i915_gem_execbuffer.c 89.3 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gpu_commands.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_buffer_pool.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24 25
#include "pxp/intel_pxp.h"

26
#include "i915_drv.h"
27
#include "i915_gem_clflush.h"
28
#include "i915_gem_context.h"
29
#include "i915_gem_ioctls.h"
30
#include "i915_trace.h"
31
#include "i915_user_extensions.h"
32
#include "i915_vma_snapshot.h"
33

34 35 36 37 38 39 40 41 42 43 44 45 46
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

47 48 49 50 51 52 53
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

54 55 56
/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
57 58 59 60
#define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
61
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
62 63

#define __EXEC_HAS_RELOC	BIT(31)
64
#define __EXEC_ENGINE_PINNED	BIT(30)
65 66
#define __EXEC_USERPTR_USED	BIT(29)
#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
67
#define UPDATE			PIN_OFFSET_FIXED
68 69

#define BATCH_OFFSET_BIAS (256*1024)
70

71
#define __I915_EXEC_ILLEGAL_FLAGS \
72 73 74
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
75

76 77 78 79 80 81 82 83 84
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

236 237 238 239 240 241 242
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

243
struct i915_execbuffer {
244 245 246 247
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
248
	struct eb_vma *vma;
249

M
Matthew Brost 已提交
250
	struct intel_gt *gt; /* gt for the execbuf */
251 252
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
253

M
Matthew Brost 已提交
254 255 256 257
	/** our requests to build */
	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
	/** identity of the batch obj/vma */
	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
258
	struct i915_vma *trampoline; /** trampoline used for chaining */
259

M
Matthew Brost 已提交
260 261 262
	/** used for excl fence in dma_resv objects when > 1 BB submitted */
	struct dma_fence *composite_fence;

263 264 265
	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

M
Matthew Brost 已提交
266 267 268
	/* number of batches in execbuf IOCTL */
	unsigned int num_batches;

269 270 271 272 273 274
	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

275 276
	struct i915_gem_ww_ctx ww;

277 278 279 280 281
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
282
	struct reloc_cache {
283
		struct drm_mm_node node; /** temporary GTT binding */
284 285
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
286
		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
287
		bool use_64bit_reloc : 1;
288 289 290
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
291
	} reloc_cache;
292 293 294

	u64 invalid_flags; /** Set of execobj.flags that are invalid */

M
Matthew Brost 已提交
295 296
	/** Length of batch within object */
	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
297 298
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
299
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
300 301 302 303 304 305 306 307

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
308

309 310
	struct eb_fence *fences;
	unsigned long num_fences;
311 312 313
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
#endif
314 315
};

316
static int eb_parse(struct i915_execbuffer *eb);
M
Matthew Brost 已提交
317
static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
318
static void eb_unpin_engine(struct i915_execbuffer *eb);
319
static void eb_capture_release(struct i915_execbuffer *eb);
320

321 322
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
323 324
	return intel_engine_requires_cmd_parser(eb->context->engine) ||
		(intel_engine_using_cmd_parser(eb->context->engine) &&
325
		 eb->args->batch_len);
326 327
}

328
static int eb_create(struct i915_execbuffer *eb)
329
{
330 331
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
332

333 334 335 336 337 338 339 340 341 342 343
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
344
		do {
345
			gfp_t flags;
346 347 348 349 350 351 352

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
353
			flags = GFP_KERNEL;
354 355 356
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

357
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
358
					      flags);
359 360 361 362
			if (eb->buckets)
				break;
		} while (--size);

363
		if (unlikely(!size))
364
			return -ENOMEM;
365

366
		eb->lut_size = size;
367
	} else {
368
		eb->lut_size = -eb->buffer_count;
369
	}
370

371
	return 0;
372 373
}

374 375
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
376 377
		 const struct i915_vma *vma,
		 unsigned int flags)
378 379 380 381 382 383 384
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

385
	if (flags & EXEC_OBJECT_PINNED &&
386 387 388
	    vma->node.start != entry->offset)
		return true;

389
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
390 391 392
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

393
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
394
	    (vma->node.start + vma->node.size + 4095) >> 32)
395 396
		return true;

397 398 399 400
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

401 402 403
	return false;
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

430
static inline int
431
eb_pin_vma(struct i915_execbuffer *eb,
432
	   const struct drm_i915_gem_exec_object2 *entry,
433
	   struct eb_vma *ev)
434
{
435
	struct i915_vma *vma = ev->vma;
436
	u64 pin_flags;
437
	int err;
438

439
	if (vma->node.size)
440
		pin_flags = vma->node.start;
441
	else
442
		pin_flags = entry->offset & PIN_OFFSET_MASK;
443

444
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
445
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
446
		pin_flags |= PIN_GLOBAL;
447

448
	/* Attempt to reuse the current location if available */
449 450 451 452 453
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
	if (err == -EDEADLK)
		return err;

	if (unlikely(err)) {
454
		if (entry->flags & EXEC_OBJECT_PINNED)
455
			return err;
456 457

		/* Failing that pick any _free_ space if suitable */
458
		err = i915_vma_pin_ww(vma, &eb->ww,
459 460 461
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
462 463 464
					     PIN_USER | PIN_NOEVICT);
		if (unlikely(err))
			return err;
465
	}
466

467
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
468 469
		err = i915_vma_pin_fence(vma);
		if (unlikely(err)) {
470
			i915_vma_unpin(vma);
471
			return err;
472 473
		}

474
		if (vma->fence)
475
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476 477
	}

478
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
479 480 481 482
	if (eb_vma_misplaced(entry, vma, ev->flags))
		return -EBADSLT;

	return 0;
483 484
}

485 486 487 488 489 490
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

491 492 493 494
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
495 496 497
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

498 499 500 501
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
502
{
503 504 505 506
	/* Relocations are disallowed for all platforms after TGL-LP.  This
	 * also covers all platforms with local memory.
	 */
	if (entry->relocation_count &&
507
	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
508 509
		return -EINVAL;

510 511
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
512

513 514
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
515 516 517 518 519 520 521
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523 524 525 526 527 528 529 530
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
531
	}
532 533 534 535 536 537 538
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

539 540 541 542 543 544 545 546 547
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

548
	return 0;
549 550
}

M
Matthew Brost 已提交
551 552 553 554 555 556 557 558 559
static inline bool
is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
{
	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
		buffer_idx < eb->num_batches :
		buffer_idx >= eb->args->buffer_count - eb->num_batches;
}

static int
560
eb_add_vma(struct i915_execbuffer *eb,
M
Matthew Brost 已提交
561 562
	   unsigned int *current_batch,
	   unsigned int i,
563
	   struct i915_vma *vma)
564
{
M
Matthew Brost 已提交
565
	struct drm_i915_private *i915 = eb->i915;
566
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
567
	struct eb_vma *ev = &eb->vma[i];
568

