i915_gem_execbuffer.c 87.4 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gpu_commands.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_buffer_pool.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24 25
#include "pxp/intel_pxp.h"

26
#include "i915_drv.h"
27
#include "i915_gem_clflush.h"
28
#include "i915_gem_context.h"
29
#include "i915_gem_ioctls.h"
30
#include "i915_trace.h"
31
#include "i915_user_extensions.h"
32

33 34 35 36 37 38 39 40 41 42 43 44 45
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

46 47 48 49 50 51 52
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

53 54 55
/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
56 57 58 59
#define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61 62

#define __EXEC_HAS_RELOC	BIT(31)
63
#define __EXEC_ENGINE_PINNED	BIT(30)
64 65
#define __EXEC_USERPTR_USED	BIT(29)
#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
66
#define UPDATE			PIN_OFFSET_FIXED
67 68

#define BATCH_OFFSET_BIAS (256*1024)
69

70
#define __I915_EXEC_ILLEGAL_FLAGS \
71 72 73
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
74

75 76 77 78 79 80 81 82 83
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

235 236 237 238 239 240 241
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

242
struct i915_execbuffer {
243 244 245 246
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247
	struct eb_vma *vma;
248

M
Matthew Brost 已提交
249
	struct intel_gt *gt; /* gt for the execbuf */
250 251
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
252

M
Matthew Brost 已提交
253 254 255 256
	/** our requests to build */
	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
	/** identity of the batch obj/vma */
	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
257
	struct i915_vma *trampoline; /** trampoline used for chaining */
258

M
Matthew Brost 已提交
259 260 261
	/** used for excl fence in dma_resv objects when > 1 BB submitted */
	struct dma_fence *composite_fence;

262 263 264
	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

M
Matthew Brost 已提交
265 266 267
	/* number of batches in execbuf IOCTL */
	unsigned int num_batches;

268 269 270 271 272 273
	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

274 275
	struct i915_gem_ww_ctx ww;

276 277 278 279 280
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
281
	struct reloc_cache {
282
		struct drm_mm_node node; /** temporary GTT binding */
283 284
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
285
		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
286
		bool use_64bit_reloc : 1;
287 288 289
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
290
	} reloc_cache;
291 292 293

	u64 invalid_flags; /** Set of execobj.flags that are invalid */

M
Matthew Brost 已提交
294 295
	/** Length of batch within object */
	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
296 297
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
298
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299 300 301 302 303 304 305 306

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
307

308 309
	struct eb_fence *fences;
	unsigned long num_fences;
310 311
};

312
static int eb_parse(struct i915_execbuffer *eb);
M
Matthew Brost 已提交
313
static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
314
static void eb_unpin_engine(struct i915_execbuffer *eb);
315

316 317
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
318 319
	return intel_engine_requires_cmd_parser(eb->context->engine) ||
		(intel_engine_using_cmd_parser(eb->context->engine) &&
320
		 eb->args->batch_len);
321 322
}

323
static int eb_create(struct i915_execbuffer *eb)
324
{
325 326
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
327

328 329 330 331 332 333 334 335 336 337 338
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
339
		do {
340
			gfp_t flags;
341 342 343 344 345 346 347

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
348
			flags = GFP_KERNEL;
349 350 351
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

352
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
353
					      flags);
354 355 356 357
			if (eb->buckets)
				break;
		} while (--size);

358
		if (unlikely(!size))
359
			return -ENOMEM;
360

361
		eb->lut_size = size;
362
	} else {
363
		eb->lut_size = -eb->buffer_count;
364
	}
365

366
	return 0;
367 368
}

369 370
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
371 372
		 const struct i915_vma *vma,
		 unsigned int flags)
373 374 375 376 377 378 379
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

380
	if (flags & EXEC_OBJECT_PINNED &&
381 382 383
	    vma->node.start != entry->offset)
		return true;

384
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
385 386 387
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

388
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
389
	    (vma->node.start + vma->node.size + 4095) >> 32)
390 391
		return true;

392 393 394 395
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

396 397 398
	return false;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

425
static inline int
426
eb_pin_vma(struct i915_execbuffer *eb,
427
	   const struct drm_i915_gem_exec_object2 *entry,
428
	   struct eb_vma *ev)
429
{
430
	struct i915_vma *vma = ev->vma;
431
	u64 pin_flags;
432
	int err;
433

