
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2613 2614
			bsd_idx--;
		} else {
2615 2616 2617
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2618
			return -1;
2619 2620
		}

2621
		return _VCS(bsd_idx);
2622 2623
	}

2624
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2625 2626
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2627
		return -1;
2628 2629
	}

2630 2631 2632 2633
	return user_ring_map[user_ring_id];
}

static int
2634
eb_select_engine(struct i915_execbuffer *eb)
2635
{
M
Matthew Brost 已提交
2636
	struct intel_context *ce, *child;
2637 2638 2639
	unsigned int idx;
	int err;

2640
	if (i915_gem_context_user_engines(eb->gem_context))
2641
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2642
	else
2643
		idx = eb_select_legacy_ring(eb);
2644 2645 2646 2647 2648

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

M
Matthew Brost 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (intel_context_is_parallel(ce)) {
		if (eb->buffer_count < ce->parallel.number_children + 1) {
			intel_context_put(ce);
			return -EINVAL;
		}
		if (eb->batch_start_offset || eb->args->batch_len) {
			intel_context_put(ce);
			return -EINVAL;
		}
	}
	eb->num_batches = ce->parallel.number_children + 1;

	for_each_child(ce, child)
		intel_context_get(child);
2663
	intel_gt_pm_get(ce->engine->gt);
2664

2665 2666 2667 2668 2669
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}
M
Matthew Brost 已提交
2670 2671 2672 2673 2674 2675 2676
	for_each_child(ce, child) {
		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
			err = intel_context_alloc_state(child);
			if (err)
				goto err;
		}
	}
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
M
Matthew Brost 已提交
2687
	eb->gt = ce->engine->gt;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
M
Matthew Brost 已提交
2698 2699
	for_each_child(ce, child)
		intel_context_put(child);
2700
	intel_context_put(ce);
2701
	return err;
2702 2703
}

2704 2705 2706
static void
eb_put_engine(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
2707 2708 2709 2710 2711
	struct intel_context *child;

	intel_gt_pm_put(eb->gt);
	for_each_child(eb->context, child)
		intel_context_put(child);
2712 2713 2714
	intel_context_put(eb->context);
}

2715
static void
2716
__free_fence_array(struct eb_fence *fences, unsigned int n)
2717
{
2718
	while (n--) {
2719
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2720
		dma_fence_put(fences[n].dma_fence);
2721
		dma_fence_chain_free(fences[n].chain_fence);
2722
	}
2723 2724 2725
	kvfree(fences);
}

2726
static int
2727 2728
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2729
{
2730 2731 2732 2733 2734
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2735

2736 2737
	nfences = timeline_fences->fence_count;
	if (!nfences)
2738
		return 0;
2739

2740 2741 2742
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2743 2744
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2745
		return -EINVAL;
2746

2747 2748 2749 2750 2751 2752
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2753
		return -EFAULT;
2754

2755 2756 2757 2758
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2759
		return -ENOMEM;
2760

2761 2762 2763 2764 2765 2766 2767 2768
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2769
		struct drm_syncobj *syncobj;
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2791

2792 2793 2794 2795 2796
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2797 2798
		}

2799 2800 2801 2802 2803
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2804
			dma_fence_put(fence);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

2835
			f->chain_fence = dma_fence_chain_alloc();
2836 2837 2838 2839 2840 2841 2842
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2843 2844
		}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2899 2900
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2911 2912
		}

2913 2914 2915
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2916 2917 2918 2919 2920 2921
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2922 2923
	}

2924
	return 0;
2925
}
2926

2927 2928 2929 2930
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2931 2932 2933
}

static int
M
Matthew Brost 已提交
2934 2935
await_fence_array(struct i915_execbuffer *eb,
		  struct i915_request *rq)
2936 2937 2938 2939
{
	unsigned int n;
	int err;

2940
	for (n = 0; n < eb->num_fences; n++) {
2941 2942 2943
		struct drm_syncobj *syncobj;
		unsigned int flags;