569
	ev->vma = vma;
570 571 572
	ev->exec = entry;
	ev->flags = entry->flags;

573
	if (eb->lut_size > 0) {
574 575
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
576 577
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
578
	}
579

580
	if (entry->relocation_count)
581
		list_add_tail(&ev->reloc_link, &eb->relocs);
582

583 584 585 586 587 588 589 590 591
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
M
Matthew Brost 已提交
592
	if (is_batch_buffer(eb, i)) {
593
		if (entry->relocation_count &&
594 595
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
596
		if (eb->reloc_cache.has_fence)
597
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
598

M
Matthew Brost 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		eb->batches[*current_batch] = ev;

		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
			drm_dbg(&i915->drm,
				"Attempting to use self-modifying batch buffer\n");
			return -EINVAL;
		}

		if (range_overflows_t(u64,
				      eb->batch_start_offset,
				      eb->args->batch_len,
				      ev->vma->size)) {
			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
			return -EINVAL;
		}

		if (eb->args->batch_len == 0)
			eb->batch_len[*current_batch] = ev->vma->size -
				eb->batch_start_offset;
		else
			eb->batch_len[*current_batch] = eb->args->batch_len;
		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
			drm_dbg(&i915->drm, "Invalid batch length\n");
			return -EINVAL;
		}

		++*current_batch;
626
	}
M
Matthew Brost 已提交
627 628

	return 0;
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

648
static int eb_reserve_vma(struct i915_execbuffer *eb,
649
			  struct eb_vma *ev,
650
			  u64 pin_flags)
651
{
652 653
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
654 655
	int err;

656 657 658 659 660 661 662
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

663
	err = i915_vma_pin_ww(vma, &eb->ww,
664
			   entry->pad_to_size, entry->alignment,
665
			   eb_pin_flags(entry, ev->flags) | pin_flags);
666 667 668 669 670 671 672 673
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

674
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
675
		err = i915_vma_pin_fence(vma);
676 677 678 679 680
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

681
		if (vma->fence)
682
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
683 684
	}

685
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
686
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
687

688 689 690 691 692 693
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
694
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
695
	struct list_head last;
696
	struct eb_vma *ev;
697
	unsigned int i, pass;
698
	int err = 0;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
715 716
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
717 718 719
			if (err)
				break;
		}
720
		if (err != -ENOSPC)
721
			return err;
722 723 724 725 726

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
727
			unsigned int flags;
728

729 730
			ev = &eb->vma[i];
			flags = ev->flags;
731 732
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
733 734
				continue;

735
			eb_unreserve_vma(ev);
736

737
			if (flags & EXEC_OBJECT_PINNED)
738
				/* Pinned must have their slot */
739
				list_add(&ev->bind_link, &eb->unbound);
740
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
741
				/* Map require the lowest 256MiB (aperture) */
742
				list_add_tail(&ev->bind_link, &eb->unbound);
743 744
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
745
				list_add(&ev->bind_link, &last);
746
			else
747
				list_add_tail(&ev->bind_link, &last);
748 749 750 751 752 753 754 755 756
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
757
			mutex_lock(&eb->context->vm->mutex);
758
			err = i915_gem_evict_vm(eb->context->vm);
759
			mutex_unlock(&eb->context->vm->mutex);
760
			if (err)
761
				return err;
762 763 764
			break;

		default:
765
			return -ENOSPC;
766
		}
767 768

		pin_flags = PIN_USER;
769
	} while (1);
770
}
771

772 773 774 775 776
static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
777 778
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);
779

780
	eb->gem_context = ctx;
781
	if (i915_gem_context_has_full_ppgtt(ctx))
782
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
783 784 785 786

	return 0;
}

787 788
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
789
{
790 791
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
792
	int err;
793

794 795 796 797 798 799 800 801 802 803 804 805
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
806
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
807
		if (likely(!i915_gem_context_is_closed(ctx)))
808
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
809 810
		else
			err = -ENOENT;
811 812 813
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

814
			spin_lock(&obj->lut_lock);
815 816 817 818 819 820
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
821
			spin_unlock(&obj->lut_lock);
822
		}
823
		mutex_unlock(&ctx->lut_mutex);
824 825 826
	}
	if (unlikely(err))
		goto err;
827

828
	return 0;
829

830
err:
C
Chris Wilson 已提交
831
	i915_vma_close(vma);
832 833 834 835
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
836

837 838
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
839 840
	struct i915_address_space *vm = eb->context->vm;

841 842
	do {
		struct drm_i915_gem_object *obj;
843
		struct i915_vma *vma;
844
		int err;
845

846 847
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
848
		if (likely(vma && vma->vm == vm))
849 850 851 852
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
853

854
		obj = i915_gem_object_lookup(eb->file, handle);
855 856
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
857

858 859 860 861 862 863 864 865 866
		/*
		 * If the user has opted-in for protected-object tracking, make
		 * sure the object encryption can be used.
		 * We only need to do this when the object is first used with
		 * this context, because the context itself will be banned when
		 * the protected objects become invalid.
		 */
		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
		    i915_gem_object_is_protected(obj)) {
867
			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
868 869 870 871 872 873
			if (err) {
				i915_gem_object_put(obj);
				return ERR_PTR(err);
			}
		}

874
		vma = i915_vma_instance(obj, vm, NULL);
875
		if (IS_ERR(vma)) {
876 877
			i915_gem_object_put(obj);
			return vma;
878 879
		}

880 881 882
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
883

884 885 886 887 888
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
889

890 891
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
892
	unsigned int i, current_batch = 0;
893
	int err = 0;
894

895 896 897 898 899 900 901 902
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
903
			goto err;
904
		}
905

906
		err = eb_validate_vma(eb, &eb->exec[i], vma);
907 908
		if (unlikely(err)) {
			i915_vma_put(vma);
909
			goto err;
910
		}
911

M
Matthew Brost 已提交
912 913 914
		err = eb_add_vma(eb, &current_batch, i, vma);
		if (err)
			return err;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

		if (i915_gem_object_is_userptr(vma->obj)) {
			err = i915_gem_object_userptr_submit_init(vma->obj);
			if (err) {
				if (i + 1 < eb->buffer_count) {
					/*
					 * Execbuffer code expects last vma entry to be NULL,
					 * since we already initialized this entry,
					 * set the next value to NULL or we mess up
					 * cleanup handling.
					 */
					eb->vma[i + 1].vma = NULL;
				}

				return err;
			}

			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
			eb->args->flags |= __EXEC_USERPTR_USED;
		}
935 936
	}

937 938 939
	return 0;

err:
940
	eb->vma[i].vma = NULL;
941
	return err;
942 943
}

944
static int eb_lock_vmas(struct i915_execbuffer *eb)
945 946 947 948 949 950 951 952 953 954 955
{
	unsigned int i;
	int err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	}

	return 0;
}

static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	err = eb_lock_vmas(eb);
	if (err)
		return err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
976