434
	if (vma->node.size)
435
		pin_flags = vma->node.start;
436
	else
437
		pin_flags = entry->offset & PIN_OFFSET_MASK;
438

439
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
440
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
441
		pin_flags |= PIN_GLOBAL;
442

443
	/* Attempt to reuse the current location if available */
444 445 446 447 448
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
	if (err == -EDEADLK)
		return err;

	if (unlikely(err)) {
449
		if (entry->flags & EXEC_OBJECT_PINNED)
450
			return err;
451 452

		/* Failing that pick any _free_ space if suitable */
453
		err = i915_vma_pin_ww(vma, &eb->ww,
454 455 456
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
457 458 459
					     PIN_USER | PIN_NOEVICT);
		if (unlikely(err))
			return err;
460
	}
461

462
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
463 464
		err = i915_vma_pin_fence(vma);
		if (unlikely(err)) {
465
			i915_vma_unpin(vma);
466
			return err;
467 468
		}

469
		if (vma->fence)
470
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
471 472
	}

473
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
474 475 476 477
	if (eb_vma_misplaced(entry, vma, ev->flags))
		return -EBADSLT;

	return 0;
478 479
}

480 481 482 483 484 485
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

486 487 488 489
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
490 491 492
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

493 494 495 496
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
497
{
498 499 500 501
	/* Relocations are disallowed for all platforms after TGL-LP.  This
	 * also covers all platforms with local memory.
	 */
	if (entry->relocation_count &&
502
	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
503 504
		return -EINVAL;

505 506
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
507

508 509
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
510 511 512 513 514 515 516
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
517
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
518 519 520 521 522 523 524 525
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
526
	}
527 528 529 530 531 532 533
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

534 535 536 537 538 539 540 541 542
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

543
	return 0;
544 545
}

M
Matthew Brost 已提交
546 547 548 549 550 551 552 553 554
static inline bool
is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
{
	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
		buffer_idx < eb->num_batches :
		buffer_idx >= eb->args->buffer_count - eb->num_batches;
}

static int
555
eb_add_vma(struct i915_execbuffer *eb,
M
Matthew Brost 已提交
556 557
	   unsigned int *current_batch,
	   unsigned int i,
558
	   struct i915_vma *vma)
559
{
M
Matthew Brost 已提交
560
	struct drm_i915_private *i915 = eb->i915;
561
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
562
	struct eb_vma *ev = &eb->vma[i];
563

564
	ev->vma = vma;
565 566 567
	ev->exec = entry;
	ev->flags = entry->flags;

568
	if (eb->lut_size > 0) {
569 570
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
571 572
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
573
	}
574

575
	if (entry->relocation_count)
576
		list_add_tail(&ev->reloc_link, &eb->relocs);
577

578 579 580 581 582 583 584 585 586
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
M
Matthew Brost 已提交
587
	if (is_batch_buffer(eb, i)) {
588
		if (entry->relocation_count &&
589 590
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591
		if (eb->reloc_cache.has_fence)
592
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
593

M
Matthew Brost 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		eb->batches[*current_batch] = ev;

		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
			drm_dbg(&i915->drm,
				"Attempting to use self-modifying batch buffer\n");
			return -EINVAL;
		}

		if (range_overflows_t(u64,
				      eb->batch_start_offset,
				      eb->args->batch_len,
				      ev->vma->size)) {
			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
			return -EINVAL;
		}

		if (eb->args->batch_len == 0)
			eb->batch_len[*current_batch] = ev->vma->size -
				eb->batch_start_offset;
		else
			eb->batch_len[*current_batch] = eb->args->batch_len;
		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
			drm_dbg(&i915->drm, "Invalid batch length\n");
			return -EINVAL;
		}

		++*current_batch;
621
	}
M
Matthew Brost 已提交
622 623

	return 0;
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

643
static int eb_reserve_vma(struct i915_execbuffer *eb,
644
			  struct eb_vma *ev,
645
			  u64 pin_flags)
646
{
647 648
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
649 650
	int err;

651 652 653 654 655 656 657
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

658
	err = i915_vma_pin_ww(vma, &eb->ww,
659
			   entry->pad_to_size, entry->alignment,
660
			   eb_pin_flags(entry, ev->flags) | pin_flags);
661 662 663 664 665 666 667 668
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