2944
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2945

2946 2947
		if (!eb->fences[n].dma_fence)
			continue;
2948

M
Matthew Brost 已提交
2949
		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2950 2951 2952 2953 2954 2955 2956
		if (err < 0)
			return err;
	}

	return 0;
}

M
Matthew Brost 已提交
2957 2958
static void signal_fence_array(const struct i915_execbuffer *eb,
			       struct dma_fence * const fence)
2959 2960 2961
{
	unsigned int n;

2962
	for (n = 0; n < eb->num_fences; n++) {
2963 2964 2965
		struct drm_syncobj *syncobj;
		unsigned int flags;

2966
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2967 2968 2969
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2983 2984 2985
	}
}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2998 2999 3000 3001 3002 3003 3004 3005 3006
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

M
Matthew Brost 已提交
3007 3008
static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
			  int err, bool last_parallel)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
{
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
3022
	if (likely(!intel_context_is_closed(eb->context))) {
3023 3024 3025
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
3026 3027
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
3028
		err = -ENOENT; /* override any transient errors */
3029 3030
	}

M
Matthew Brost 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	if (intel_context_is_parallel(eb->context)) {
		if (err) {
			__i915_request_skip(rq);
			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
				&rq->fence.flags);
		}
		if (last_parallel)
			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
				&rq->fence.flags);
	}

3042 3043 3044 3045 3046 3047 3048
	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
3049 3050

	return err;
3051 3052
}

M
Matthew Brost 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
static int eb_requests_add(struct i915_execbuffer *eb, int err)
{
	int i;

	/*
	 * We iterate in reverse order of creation to release timeline mutexes in
	 * same order.
	 */
	for_each_batch_add_order(eb, i) {
		struct i915_request *rq = eb->requests[i];

		if (!rq)
			continue;
		err |= eb_request_add(eb, rq, err, i == 0);
	}

	return err;
}

3072
static const i915_user_extension_fn execbuf_extensions[] = {
3073
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

M
Matthew Brost 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
static void eb_requests_get(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_get(eb->requests[i]);
	}
}

static void eb_requests_put(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_put(eb->requests[i]);
	}
}

static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	struct dma_fence_array *fence_array;
	struct dma_fence **fences;
	unsigned int i;

	GEM_BUG_ON(!intel_context_is_parent(eb->context));

	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
	if (!fences)
		return ERR_PTR(-ENOMEM);

3136
	for_each_batch_create_order(eb, i) {
M
Matthew Brost 已提交
3137
		fences[i] = &eb->requests[i]->fence;
3138 3139 3140
		__set_bit(I915_FENCE_FLAG_COMPOSITE,
			  &eb->requests[i]->fence.flags);
	}
M
Matthew Brost 已提交
3141 3142 3143 3144

	fence_array = dma_fence_array_create(eb->num_batches,
					     fences,
					     eb->context->parallel.fence_context,
3145
					     eb->context->parallel.seqno++,
M
Matthew Brost 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
					     false);
	if (!fence_array) {
		kfree(fences);
		return ERR_PTR(-ENOMEM);
	}

	/* Move ownership to the dma_fence_array created above */
	for_each_batch_create_order(eb, i)
		dma_fence_get(fences[i]);

	if (out_fence_fd != -1) {
		out_fence = sync_file_create(&fence_array->base);
		/* sync_file now owns fence_arry, drop creation ref */
		dma_fence_put(&fence_array->base);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	eb->composite_fence = &fence_array->base;

	return out_fence;
}

static struct sync_file *
eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
	      struct dma_fence *in_fence, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	int err;

	if (unlikely(eb->gem_context->syncobj)) {
		struct dma_fence *fence;

		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
		err = i915_request_await_dma_fence(rq, fence);
		dma_fence_put(fence);
		if (err)
			return ERR_PTR(err);
	}

	if (in_fence) {
		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(rq, in_fence);
		else
			err = i915_request_await_dma_fence(rq, in_fence);
		if (err < 0)
			return ERR_PTR(err);
	}

	if (eb->fences) {
		err = await_fence_array(eb, rq);
		if (err)
			return ERR_PTR(err);
	}

	if (intel_context_is_parallel(eb->context)) {
		out_fence = eb_composite_fence_create(eb, out_fence_fd);
		if (IS_ERR(out_fence))
			return ERR_PTR(-ENOMEM);
	} else if (out_fence_fd != -1) {
		out_fence = sync_file_create(&rq->fence);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	return out_fence;
}

static struct intel_context *
eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
{
	struct intel_context *child;

	if (likely(context_number == 0))
		return eb->context;

	for_each_child(eb->context, child)
		if (!--context_number)
			return child;