977 978 979 980 981
		err = eb_pin_vma(eb, entry, ev);
		if (err == -EDEADLK)
			return err;

		if (!err) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

997
		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
998
			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
999 1000 1001 1002
			if (err)
				return err;
		}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

1013
static struct eb_vma *
1014
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1015
{
1016 1017
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
1018
			return NULL;
1019
		return &eb->vma[handle];
1020 1021
	} else {
		struct hlist_head *head;
1022
		struct eb_vma *ev;
1023

1024
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1025 1026 1027
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
1028 1029 1030
		}
		return NULL;
	}
1031 1032
}

1033
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

1045
		eb_unreserve_vma(ev);
1046

1047 1048
		if (final)
			i915_vma_put(vma);
1049
	}
1050

1051
	eb_capture_release(eb);
1052
	eb_unpin_engine(eb);
1053 1054
}

1055
static void eb_destroy(const struct i915_execbuffer *eb)
1056
{
1057
	if (eb->lut_size > 0)
1058
		kfree(eb->buckets);
1059 1060
}

1061
static inline u64
1062
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1063
		  const struct i915_vma *target)
1064
{
1065
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1066 1067
}

1068 1069
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
1070
{
1071 1072
	cache->page = -1;
	cache->vaddr = 0;
1073
	/* Must be a variable in the struct to allow GCC to unroll. */
1074
	cache->graphics_ver = GRAPHICS_VER(i915);
1075
	cache->has_llc = HAS_LLC(i915);
1076
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1077
	cache->has_fence = cache->graphics_ver < 4;
1078
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1079
	cache->node.flags = 0;
1080
}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1101
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1102 1103 1104 1105 1106 1107 1108 1109
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1110 1111
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1112 1113 1114 1115
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1116
		i915_gem_object_finish_access(obj);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1141
			unsigned long pageno)
1142 1143
{
	void *vaddr;
1144
	struct page *page;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1165 1166 1167 1168 1169
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1170
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1171
	cache->page = pageno;
1172 1173 1174 1175 1176

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1177
			 struct i915_execbuffer *eb,
1178 1179
			 unsigned long page)
{
1180
	struct reloc_cache *cache = &eb->reloc_cache;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1202 1203 1204 1205 1206 1207 1208
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1244
			 struct i915_execbuffer *eb,
1245 1246
			 unsigned long page)
{
1247
	struct reloc_cache *cache = &eb->reloc_cache;
1248 1249 1250 1251 1252 1253 1254
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1255
			vaddr = reloc_iomap(obj, eb, page);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1286
static u64
1287
relocate_entry(struct i915_vma *vma,
1288
	       const struct drm_i915_gem_relocation_entry *reloc,
1289
	       struct i915_execbuffer *eb,
1290 1291 1292
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1293
	u64 offset = reloc->offset;
1294 1295
	bool wide = eb->reloc_cache.use_64bit_reloc;
	void *vaddr;
1296 1297

repeat:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	vaddr = reloc_vaddr(vma->obj, eb,
			    offset >> PAGE_SHIFT);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_addr),
			eb->reloc_cache.vaddr);

	if (wide) {
		offset += sizeof(u32);
		target_addr >>= 32;
		wide = false;
		goto repeat;
1313
	}
1314

1315
	return target->node.start | UPDATE;
1316 1317
}

1318 1319
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1320
		  struct eb_vma *ev,
1321
		  const struct drm_i915_gem_relocation_entry *reloc)
1322
{
1323
	struct drm_i915_private *i915 = eb->i915;
1324
	struct eb_vma *target;
1325
	int err;
1326

1327
	/* we've already hold a reference to all valid objects */
1328 1329
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1330
		return -ENOENT;
1331

1332
	/* Validate that the target is in a valid r/w GPU domain */
1333
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1334
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1335
			  "target %d offset %d "
1336
			  "read %08x write %08x",
1337
			  reloc->target_handle,
1338 1339 1340
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1341
		return -EINVAL;
1342
	}
1343 1344
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1345
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1346
			  "target %d offset %d "
1347
			  "read %08x write %08x",
1348
			  reloc->target_handle,
1349 1350 1351
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1352
		return -EINVAL;
1353 1354
	}

1355
	if (reloc->write_domain) {
1356
		target->flags |= EXEC_OBJECT_WRITE;
1357

1358 1359 1360 1361 1362 1363 1364
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1365
		    GRAPHICS_VER(eb->i915) == 6) {
1366 1367
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1368
					    PIN_GLOBAL, NULL);
1369
			if (err)
1370 1371
				return err;
		}
1372
	}
1373

1374 1375
	/*
	 * If the relocation already has the right value in it, no
1376 1377
	 * more work needs to be done.
	 */
1378 1379
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1380
		return 0;
1381 1382

	/* Check that the relocation address is valid... */
1383
	if (unlikely(reloc->offset >
1384
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1385
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1386 1387 1388
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1389
			  (int)ev->vma->size);
1390
		return -EINVAL;
1391
	}
1392
	if (unlikely(reloc->offset & 3)) {
1393
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1394 1395 1396
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1397
		return -EINVAL;
1398 1399
	}

1400 1401 1402 1403 1404 1405
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1406
	 * out of our synchronisation.
1407
	 */
1408
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1409

1410
	/* and update the user's relocation entry */
1411
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1412 1413
}

1414
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1415
{
1416
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1417
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1418
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1419 1420 1421
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1422

1423
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1424
		return -EINVAL;
1425

1426 1427 1428 1429 1430
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1431
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1432 1433 1434 1435 1436
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1437
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1438
		unsigned int copied;
1439

1440 1441
		/*
		 * This is the fast path and we cannot handle a pagefault
1442 1443 1444 1445 1446 1447
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1448 1449 1450
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1451 1452 1453 1454
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1455

1456
		remain -= count;
1457
		do {
1458
			u64 offset = eb_relocate_entry(eb, ev, r);
1459

1460 1461
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1462 1463
				remain = (int)offset;
				goto out;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1487 1488
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1489
			}
1490 1491 1492
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1493
out:
1494
	reloc_cache_reset(&eb->reloc_cache, eb);
1495
	return remain;
1496 1497
}

1498 1499
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1500
{
1501 1502 1503 1504
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1505 1506
	int err;

1507 1508
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1509

1510 1511 1512 1513
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1514
	}
1515 1516
	err = 0;
err:
1517
	reloc_cache_reset(&eb->reloc_cache, eb);
1518 1519
	return err;
}
1520

1521 1522 1523 1524 1525
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1526

1527 1528 1529
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1530

1531 1532
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1546 1547
}

1548
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1549
{
1550
	struct drm_i915_gem_relocation_entry *relocs;
1551 1552
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1553
	int err;
1554

1555
	for (i = 0; i < count; i++) {
1556 1557 1558 1559
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1560

1561 1562
		if (nreloc == 0)
			continue;
1563

1564 1565 1566
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1567

1568 1569
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1570

1571 1572 1573 1574
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1575
		}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static int eb_reinit_userptr(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int ret;