669
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
670
		err = i915_vma_pin_fence(vma);
671 672 673 674 675
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

676
		if (vma->fence)
677
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
678 679
	}

680
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
681
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
682

683 684 685 686 687 688
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
689
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
690
	struct list_head last;
691
	struct eb_vma *ev;
692
	unsigned int i, pass;
693
	int err = 0;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
710 711
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
712 713 714
			if (err)
				break;
		}
715
		if (err != -ENOSPC)
716
			return err;
717 718 719 720 721

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
722
			unsigned int flags;
723

724 725
			ev = &eb->vma[i];
			flags = ev->flags;
726 727
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
728 729
				continue;

730
			eb_unreserve_vma(ev);
731

732
			if (flags & EXEC_OBJECT_PINNED)
733
				/* Pinned must have their slot */
734
				list_add(&ev->bind_link, &eb->unbound);
735
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
736
				/* Map require the lowest 256MiB (aperture) */
737
				list_add_tail(&ev->bind_link, &eb->unbound);
738 739
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
740
				list_add(&ev->bind_link, &last);
741
			else
742
				list_add_tail(&ev->bind_link, &last);
743 744 745 746 747 748 749 750 751
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
752
			mutex_lock(&eb->context->vm->mutex);
753
			err = i915_gem_evict_vm(eb->context->vm);
754
			mutex_unlock(&eb->context->vm->mutex);
755
			if (err)
756
				return err;
757 758 759
			break;

		default:
760
			return -ENOSPC;
761
		}
762 763

		pin_flags = PIN_USER;
764
	} while (1);
765
}
766

767 768 769 770 771
static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
772 773
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);
774

775
	eb->gem_context = ctx;
776
	if (i915_gem_context_has_full_ppgtt(ctx))
777
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
778 779 780 781

	return 0;
}

782 783
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
784
{
785 786
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
787
	int err;
788

789 790 791 792 793 794 795 796 797 798 799 800
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
801
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
802
		if (likely(!i915_gem_context_is_closed(ctx)))
803
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
804 805
		else
			err = -ENOENT;
806 807 808
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

809
			spin_lock(&obj->lut_lock);
810 811 812 813 814 815
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
816
			spin_unlock(&obj->lut_lock);
817
		}
818
		mutex_unlock(&ctx->lut_mutex);
819 820 821
	}
	if (unlikely(err))
		goto err;
822

823
	return 0;
824

825
err:
C
Chris Wilson 已提交
826
	i915_vma_close(vma);
827 828 829 830
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
831

832 833
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
834 835
	struct i915_address_space *vm = eb->context->vm;

836 837
	do {
		struct drm_i915_gem_object *obj;
838
		struct i915_vma *vma;
839
		int err;
840

841 842
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
843
		if (likely(vma && vma->vm == vm))
844 845 846 847
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
848

849
		obj = i915_gem_object_lookup(eb->file, handle);
850 851
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
852

853 854 855 856 857 858 859 860 861
		/*
		 * If the user has opted-in for protected-object tracking, make
		 * sure the object encryption can be used.
		 * We only need to do this when the object is first used with
		 * this context, because the context itself will be banned when
		 * the protected objects become invalid.
		 */
		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
		    i915_gem_object_is_protected(obj)) {
862
			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
863 864 865 866 867 868
			if (err) {
				i915_gem_object_put(obj);
				return ERR_PTR(err);
			}
		}

869
		vma = i915_vma_instance(obj, vm, NULL);
870
		if (IS_ERR(vma)) {
871 872
			i915_gem_object_put(obj);
			return vma;
873 874
		}

875 876 877
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
878

879 880 881 882 883
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
884

885 886
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
887
	unsigned int i, current_batch = 0;
888
	int err = 0;
889

890 891 892 893 894 895 896 897
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
898
			goto err;
899
		}
900

901
		err = eb_validate_vma(eb, &eb->exec[i], vma);
902 903
		if (unlikely(err)) {
			i915_vma_put(vma);
904
			goto err;
905
		}
906