	GEM_BUG_ON("Context not found");

	return NULL;
}

static struct sync_file *
eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
		   int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		/* Allocate a request for this batch buffer nice and early. */
		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
		if (IS_ERR(eb->requests[i])) {
3242
			out_fence = ERR_CAST(eb->requests[i]);
M
Matthew Brost 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
			eb->requests[i] = NULL;
			return out_fence;
		}

		/*
		 * Only the first request added (committed to backend) has to
		 * take the in fences into account as all subsequent requests
		 * will have fences inserted inbetween them.
		 */
		if (i + 1 == eb->num_batches) {
			out_fence = eb_fences_add(eb, eb->requests[i],
						  in_fence, out_fence_fd);
			if (IS_ERR(out_fence))
				return out_fence;
		}

		/*
3260 3261 3262
		 * Not really on stack, but we don't want to call
		 * kfree on the batch_snapshot when we put it, so use the
		 * _onstack interface.
M
Matthew Brost 已提交
3263
		 */
3264
		if (eb->batches[i]->vma)
3265 3266
			eb->requests[i]->batch_res =
				i915_vma_resource_get(eb->batches[i]->vma->resource);
M
Matthew Brost 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		if (eb->batch_pool) {
			GEM_BUG_ON(intel_context_is_parallel(eb->context));
			intel_gt_buffer_pool_mark_active(eb->batch_pool,
							 eb->requests[i]);
		}
	}

	return out_fence;
}

3277
static int
3278
i915_gem_do_execbuffer(struct drm_device *dev,
3279 3280
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3281
		       struct drm_i915_gem_exec_object2 *exec)
3282
{
3283
	struct drm_i915_private *i915 = to_i915(dev);
3284
	struct i915_execbuffer eb;
3285 3286 3287
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
3288
	int err;
3289

3290
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3291 3292
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3293

3294
	eb.i915 = i915;
3295 3296
	eb.file = file;
	eb.args = args;
3297
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3298
		args->flags |= __EXEC_HAS_RELOC;
3299

3300
	eb.exec = exec;
3301 3302
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
D
Daniel Vetter 已提交
3303
	eb.batch_pool = NULL;
3304

3305
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3306 3307
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3308
	eb.buffer_count = args->buffer_count;
3309
	eb.batch_start_offset = args->batch_start_offset;
3310
	eb.trampoline = NULL;
3311

3312
	eb.fences = NULL;
3313
	eb.num_fences = 0;
3314

3315 3316
	eb_capture_list_clear(&eb);

M
Matthew Brost 已提交
3317 3318 3319 3320
	memset(eb.requests, 0, sizeof(struct i915_request *) *
	       ARRAY_SIZE(eb.requests));
	eb.composite_fence = NULL;

3321
	eb.batch_flags = 0;
3322
	if (args->flags & I915_EXEC_SECURE) {
3323
		if (GRAPHICS_VER(i915) >= 11)
3324 3325 3326 3327 3328 3329
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3330
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3331
			return -EPERM;
3332

3333
		eb.batch_flags |= I915_DISPATCH_SECURE;
3334
	}
3335
	if (args->flags & I915_EXEC_IS_PINNED)
3336
		eb.batch_flags |= I915_DISPATCH_PINNED;
3337

3338 3339 3340 3341 3342 3343 3344 3345
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3346 3347 3348 3349 3350
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3351
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3352 3353 3354 3355
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3356
	}
3357
#undef IN_FENCES
3358

3359 3360 3361
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3362
			err = out_fence_fd;
3363
			goto err_in_fence;
3364 3365 3366
		}
	}

3367 3368
	err = eb_create(&eb);
	if (err)
3369
		goto err_out_fence;
3370

3371
	GEM_BUG_ON(!eb.lut_size);
3372

3373 3374 3375 3376
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3377
	err = eb_select_engine(&eb);
3378
	if (unlikely(err))
3379
		goto err_context;
3380