	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
		return 0;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];

		if (!i915_gem_object_is_userptr(ev->vma->obj))
			continue;

		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
		if (ret)
			return ret;

		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
	}

	return 0;
}

M
Matthew Brost 已提交
1670
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1671 1672 1673 1674 1675 1676 1677 1678 1679
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1680
	}
1681

1682
	/* We may process another execbuffer during the unlock... */
1683
	eb_release_vmas(eb, false);
1684 1685
	i915_gem_ww_ctx_fini(&eb->ww);

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1709
	if (!err)
1710
		err = eb_reinit_userptr(eb);
1711

1712
	i915_gem_ww_ctx_init(&eb->ww, true);
1713 1714 1715
	if (err)
		goto out;

1716 1717
	/* reacquire the objects */
repeat_validate:
M
Matthew Brost 已提交
1718 1719
	err = eb_pin_engine(eb, false);
	if (err)
1720 1721
		goto err;

1722
	err = eb_validate_vmas(eb);
1723
	if (err)
1724 1725
		goto err;

M
Matthew Brost 已提交
1726
	GEM_BUG_ON(!eb->batches[0]);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			err = eb_relocate_vma(eb, ev);
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1740 1741 1742
	if (err == -EDEADLK)
		goto err;

1743 1744 1745 1746 1747 1748
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1749 1750 1751 1752 1753
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1762
	if (err == -EDEADLK) {
1763
		eb_release_vmas(eb, false);
1764 1765 1766 1767 1768
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err;
}

1793
static int eb_relocate_parse(struct i915_execbuffer *eb)
1794
{
1795
	int err;
1796
	bool throttle = true;
1797

1798
retry:
M
Matthew Brost 已提交
1799 1800
	err = eb_pin_engine(eb, throttle);
	if (err) {
1801 1802 1803 1804 1805 1806 1807 1808 1809
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

1810 1811 1812 1813 1814
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
1815 1816 1817

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1818
		struct eb_vma *ev;
1819

1820
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1821 1822
			err = eb_relocate_vma(eb, ev);
			if (err)
1823
				break;
1824
		}
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
1837
		eb_release_vmas(eb, false);
1838 1839 1840
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
1841 1842
	}

1843 1844 1845
	return err;

slow:
M
Matthew Brost 已提交
1846
	err = eb_relocate_parse_slow(eb);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
1858 1859
}

M
Matthew Brost 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/*
 * Using two helper loops for the order of which requests / batches are created
 * and added the to backend. Requests are created in order from the parent to
 * the last child. Requests are added in the reverse order, from the last child
 * to parent. This is done for locking reasons as the timeline lock is acquired
 * during request creation and released when the request is added to the
 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
 * the ordering.
 */
#define for_each_batch_create_order(_eb, _i) \
	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
#define for_each_batch_add_order(_eb, _i) \
	BUILD_BUG_ON(!typecheck(int, _i)); \
	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))

static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer *eb)
{
	int i;

	for_each_batch_add_order(eb, i)
		if (eb->requests[i])
			return eb->requests[i];

	GEM_BUG_ON("Request not found");

	return NULL;
}

1889 1890 1891 1892
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)

/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
static void eb_capture_stage(struct i915_execbuffer *eb)
1893 1894
{
	const unsigned int count = eb->buffer_count;
1895 1896
	unsigned int i = count, j;
	struct i915_vma_snapshot *vsnap;
1897 1898

	while (i--) {
1899 1900 1901
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1902

1903 1904
		if (!(flags & EXEC_OBJECT_CAPTURE))
			continue;
1905

1906 1907 1908 1909 1910 1911
		vsnap = i915_vma_snapshot_alloc(GFP_KERNEL);
		if (!vsnap)
			continue;

		i915_vma_snapshot_init(vsnap, vma, "user");
		for_each_batch_create_order(eb, j) {
1912
			struct i915_capture_list *capture;
1913

1914 1915 1916
			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (!capture)
				continue;
M
Matthew Brost 已提交
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
			capture->next = eb->capture_lists[j];
			capture->vma_snapshot = i915_vma_snapshot_get(vsnap);
			eb->capture_lists[j] = capture;
		}
		i915_vma_snapshot_put(vsnap);
	}
}

/* Commit once we're in the critical path */
static void eb_capture_commit(struct i915_execbuffer *eb)
{
	unsigned int j;

	for_each_batch_create_order(eb, j) {
		struct i915_request *rq = eb->requests[j];

		if (!rq)
			break;

		rq->capture_list = eb->capture_lists[j];
		eb->capture_lists[j] = NULL;
	}
}

/*
 * Release anything that didn't get committed due to errors.
 * The capture_list will otherwise be freed at request retire.
 */
static void eb_capture_release(struct i915_execbuffer *eb)
{
	unsigned int j;

	for_each_batch_create_order(eb, j) {
		if (eb->capture_lists[j]) {
			i915_request_free_capture_list(eb->capture_lists[j]);
			eb->capture_lists[j] = NULL;
1954
		}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	}
}

static void eb_capture_list_clear(struct i915_execbuffer *eb)
{
	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
}

#else

static void eb_capture_stage(struct i915_execbuffer *eb)
{
}

static void eb_capture_commit(struct i915_execbuffer *eb)
{
}

static void eb_capture_release(struct i915_execbuffer *eb)
{
}

static void eb_capture_list_clear(struct i915_execbuffer *eb)
{
}

#endif

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i = count;
	int err = 0, j;

	while (i--) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
		struct drm_i915_gem_object *obj = vma->obj;

		assert_vma_held(vma);
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		 *
		 * FIXME: There is also sync flushing in set_pages(), which
		 * serves a different purpose(some of the time at least).
		 *
		 * We should consider:
		 *
		 *   1. Rip out the async flush code.
		 *
		 *   2. Or make the sync flushing use the async clflush path
		 *   using mandatory fences underneath. Currently the below
		 *   async flush happens after we bind the object.
2019 2020
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2021
			if (i915_gem_clflush_object(obj, 0))
2022
				flags &= ~EXEC_OBJECT_ASYNC;
2023 2024
		}

M
Matthew Brost 已提交
2025
		/* We only need to await on the first request */
2026 2027
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
M
Matthew Brost 已提交
2028 2029
				(eb_find_first_request_added(eb), obj,
				 flags & EXEC_OBJECT_WRITE);
2030
		}
2031

M
Matthew Brost 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		for_each_batch_add_order(eb, j) {
			if (err)
				break;
			if (!eb->requests[j])
				continue;

			err = _i915_vma_move_to_active(vma, eb->requests[j],
						       j ? NULL :
						       eb->composite_fence ?
						       eb->composite_fence :
						       &eb->requests[j]->fence,
						       flags | __EXEC_OBJECT_NO_RESERVE);
		}
2045
	}
2046