M
Matthew Brost 已提交
907 908 909
		err = eb_add_vma(eb, &current_batch, i, vma);
		if (err)
			return err;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

		if (i915_gem_object_is_userptr(vma->obj)) {
			err = i915_gem_object_userptr_submit_init(vma->obj);
			if (err) {
				if (i + 1 < eb->buffer_count) {
					/*
					 * Execbuffer code expects last vma entry to be NULL,
					 * since we already initialized this entry,
					 * set the next value to NULL or we mess up
					 * cleanup handling.
					 */
					eb->vma[i + 1].vma = NULL;
				}

				return err;
			}

			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
			eb->args->flags |= __EXEC_USERPTR_USED;
		}
930 931
	}

932 933 934
	return 0;

err:
935
	eb->vma[i].vma = NULL;
936
	return err;
937 938
}

939
static int eb_lock_vmas(struct i915_execbuffer *eb)
940 941 942 943 944 945 946 947 948 949 950
{
	unsigned int i;
	int err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	}

	return 0;
}

static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	err = eb_lock_vmas(eb);
	if (err)
		return err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
971

972 973 974 975 976
		err = eb_pin_vma(eb, entry, ev);
		if (err == -EDEADLK)
			return err;

		if (!err) {
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

992 993 994 995 996 997
		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
			err = dma_resv_reserve_shared(vma->resv, 1);
			if (err)
				return err;
		}

998 999 1000 1001 1002 1003 1004 1005 1006 1007
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

1008
static struct eb_vma *
1009
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1010
{
1011 1012
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
1013
			return NULL;
1014
		return &eb->vma[handle];
1015 1016
	} else {
		struct hlist_head *head;
1017
		struct eb_vma *ev;
1018

1019
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1020 1021 1022
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
1023 1024 1025
		}
		return NULL;
	}
1026 1027
}

1028
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

1040
		eb_unreserve_vma(ev);
1041

1042 1043
		if (final)
			i915_vma_put(vma);
1044
	}
1045 1046

	eb_unpin_engine(eb);
1047 1048
}

1049
static void eb_destroy(const struct i915_execbuffer *eb)
1050
{
1051
	if (eb->lut_size > 0)
1052
		kfree(eb->buckets);
1053 1054
}

1055
static inline u64
1056
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1057
		  const struct i915_vma *target)
1058
{
1059
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1060 1061
}

1062 1063
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
1064
{
1065 1066
	cache->page = -1;
	cache->vaddr = 0;
1067
	/* Must be a variable in the struct to allow GCC to unroll. */
1068
	cache->graphics_ver = GRAPHICS_VER(i915);
1069
	cache->has_llc = HAS_LLC(i915);
1070
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1071
	cache->has_fence = cache->graphics_ver < 4;
1072
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1073
	cache->node.flags = 0;
1074
}
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1095
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1096 1097 1098 1099 1100 1101 1102 1103
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1104 1105
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1106 1107 1108 1109
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1110
		i915_gem_object_finish_access(obj);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1135
			unsigned long pageno)
1136 1137
{
	void *vaddr;
1138
	struct page *page;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1159 1160 1161 1162 1163
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1164
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1165
	cache->page = pageno;
1166 1167 1168 1169 1170

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1171
			 struct i915_execbuffer *eb,
1172 1173
			 unsigned long page)
{
1174
	struct reloc_cache *cache = &eb->reloc_cache;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1196 1197 1198 1199 1200 1201 1202
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1238
			 struct i915_execbuffer *eb,
1239 1240
			 unsigned long page)
{
1241
	struct reloc_cache *cache = &eb->reloc_cache;
1242 1243 1244 1245 1246 1247 1248
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1249
			vaddr = reloc_iomap(obj, eb, page);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1280
static u64
1281
relocate_entry(struct i915_vma *vma,
1282
	       const struct drm_i915_gem_relocation_entry *reloc,
1283
	       struct i915_execbuffer *eb,
1284 1285 1286
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1287
	u64 offset = reloc->offset;
1288 1289
	bool wide = eb->reloc_cache.use_64bit_reloc;
	void *vaddr;
1290 1291

repeat:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	vaddr = reloc_vaddr(vma->obj, eb,
			    offset >> PAGE_SHIFT);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_addr),
			eb->reloc_cache.vaddr);

	if (wide) {
		offset += sizeof(u32);
		target_addr >>= 32;
		wide = false;
		goto repeat;
1307
	}
1308