3381 3382
	err = eb_lookup_vmas(&eb);
	if (err) {
3383
		eb_release_vmas(&eb, true);
3384 3385 3386 3387 3388
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3389
	err = eb_relocate_parse(&eb);
3390
	if (err) {
3391 3392 3393 3394 3395 3396 3397 3398 3399
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3400
	}
3401

3402
	ww_acquire_done(&eb.ww.ctx);
3403
	eb_capture_stage(&eb);
3404

M
Matthew Brost 已提交
3405 3406 3407
	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
	if (IS_ERR(out_fence)) {
		err = PTR_ERR(out_fence);
3408
		out_fence = NULL;
M
Matthew Brost 已提交
3409
		if (eb.requests[0])
3410
			goto err_request;
M
Matthew Brost 已提交
3411 3412
		else
			goto err_vma;
3413 3414
	}

M
Matthew Brost 已提交
3415
	err = eb_submit(&eb);
3416

3417
err_request:
M
Matthew Brost 已提交
3418 3419
	eb_requests_get(&eb);
	err = eb_requests_add(&eb, err);
3420

3421
	if (eb.fences)
M
Matthew Brost 已提交
3422 3423 3424
		signal_fence_array(&eb, eb.composite_fence ?
				   eb.composite_fence :
				   &eb.requests[0]->fence);
3425

3426
	if (out_fence) {
3427
		if (err == 0) {
3428
			fd_install(out_fence_fd, out_fence->file);
3429
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3430 3431 3432 3433 3434 3435
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3436 3437 3438

	if (unlikely(eb.gem_context->syncobj)) {
		drm_syncobj_replace_fence(eb.gem_context->syncobj,
M
Matthew Brost 已提交
3439 3440 3441
					  eb.composite_fence ?
					  eb.composite_fence :
					  &eb.requests[0]->fence);
3442 3443
	}

M
Matthew Brost 已提交
3444 3445 3446 3447
	if (!out_fence && eb.composite_fence)
		dma_fence_put(eb.composite_fence);

	eb_requests_put(&eb);
3448

3449
err_vma:
3450
	eb_release_vmas(&eb, true);
3451 3452
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3453 3454 3455 3456 3457 3458
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
err_engine:
3459
	eb_put_engine(&eb);
3460
err_context:
3461
	i915_gem_context_put(eb.gem_context);
3462
err_destroy:
3463
	eb_destroy(&eb);
3464
err_out_fence:
3465 3466
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3467
err_in_fence:
3468
	dma_fence_put(in_fence);
3469 3470
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3471
	return err;
3472 3473
}

3474 3475
static size_t eb_element_size(void)
{
3476
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3492
int
3493 3494
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3495
{
3496
	struct drm_i915_private *i915 = to_i915(dev);
3497
	struct drm_i915_gem_execbuffer2 *args = data;
3498
	struct drm_i915_gem_exec_object2 *exec2_list;
3499
	const size_t count = args->buffer_count;
3500
	int err;
3501

3502
	if (!check_buffer_count(count)) {
3503
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3504 3505 3506
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3507 3508 3509
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3510

3511 3512
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3513
				    __GFP_NOWARN | GFP_KERNEL);
3514
	if (exec2_list == NULL) {
3515 3516
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3517 3518
		return -ENOMEM;
	}
3519 3520
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3521
			   sizeof(*exec2_list) * count)) {
3522
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3523
		kvfree(exec2_list);
3524 3525 3526
		return -EFAULT;
	}

3527
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3528 3529 3530 3531 3532 3533 3534 3535

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3536
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3537 3538
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3539

3540
		/* Copy the new buffer offsets back to the user's exec list. */
3541 3542 3543 3544 3545 3546 3547
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3548 3549
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3550
			goto end;
3551

3552
		for (i = 0; i < args->buffer_count; i++) {
3553 3554 3555
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3556
			exec2_list[i].offset =
3557 3558 3559 3560
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3561
		}
3562
end_user:
3563
		user_write_access_end();
3564
end:;
3565 3566
	}

3567
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3568
	kvfree(exec2_list);
3569
	return err;
3570
}