2047 2048
#ifdef CONFIG_MMU_NOTIFIER
	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2049
		read_lock(&eb->i915->mm.notifier_lock);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

		/*
		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
		 * could not have been set
		 */
		for (i = 0; i < count; i++) {
			struct eb_vma *ev = &eb->vma[i];
			struct drm_i915_gem_object *obj = ev->vma->obj;

			if (!i915_gem_object_is_userptr(obj))
				continue;

			err = i915_gem_object_userptr_submit_done(obj);
			if (err)
				break;
		}

2067
		read_unlock(&eb->i915->mm.notifier_lock);
2068 2069 2070
	}
#endif

2071 2072 2073
	if (unlikely(err))
		goto err_skip;

2074
	/* Unconditionally flush any chipset caches (for streaming writes). */
M
Matthew Brost 已提交
2075
	intel_gt_chipset_flush(eb->gt);
2076 2077
	eb_capture_commit(eb);

2078
	return 0;
2079 2080

err_skip:
M
Matthew Brost 已提交
2081 2082 2083 2084 2085 2086
	for_each_batch_create_order(eb, j) {
		if (!eb->requests[j])
			break;

		i915_request_set_error_once(eb->requests[j], err);
	}
2087
	return err;
2088 2089
}

T
Tvrtko Ursulin 已提交
2090
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2091
{
2092
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2093
		return -EINVAL;
2094

C
Chris Wilson 已提交
2095
	/* Kernel clipping was a DRI1 misfeature */
2096 2097
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2098
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2099
			return -EINVAL;
2100
	}
C
Chris Wilson 已提交
2101 2102 2103 2104 2105 2106

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2107
		return -EINVAL;
C
Chris Wilson 已提交
2108 2109

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2110
		return -EINVAL;
C
Chris Wilson 已提交
2111

T
Tvrtko Ursulin 已提交
2112
	return 0;
2113 2114
}

2115
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2116
{
2117 2118
	u32 *cs;
	int i;
2119

2120
	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2121
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2122 2123
		return -EINVAL;
	}
2124

2125
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2126 2127
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2128

2129
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2130
	for (i = 0; i < 4; i++) {
2131 2132
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2133
	}
2134
	*cs++ = MI_NOOP;
2135
	intel_ring_advance(rq, cs);
2136 2137 2138 2139

	return 0;
}

2140
static struct i915_vma *
2141 2142
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2143 2144
		 struct i915_address_space *vm,
		 unsigned int flags)
2145
{
2146 2147
	struct i915_vma *vma;
	int err;
2148

2149 2150 2151 2152
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2153
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2154 2155 2156 2157
	if (err)
		return ERR_PTR(err);

	return vma;
2158 2159
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2172
static int eb_parse(struct i915_execbuffer *eb)
2173
{
2174
	struct drm_i915_private *i915 = eb->i915;
2175
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2176
	struct i915_vma *shadow, *trampoline, *batch;
2177
	unsigned long len;
2178
	int err;
2179

2180
	if (!eb_use_cmdparser(eb)) {
M
Matthew Brost 已提交
2181
		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2182 2183 2184 2185 2186
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2187

M
Matthew Brost 已提交
2188 2189 2190 2191
	if (intel_context_is_parallel(eb->context))
		return -EINVAL;

	len = eb->batch_len[0];
2192 2193 2194 2195 2196 2197
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2198 2199
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2200 2201 2202 2203 2204
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
M
Matthew Brost 已提交
2205
	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2206
		return -EINVAL;
2207

2208
	if (!pool) {
M
Matthew Brost 已提交
2209
		pool = intel_gt_get_buffer_pool(eb->gt, len,
2210
						I915_MAP_WB);
2211 2212 2213 2214
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2215

2216 2217 2218
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2219

2220
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2221 2222
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2223
		goto err;
2224
	}
2225
	intel_gt_buffer_pool_mark_used(pool);
2226
	i915_gem_object_set_readonly(shadow->obj);
2227
	shadow->private = pool;
2228 2229 2230 2231 2232

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2233
		shadow = shadow_batch_pin(eb, pool->obj,
M
Matthew Brost 已提交
2234
					  &eb->gt->ggtt->vm,
2235 2236 2237 2238 2239 2240
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2241
		shadow->private = pool;
2242 2243 2244

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2245

2246 2247 2248 2249 2250 2251
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2252
	err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2253 2254 2255
	if (err)
		goto err_trampoline;

M
Matthew Brost 已提交
2256 2257
	err = intel_engine_cmd_parser(eb->context->engine,
				      eb->batches[0]->vma,
2258
				      eb->batch_start_offset,
M
Matthew Brost 已提交
2259
				      eb->batch_len[0],
2260
				      shadow, trampoline);
2261
	if (err)
2262
		goto err_unpin_batch;
2263

M
Matthew Brost 已提交
2264 2265 2266
	eb->batches[0] = &eb->vma[eb->buffer_count++];
	eb->batches[0]->vma = i915_vma_get(shadow);
	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2267

2268
	eb->trampoline = trampoline;
2269 2270
	eb->batch_start_offset = 0;

2271 2272
secure_batch:
	if (batch) {
M
Matthew Brost 已提交
2273 2274 2275 2276 2277 2278
		if (intel_context_is_parallel(eb->context))
			return -EINVAL;

		eb->batches[0] = &eb->vma[eb->buffer_count++];
		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batches[0]->vma = i915_vma_get(batch);
2279
	}
2280
	return 0;
2281

2282 2283 2284
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2285 2286 2287 2288 2289
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2290
err:
2291
	return err;
2292
}
2293

M
Matthew Brost 已提交
2294 2295 2296 2297
static int eb_request_submit(struct i915_execbuffer *eb,
			     struct i915_request *rq,
			     struct i915_vma *batch,
			     u64 batch_len)
2298
{
2299
	int err;
2300

M
Matthew Brost 已提交
2301 2302
	if (intel_context_nopreempt(rq->context))
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2303

2304
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
M
Matthew Brost 已提交
2305
		err = i915_reset_gen7_sol_offsets(rq);
2306 2307
		if (err)
			return err;
2308 2309
	}

2310 2311 2312 2313 2314 2315
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
M
Matthew Brost 已提交
2316 2317
	if (rq->context->engine->emit_init_breadcrumb) {
		err = rq->context->engine->emit_init_breadcrumb(rq);
2318 2319 2320 2321
		if (err)
			return err;
	}

M
Matthew Brost 已提交
2322 2323 2324 2325 2326
	err = rq->context->engine->emit_bb_start(rq,
						 batch->node.start +
						 eb->batch_start_offset,
						 batch_len,
						 eb->batch_flags);
2327 2328
	if (err)
		return err;
2329

2330
	if (eb->trampoline) {
M
Matthew Brost 已提交
2331
		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2332
		GEM_BUG_ON(eb->batch_start_offset);
M
Matthew Brost 已提交
2333 2334 2335
		err = rq->context->engine->emit_bb_start(rq,
							 eb->trampoline->node.start +
							 batch_len, 0, 0);
2336 2337 2338 2339
		if (err)
			return err;
	}