1309
	return target->node.start | UPDATE;
1310 1311
}

1312 1313
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1314
		  struct eb_vma *ev,
1315
		  const struct drm_i915_gem_relocation_entry *reloc)
1316
{
1317
	struct drm_i915_private *i915 = eb->i915;
1318
	struct eb_vma *target;
1319
	int err;
1320

1321
	/* we've already hold a reference to all valid objects */
1322 1323
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1324
		return -ENOENT;
1325

1326
	/* Validate that the target is in a valid r/w GPU domain */
1327
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1328
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1329
			  "target %d offset %d "
1330
			  "read %08x write %08x",
1331
			  reloc->target_handle,
1332 1333 1334
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1335
		return -EINVAL;
1336
	}
1337 1338
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1339
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1340
			  "target %d offset %d "
1341
			  "read %08x write %08x",
1342
			  reloc->target_handle,
1343 1344 1345
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1346
		return -EINVAL;
1347 1348
	}

1349
	if (reloc->write_domain) {
1350
		target->flags |= EXEC_OBJECT_WRITE;
1351

1352 1353 1354 1355 1356 1357 1358
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1359
		    GRAPHICS_VER(eb->i915) == 6) {
1360 1361
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1362
					    PIN_GLOBAL, NULL);
1363
			if (err)
1364 1365
				return err;
		}
1366
	}
1367

1368 1369
	/*
	 * If the relocation already has the right value in it, no
1370 1371
	 * more work needs to be done.
	 */
1372 1373
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1374
		return 0;
1375 1376

	/* Check that the relocation address is valid... */
1377
	if (unlikely(reloc->offset >
1378
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1379
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1380 1381 1382
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1383
			  (int)ev->vma->size);
1384
		return -EINVAL;
1385
	}
1386
	if (unlikely(reloc->offset & 3)) {
1387
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1388 1389 1390
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1391
		return -EINVAL;
1392 1393
	}

1394 1395 1396 1397 1398 1399
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1400
	 * out of our synchronisation.
1401
	 */
1402
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1403

1404
	/* and update the user's relocation entry */
1405
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1406 1407
}

1408
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1409
{
1410
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1411
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1412
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1413 1414 1415
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1416

1417
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1418
		return -EINVAL;
1419

1420 1421 1422 1423 1424
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1425
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1426 1427 1428 1429 1430
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1431
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1432
		unsigned int copied;
1433

1434 1435
		/*
		 * This is the fast path and we cannot handle a pagefault
1436 1437 1438 1439 1440 1441
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1442 1443 1444
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1445 1446 1447 1448
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1449

1450
		remain -= count;
1451
		do {
1452
			u64 offset = eb_relocate_entry(eb, ev, r);
1453

1454 1455
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1456 1457
				remain = (int)offset;
				goto out;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1481 1482
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1483
			}
1484 1485 1486
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1487
out:
1488
	reloc_cache_reset(&eb->reloc_cache, eb);
1489
	return remain;
1490 1491
}

1492 1493
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1494
{
1495 1496 1497 1498
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1499 1500
	int err;

1501 1502
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1503

1504 1505 1506 1507
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1508
	}
1509 1510
	err = 0;
err:
1511
	reloc_cache_reset(&eb->reloc_cache, eb);
1512 1513
	return err;
}
1514

1515 1516 1517 1518 1519
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1520

1521 1522 1523
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1524

1525 1526
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1540 1541
}

1542
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1543
{
1544
	struct drm_i915_gem_relocation_entry *relocs;
1545 1546
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1547
	int err;
1548

1549
	for (i = 0; i < count; i++) {
1550 1551 1552 1553
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1554

1555 1556
		if (nreloc == 0)
			continue;
1557

1558 1559 1560
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1561

1562 1563
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1564

1565 1566 1567 1568
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1569
		}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static int eb_reinit_userptr(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int ret;

	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
		return 0;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];

		if (!i915_gem_object_is_userptr(ev->vma->obj))
			continue;

		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
		if (ret)
			return ret;

		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
	}

	return 0;
}

M
Matthew Brost 已提交
1664
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1674
	}
1675

1676
	/* We may process another execbuffer during the unlock... */
1677
	eb_release_vmas(eb, false);
1678 1679
	i915_gem_ww_ctx_fini(&eb->ww);

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1703
	if (!err)
1704
		err = eb_reinit_userptr(eb);
1705

1706
	i915_gem_ww_ctx_init(&eb->ww, true);
1707 1708 1709
	if (err)
		goto out;

1710 1711
	/* reacquire the objects */
repeat_validate:
M
Matthew Brost 已提交
1712 1713
	err = eb_pin_engine(eb, false);
	if (err)
1714 1715
		goto err;

1716
	err = eb_validate_vmas(eb);
1717
	if (err)
1718 1719
		goto err;

M
Matthew Brost 已提交
1720
	GEM_BUG_ON(!eb->batches[0]);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			err = eb_relocate_vma(eb, ev);
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1734 1735 1736
	if (err == -EDEADLK)
		goto err;

1737 1738 1739 1740 1741 1742
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1743 1744 1745 1746 1747
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1756
	if (err == -EDEADLK) {
1757
		eb_release_vmas(eb, false);
1758 1759 1760 1761 1762
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err;
}

1787
static int eb_relocate_parse(struct i915_execbuffer *eb)
1788
{
1789
	int err;
1790
	bool throttle = true;
1791

1792
retry:
M
Matthew Brost 已提交
1793 1794
	err = eb_pin_engine(eb, throttle);
	if (err) {
1795 1796 1797 1798 1799 1800 1801 1802 1803
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

1804 1805 1806 1807 1808
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
1809 1810 1811

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1812
		struct eb_vma *ev;
1813

1814
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1815 1816
			err = eb_relocate_vma(eb, ev);
			if (err)
1817
				break;
1818
		}
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
1831
		eb_release_vmas(eb, false);
1832 1833 1834
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
1835 1836
	}

1837 1838 1839
	return err;

slow:
M
Matthew Brost 已提交
1840
	err = eb_relocate_parse_slow(eb);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
1852 1853
}

M
Matthew Brost 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/*
 * Using two helper loops for the order of which requests / batches are created
 * and added the to backend. Requests are created in order from the parent to
 * the last child. Requests are added in the reverse order, from the last child
 * to parent. This is done for locking reasons as the timeline lock is acquired
 * during request creation and released when the request is added to the
 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
 * the ordering.
 */
#define for_each_batch_create_order(_eb, _i) \
	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
#define for_each_batch_add_order(_eb, _i) \
	BUILD_BUG_ON(!typecheck(int, _i)); \
	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))

static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer *eb)
{
	int i;

	for_each_batch_add_order(eb, i)
		if (eb->requests[i])
			return eb->requests[i];

	GEM_BUG_ON("Request not found");

	return NULL;
}

1883 1884 1885
static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1886
	unsigned int i = count;
M
Matthew Brost 已提交
1887
	int err = 0, j;
1888 1889

	while (i--) {
1890 1891 1892
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1893
		struct drm_i915_gem_object *obj = vma->obj;
1894

1895 1896
		assert_vma_held(vma);

1897
		if (flags & EXEC_OBJECT_CAPTURE) {
1898
			struct i915_capture_list *capture;
1899

M
Matthew Brost 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			for_each_batch_create_order(eb, j) {
				if (!eb->requests[j])
					break;

				capture = kmalloc(sizeof(*capture), GFP_KERNEL);
				if (capture) {
					capture->next =
						eb->requests[j]->capture_list;
					capture->vma = vma;
					eb->requests[j]->capture_list = capture;
				}
1911
			}
1912 1913
		}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		 *
		 * FIXME: There is also sync flushing in set_pages(), which
		 * serves a different purpose(some of the time at least).
		 *
		 * We should consider:
		 *
		 *   1. Rip out the async flush code.
		 *
		 *   2. Or make the sync flushing use the async clflush path
		 *   using mandatory fences underneath. Currently the below
		 *   async flush happens after we bind the object.
1936 1937
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1938
			if (i915_gem_clflush_object(obj, 0))
1939
				flags &= ~EXEC_OBJECT_ASYNC;
1940 1941
		}

M
Matthew Brost 已提交
1942
		/* We only need to await on the first request */
1943 1944
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
M
Matthew Brost 已提交
1945 1946
				(eb_find_first_request_added(eb), obj,
				 flags & EXEC_OBJECT_WRITE);
1947
		}
1948