C
Chris Wilson 已提交
2340
	return 0;
2341 2342
}

M
Matthew Brost 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int eb_submit(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	err = eb_move_to_gpu(eb);

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
		if (!err)
			err = eb_request_submit(eb, eb->requests[i],
						eb->batches[i]->vma,
						eb->batch_len[i]);
	}

	return err;
}

2364
static int num_vcs_engines(struct drm_i915_private *i915)
2365
{
2366
	return hweight_long(VDBOX_MASK(to_gt(i915)));
2367 2368
}

2369
/*
2370
 * Find one BSD ring to dispatch the corresponding BSD command.
2371
 * The engine index is returned.
2372
 */
2373
static unsigned int
2374 2375
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2376 2377 2378
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2379
	/* Check whether the file_priv has already selected one ring. */
2380
	if ((int)file_priv->bsd_engine < 0)
2381 2382
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2383

2384
	return file_priv->bsd_engine;
2385 2386
}

2387
static const enum intel_engine_id user_ring_map[] = {
2388 2389 2390 2391 2392
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2393 2394
};

2395
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

M
Matthew Brost 已提交
2429 2430
static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
			   bool throttle)
2431 2432
{
	struct intel_timeline *tl;
2433
	struct i915_request *rq = NULL;
2434

2435 2436 2437 2438 2439 2440 2441 2442
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2443
	tl = intel_context_timeline_lock(ce);
M
Matthew Brost 已提交
2444 2445
	if (IS_ERR(tl))
		return PTR_ERR(tl);
2446 2447

	intel_context_enter(ce);
2448 2449
	if (throttle)
		rq = eb_throttle(eb, ce);
2450 2451
	intel_context_timeline_unlock(tl);

M
Matthew Brost 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;

		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      timeout) < 0) {
			i915_request_put(rq);

			tl = intel_context_timeline_lock(ce);
			intel_context_exit(ce);
			intel_context_timeline_unlock(tl);

			if (nonblock)
				return -EWOULDBLOCK;
			else
				return -EINTR;
		}
		i915_request_put(rq);
	}

	return 0;
}

static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
{
	struct intel_context *ce = eb->context, *child;
	int err;
	int i = 0, j = 0;

	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);

	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	err = intel_context_pin_ww(ce, &eb->ww);
	if (err)
		return err;
	for_each_child(ce, child) {
		err = intel_context_pin_ww(child, &eb->ww);
		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
	}

	for_each_child(ce, child) {
		err = eb_pin_timeline(eb, child, throttle);
		if (err)
			goto unwind;
		++i;
	}
	err = eb_pin_timeline(eb, ce, throttle);
	if (err)
		goto unwind;

2509
	eb->args->flags |= __EXEC_ENGINE_PINNED;
M
Matthew Brost 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	return 0;

unwind:
	for_each_child(ce, child) {
		if (j++ < i) {
			mutex_lock(&child->timeline->mutex);
			intel_context_exit(child);
			mutex_unlock(&child->timeline->mutex);
		}
	}
	for_each_child(ce, child)
		intel_context_unpin(child);
	intel_context_unpin(ce);
	return err;
2524 2525
}

2526
static void eb_unpin_engine(struct i915_execbuffer *eb)
2527
{
M
Matthew Brost 已提交
2528
	struct intel_context *ce = eb->context, *child;
2529

2530 2531 2532 2533 2534
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

M
Matthew Brost 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543
	for_each_child(ce, child) {
		mutex_lock(&child->timeline->mutex);
		intel_context_exit(child);
		mutex_unlock(&child->timeline->mutex);

		intel_context_unpin(child);
	}

	mutex_lock(&ce->timeline->mutex);
2544
	intel_context_exit(ce);
M
Matthew Brost 已提交
2545
	mutex_unlock(&ce->timeline->mutex);
2546

2547
	intel_context_unpin(ce);
2548
}
2549

2550
static unsigned int
2551
eb_select_legacy_ring(struct i915_execbuffer *eb)
2552
{
2553
	struct drm_i915_private *i915 = eb->i915;
2554
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2555 2556
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2557 2558
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2559 2560 2561
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2562
		return -1;
2563 2564
	}

2565
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2566 2567 2568
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2569
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2570 2571
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2572
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2573 2574
			bsd_idx--;
		} else {
2575 2576 2577
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2578
			return -1;
2579 2580
		}

2581
		return _VCS(bsd_idx);
2582 2583
	}

2584
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2585 2586
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2587
		return -1;
2588 2589
	}

2590 2591 2592 2593
	return user_ring_map[user_ring_id];
}

static int
2594
eb_select_engine(struct i915_execbuffer *eb)
2595
{
M
Matthew Brost 已提交
2596
	struct intel_context *ce, *child;
2597 2598 2599
	unsigned int idx;
	int err;

2600
	if (i915_gem_context_user_engines(eb->gem_context))
2601
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2602
	else
2603
		idx = eb_select_legacy_ring(eb);
2604 2605 2606 2607 2608

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

M
Matthew Brost 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (intel_context_is_parallel(ce)) {
		if (eb->buffer_count < ce->parallel.number_children + 1) {
			intel_context_put(ce);
			return -EINVAL;
		}
		if (eb->batch_start_offset || eb->args->batch_len) {
			intel_context_put(ce);
			return -EINVAL;
		}
	}
	eb->num_batches = ce->parallel.number_children + 1;

	for_each_child(ce, child)
		intel_context_get(child);
2623
	intel_gt_pm_get(ce->engine->gt);
2624

2625 2626 2627 2628 2629
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}
M
Matthew Brost 已提交
2630 2631 2632 2633 2634 2635 2636
	for_each_child(ce, child) {
		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
			err = intel_context_alloc_state(child);
			if (err)
				goto err;
		}
	}
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
M
Matthew Brost 已提交
2647
	eb->gt = ce->engine->gt;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
M
Matthew Brost 已提交
2658 2659
	for_each_child(ce, child)
		intel_context_put(child);
2660
	intel_context_put(ce);
2661
	return err;
2662 2663
}

2664 2665 2666
static void
eb_put_engine(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
2667 2668 2669 2670 2671
	struct intel_context *child;

	intel_gt_pm_put(eb->gt);
	for_each_child(eb->context, child)
		intel_context_put(child);
2672 2673 2674
	intel_context_put(eb->context);
}

2675
static void
2676
__free_fence_array(struct eb_fence *fences, unsigned int n)
2677
{
2678
	while (n--) {
2679
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2680
		dma_fence_put(fences[n].dma_fence);
2681
		dma_fence_chain_free(fences[n].chain_fence);
2682
	}
2683 2684 2685
	kvfree(fences);
}

2686
static int
2687 2688
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2689
{
2690 2691 2692 2693 2694
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2695