M
Matthew Brost 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		for_each_batch_add_order(eb, j) {
			if (err)
				break;
			if (!eb->requests[j])
				continue;

			err = _i915_vma_move_to_active(vma, eb->requests[j],
						       j ? NULL :
						       eb->composite_fence ?
						       eb->composite_fence :
						       &eb->requests[j]->fence,
						       flags | __EXEC_OBJECT_NO_RESERVE);
		}
1962
	}
1963

1964 1965
#ifdef CONFIG_MMU_NOTIFIER
	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
1966
		read_lock(&eb->i915->mm.notifier_lock);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

		/*
		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
		 * could not have been set
		 */
		for (i = 0; i < count; i++) {
			struct eb_vma *ev = &eb->vma[i];
			struct drm_i915_gem_object *obj = ev->vma->obj;

			if (!i915_gem_object_is_userptr(obj))
				continue;

			err = i915_gem_object_userptr_submit_done(obj);
			if (err)
				break;
		}

1984
		read_unlock(&eb->i915->mm.notifier_lock);
1985 1986 1987
	}
#endif

1988 1989 1990
	if (unlikely(err))
		goto err_skip;

1991
	/* Unconditionally flush any chipset caches (for streaming writes). */
M
Matthew Brost 已提交
1992
	intel_gt_chipset_flush(eb->gt);
1993
	return 0;
1994 1995

err_skip:
M
Matthew Brost 已提交
1996 1997 1998 1999 2000 2001
	for_each_batch_create_order(eb, j) {
		if (!eb->requests[j])
			break;

		i915_request_set_error_once(eb->requests[j], err);
	}
2002
	return err;
2003 2004
}

T
Tvrtko Ursulin 已提交
2005
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2006
{
2007
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2008
		return -EINVAL;
2009

C
Chris Wilson 已提交
2010
	/* Kernel clipping was a DRI1 misfeature */
2011 2012
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2013
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2014
			return -EINVAL;
2015
	}
C
Chris Wilson 已提交
2016 2017 2018 2019 2020 2021

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2022
		return -EINVAL;
C
Chris Wilson 已提交
2023 2024

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2025
		return -EINVAL;
C
Chris Wilson 已提交
2026

T
Tvrtko Ursulin 已提交
2027
	return 0;
2028 2029
}

2030
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2031
{
2032 2033
	u32 *cs;
	int i;
2034

2035
	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2036
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2037 2038
		return -EINVAL;
	}
2039

2040
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2041 2042
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2043

2044
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2045
	for (i = 0; i < 4; i++) {
2046 2047
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2048
	}
2049
	*cs++ = MI_NOOP;
2050
	intel_ring_advance(rq, cs);
2051 2052 2053 2054

	return 0;
}

2055
static struct i915_vma *
2056 2057
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2058 2059
		 struct i915_address_space *vm,
		 unsigned int flags)
2060
{
2061 2062
	struct i915_vma *vma;
	int err;
2063

2064 2065 2066 2067
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2068
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2069 2070 2071 2072
	if (err)
		return ERR_PTR(err);

	return vma;
2073 2074
}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2087
static int eb_parse(struct i915_execbuffer *eb)
2088
{
2089
	struct drm_i915_private *i915 = eb->i915;
2090
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2091
	struct i915_vma *shadow, *trampoline, *batch;
2092
	unsigned long len;
2093
	int err;
2094

2095
	if (!eb_use_cmdparser(eb)) {
M
Matthew Brost 已提交
2096
		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2097 2098 2099 2100 2101
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2102

M
Matthew Brost 已提交
2103 2104 2105 2106
	if (intel_context_is_parallel(eb->context))
		return -EINVAL;

	len = eb->batch_len[0];
2107 2108 2109 2110 2111 2112
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2113 2114
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2115 2116 2117 2118 2119
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
M
Matthew Brost 已提交
2120
	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2121
		return -EINVAL;
2122

2123
	if (!pool) {
M
Matthew Brost 已提交
2124
		pool = intel_gt_get_buffer_pool(eb->gt, len,
2125
						I915_MAP_WB);
2126 2127 2128 2129
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2130

2131 2132 2133
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2134

2135
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2136 2137
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2138
		goto err;
2139
	}
2140
	intel_gt_buffer_pool_mark_used(pool);
2141
	i915_gem_object_set_readonly(shadow->obj);
2142
	shadow->private = pool;
2143 2144 2145 2146 2147