2696 2697
	nfences = timeline_fences->fence_count;
	if (!nfences)
2698
		return 0;
2699

2700 2701 2702
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2703 2704
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2705
		return -EINVAL;
2706

2707 2708 2709 2710 2711 2712
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2713
		return -EFAULT;
2714

2715 2716 2717 2718
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2719
		return -ENOMEM;
2720

2721 2722 2723 2724 2725 2726 2727 2728
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2729
		struct drm_syncobj *syncobj;
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2751

2752 2753 2754 2755 2756
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2757 2758
		}

2759 2760 2761 2762 2763
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2764
			dma_fence_put(fence);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

2795
			f->chain_fence = dma_fence_chain_alloc();
2796 2797 2798 2799 2800 2801 2802
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2803 2804
		}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2859 2860
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2871 2872
		}

2873 2874 2875
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2876 2877 2878 2879 2880 2881
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2882 2883
	}

2884
	return 0;
2885
}
2886

2887 2888 2889 2890
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2891 2892 2893
}

static int
M
Matthew Brost 已提交
2894 2895
await_fence_array(struct i915_execbuffer *eb,
		  struct i915_request *rq)
2896 2897 2898 2899
{
	unsigned int n;
	int err;

2900
	for (n = 0; n < eb->num_fences; n++) {
2901 2902 2903
		struct drm_syncobj *syncobj;
		unsigned int flags;

2904
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2905

2906 2907
		if (!eb->fences[n].dma_fence)
			continue;
2908

M
Matthew Brost 已提交
2909
		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2910 2911 2912 2913 2914 2915 2916
		if (err < 0)
			return err;
	}

	return 0;
}

M
Matthew Brost 已提交
2917 2918
static void signal_fence_array(const struct i915_execbuffer *eb,
			       struct dma_fence * const fence)
2919 2920 2921
{
	unsigned int n;

2922
	for (n = 0; n < eb->num_fences; n++) {
2923 2924 2925
		struct drm_syncobj *syncobj;
		unsigned int flags;

2926
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2927 2928 2929
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2943 2944 2945
	}
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2958 2959 2960 2961 2962 2963 2964 2965 2966
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

M
Matthew Brost 已提交
2967 2968
static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
			  int err, bool last_parallel)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
{
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2982
	if (likely(!intel_context_is_closed(eb->context))) {
2983 2984 2985
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2986 2987
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2988
		err = -ENOENT; /* override any transient errors */
2989 2990
	}

M
Matthew Brost 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	if (intel_context_is_parallel(eb->context)) {
		if (err) {
			__i915_request_skip(rq);
			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
				&rq->fence.flags);
		}
		if (last_parallel)
			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
				&rq->fence.flags);
	}

3002 3003 3004 3005 3006 3007 3008
	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
3009 3010

	return err;
3011 3012
}

M
Matthew Brost 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
static int eb_requests_add(struct i915_execbuffer *eb, int err)
{
	int i;

	/*
	 * We iterate in reverse order of creation to release timeline mutexes in
	 * same order.
	 */
	for_each_batch_add_order(eb, i) {
		struct i915_request *rq = eb->requests[i];

		if (!rq)
			continue;
		err |= eb_request_add(eb, rq, err, i == 0);
	}

	return err;
}

3032
static const i915_user_extension_fn execbuf_extensions[] = {
3033
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

M
Matthew Brost 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static void eb_requests_get(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_get(eb->requests[i]);
	}
}

static void eb_requests_put(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_put(eb->requests[i]);
	}
}

static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	struct dma_fence_array *fence_array;
	struct dma_fence **fences;
	unsigned int i;

	GEM_BUG_ON(!intel_context_is_parent(eb->context));

	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
	if (!fences)
		return ERR_PTR(-ENOMEM);

3096
	for_each_batch_create_order(eb, i) {
M
Matthew Brost 已提交
3097
		fences[i] = &eb->requests[i]->fence;
3098 3099 3100
		__set_bit(I915_FENCE_FLAG_COMPOSITE,
			  &eb->requests[i]->fence.flags);
	}
M
Matthew Brost 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	fence_array = dma_fence_array_create(eb->num_batches,
					     fences,
					     eb->context->parallel.fence_context,
					     eb->context->parallel.seqno,
					     false);
	if (!fence_array) {
		kfree(fences);
		return ERR_PTR(-ENOMEM);
	}

	/* Move ownership to the dma_fence_array created above */
	for_each_batch_create_order(eb, i)
		dma_fence_get(fences[i]);

	if (out_fence_fd != -1) {
		out_fence = sync_file_create(&fence_array->base);
		/* sync_file now owns fence_arry, drop creation ref */
		dma_fence_put(&fence_array->base);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	eb->composite_fence = &fence_array->base;

	return out_fence;
}

static struct sync_file *
eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
	      struct dma_fence *in_fence, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	int err;

	if (unlikely(eb->gem_context->syncobj)) {
		struct dma_fence *fence;

		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
		err = i915_request_await_dma_fence(rq, fence);
		dma_fence_put(fence);
		if (err)
			return ERR_PTR(err);
	}

	if (in_fence) {
		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(rq, in_fence);
		else
			err = i915_request_await_dma_fence(rq, in_fence);
		if (err < 0)
			return ERR_PTR(err);
	}

	if (eb->fences) {
		err = await_fence_array(eb, rq);
		if (err)
			return ERR_PTR(err);
	}

	if (intel_context_is_parallel(eb->context)) {
		out_fence = eb_composite_fence_create(eb, out_fence_fd);
		if (IS_ERR(out_fence))
			return ERR_PTR(-ENOMEM);
	} else if (out_fence_fd != -1) {
		out_fence = sync_file_create(&rq->fence);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	return out_fence;
}

static struct intel_context *
eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
{
	struct intel_context *child;

	if (likely(context_number == 0))
		return eb->context;

	for_each_child(eb->context, child)
		if (!--context_number)
			return child;

	GEM_BUG_ON("Context not found");

	return NULL;
}

static struct sync_file *
eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
		   int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		/* Allocate a request for this batch buffer nice and early. */
		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
		if (IS_ERR(eb->requests[i])) {
3202
			out_fence = ERR_CAST(eb->requests[i]);
M
Matthew Brost 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
			eb->requests[i] = NULL;
			return out_fence;
		}

		/*
		 * Only the first request added (committed to backend) has to
		 * take the in fences into account as all subsequent requests
		 * will have fences inserted inbetween them.
		 */
		if (i + 1 == eb->num_batches) {
			out_fence = eb_fences_add(eb, eb->requests[i],
						  in_fence, out_fence_fd);
			if (IS_ERR(out_fence))
				return out_fence;
		}

		/*
3220 3221 3222
		 * Not really on stack, but we don't want to call
		 * kfree on the batch_snapshot when we put it, so use the
		 * _onstack interface.
M
Matthew Brost 已提交
3223
		 */
3224 3225 3226 3227
		if (eb->batches[i]->vma)
			i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot,
						       eb->batches[i]->vma,
						       "batch");
M
Matthew Brost 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
		if (eb->batch_pool) {
			GEM_BUG_ON(intel_context_is_parallel(eb->context));
			intel_gt_buffer_pool_mark_active(eb->batch_pool,
							 eb->requests[i]);
		}
	}

	return out_fence;
}

3238
static int
3239
i915_gem_do_execbuffer(struct drm_device *dev,
3240 3241
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3242
		       struct drm_i915_gem_exec_object2 *exec)
3243
{
3244
	struct drm_i915_private *i915 = to_i915(dev);
3245
	struct i915_execbuffer eb;
3246 3247 3248
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
3249
	int err;
3250

3251
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3252 3253
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3254

3255
	eb.i915 = i915;
3256 3257
	eb.file = file;
	eb.args = args;
3258
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3259
		args->flags |= __EXEC_HAS_RELOC;
3260

3261
	eb.exec = exec;
3262 3263
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
D
Daniel Vetter 已提交
3264
	eb.batch_pool = NULL;
3265

3266
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3267 3268
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3269
	eb.buffer_count = args->buffer_count;
3270
	eb.batch_start_offset = args->batch_start_offset;
3271
	eb.trampoline = NULL;
3272

3273
	eb.fences = NULL;
3274
	eb.num_fences = 0;
3275

3276 3277
	eb_capture_list_clear(&eb);

M
Matthew Brost 已提交
3278 3279 3280 3281
	memset(eb.requests, 0, sizeof(struct i915_request *) *
	       ARRAY_SIZE(eb.requests));
	eb.composite_fence = NULL;

3282
	eb.batch_flags = 0;
3283
	if (args->flags & I915_EXEC_SECURE) {
3284
		if (GRAPHICS_VER(i915) >= 11)
3285 3286 3287 3288 3289 3290
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3291
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3292
			return -EPERM;
3293

3294
		eb.batch_flags |= I915_DISPATCH_SECURE;
3295
	}
3296
	if (args->flags & I915_EXEC_IS_PINNED)
3297
		eb.batch_flags |= I915_DISPATCH_PINNED;
3298

3299 3300 3301 3302 3303 3304 3305 3306
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3307 3308 3309 3310 3311
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3312
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3313 3314 3315 3316
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3317
	}
3318
#undef IN_FENCES
3319

3320 3321 3322
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3323
			err = out_fence_fd;
3324
			goto err_in_fence;
3325 3326 3327
		}
	}

3328 3329
	err = eb_create(&eb);
	if (err)
3330
		goto err_out_fence;
3331

3332
	GEM_BUG_ON(!eb.lut_size);
3333

3334 3335 3336 3337
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3338
	err = eb_select_engine(&eb);
3339
	if (unlikely(err))
3340
		goto err_context;
3341

3342 3343
	err = eb_lookup_vmas(&eb);
	if (err) {
3344
		eb_release_vmas(&eb, true);
3345 3346 3347 3348 3349
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3350
	err = eb_relocate_parse(&eb);
3351
	if (err) {
3352 3353 3354 3355 3356 3357 3358 3359 3360
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3361
	}
3362

3363
	ww_acquire_done(&eb.ww.ctx);
3364
	eb_capture_stage(&eb);
3365

M
Matthew Brost 已提交
3366 3367 3368
	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
	if (IS_ERR(out_fence)) {
		err = PTR_ERR(out_fence);
3369
		out_fence = NULL;
M
Matthew Brost 已提交
3370
		if (eb.requests[0])
3371
			goto err_request;
M
Matthew Brost 已提交
3372 3373
		else
			goto err_vma;
3374 3375
	}

M
Matthew Brost 已提交
3376
	err = eb_submit(&eb);
3377

3378
err_request:
M
Matthew Brost 已提交
3379 3380
	eb_requests_get(&eb);
	err = eb_requests_add(&eb, err);
3381

3382
	if (eb.fences)
M
Matthew Brost 已提交
3383 3384 3385
		signal_fence_array(&eb, eb.composite_fence ?
				   eb.composite_fence :
				   &eb.requests[0]->fence);
3386

3387
	if (out_fence) {
3388
		if (err == 0) {
3389
			fd_install(out_fence_fd, out_fence->file);
3390
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3391 3392 3393 3394 3395 3396
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3397 3398 3399

	if (unlikely(eb.gem_context->syncobj)) {
		drm_syncobj_replace_fence(eb.gem_context->syncobj,
M
Matthew Brost 已提交
3400 3401 3402
					  eb.composite_fence ?
					  eb.composite_fence :
					  &eb.requests[0]->fence);
3403 3404
	}

M
Matthew Brost 已提交
3405 3406 3407 3408
	if (!out_fence && eb.composite_fence)
		dma_fence_put(eb.composite_fence);

	eb_requests_put(&eb);
3409

3410
err_vma:
3411
	eb_release_vmas(&eb, true);
3412 3413
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3414 3415 3416 3417 3418 3419
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
err_engine:
3420
	eb_put_engine(&eb);
3421
err_context:
3422
	i915_gem_context_put(eb.gem_context);
3423
err_destroy:
3424
	eb_destroy(&eb);
3425
err_out_fence:
3426 3427
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3428
err_in_fence:
3429
	dma_fence_put(in_fence);
3430 3431
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3432
	return err;
3433 3434
}

3435 3436
static size_t eb_element_size(void)
{
3437
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3453
int
3454 3455
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3456
{
3457
	struct drm_i915_private *i915 = to_i915(dev);
3458
	struct drm_i915_gem_execbuffer2 *args = data;
3459
	struct drm_i915_gem_exec_object2 *exec2_list;
3460
	const size_t count = args->buffer_count;
3461
	int err;
3462

3463
	if (!check_buffer_count(count)) {
3464
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3465 3466 3467
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3468 3469 3470
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3471

3472 3473
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3474
				    __GFP_NOWARN | GFP_KERNEL);
3475
	if (exec2_list == NULL) {
3476 3477
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3478 3479
		return -ENOMEM;
	}
3480 3481
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3482
			   sizeof(*exec2_list) * count)) {
3483
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3484
		kvfree(exec2_list);
3485 3486 3487
		return -EFAULT;
	}

3488
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3489 3490 3491 3492 3493 3494 3495 3496

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3497
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3498 3499
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3500

3501
		/* Copy the new buffer offsets back to the user's exec list. */
3502 3503 3504 3505 3506 3507 3508
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3509 3510
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3511
			goto end;
3512

3513
		for (i = 0; i < args->buffer_count; i++) {
3514 3515 3516
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3517
			exec2_list[i].offset =
3518 3519 3520 3521
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3522
		}
3523
end_user:
3524
		user_write_access_end();
3525
end:;
3526 3527
	}

3528
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3529
	kvfree(exec2_list);
3530
	return err;
3531
}