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2148
		shadow = shadow_batch_pin(eb, pool->obj,
M
Matthew Brost 已提交
2149
					  &eb->gt->ggtt->vm,
2150 2151 2152 2153 2154 2155
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2156
		shadow->private = pool;
2157 2158 2159

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2160

2161 2162 2163 2164 2165 2166
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2167 2168 2169 2170
	err = dma_resv_reserve_shared(shadow->resv, 1);
	if (err)
		goto err_trampoline;

M
Matthew Brost 已提交
2171 2172
	err = intel_engine_cmd_parser(eb->context->engine,
				      eb->batches[0]->vma,
2173
				      eb->batch_start_offset,
M
Matthew Brost 已提交
2174
				      eb->batch_len[0],
2175
				      shadow, trampoline);
2176
	if (err)
2177
		goto err_unpin_batch;
2178

M
Matthew Brost 已提交
2179 2180 2181
	eb->batches[0] = &eb->vma[eb->buffer_count++];
	eb->batches[0]->vma = i915_vma_get(shadow);
	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2182

2183
	eb->trampoline = trampoline;
2184 2185
	eb->batch_start_offset = 0;

2186 2187
secure_batch:
	if (batch) {
M
Matthew Brost 已提交
2188 2189 2190 2191 2192 2193
		if (intel_context_is_parallel(eb->context))
			return -EINVAL;

		eb->batches[0] = &eb->vma[eb->buffer_count++];
		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batches[0]->vma = i915_vma_get(batch);
2194
	}
2195
	return 0;
2196

2197 2198 2199
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2200 2201 2202 2203 2204
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2205
err:
2206
	return err;
2207
}
2208

M
Matthew Brost 已提交
2209 2210 2211 2212
static int eb_request_submit(struct i915_execbuffer *eb,
			     struct i915_request *rq,
			     struct i915_vma *batch,
			     u64 batch_len)
2213
{
2214
	int err;
2215

M
Matthew Brost 已提交
2216 2217
	if (intel_context_nopreempt(rq->context))
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2218

2219
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
M
Matthew Brost 已提交
2220
		err = i915_reset_gen7_sol_offsets(rq);
2221 2222
		if (err)
			return err;
2223 2224
	}

2225 2226 2227 2228 2229 2230
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
M
Matthew Brost 已提交
2231 2232
	if (rq->context->engine->emit_init_breadcrumb) {
		err = rq->context->engine->emit_init_breadcrumb(rq);
2233 2234 2235 2236
		if (err)
			return err;
	}

M
Matthew Brost 已提交
2237 2238 2239 2240 2241
	err = rq->context->engine->emit_bb_start(rq,
						 batch->node.start +
						 eb->batch_start_offset,
						 batch_len,
						 eb->batch_flags);
2242 2243
	if (err)
		return err;
2244

2245
	if (eb->trampoline) {
M
Matthew Brost 已提交
2246
		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2247
		GEM_BUG_ON(eb->batch_start_offset);
M
Matthew Brost 已提交
2248 2249 2250
		err = rq->context->engine->emit_bb_start(rq,
							 eb->trampoline->node.start +
							 batch_len, 0, 0);
2251 2252 2253 2254
		if (err)
			return err;
	}

C
Chris Wilson 已提交
2255
	return 0;
2256 2257
}

M
Matthew Brost 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static int eb_submit(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	err = eb_move_to_gpu(eb);

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
		if (!err)
			err = eb_request_submit(eb, eb->requests[i],
						eb->batches[i]->vma,
						eb->batch_len[i]);
	}

	return err;
}

2279 2280
static int num_vcs_engines(const struct drm_i915_private *i915)
{
A
Arnd Bergmann 已提交
2281
	return hweight_long(VDBOX_MASK(&i915->gt));
2282 2283
}

2284
/*
2285
 * Find one BSD ring to dispatch the corresponding BSD command.
2286
 * The engine index is returned.
2287
 */
2288
static unsigned int
2289 2290
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2291 2292 2293
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2294
	/* Check whether the file_priv has already selected one ring. */
2295
	if ((int)file_priv->bsd_engine < 0)
2296 2297
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2298

2299
	return file_priv->bsd_engine;
2300 2301
}

2302
static const enum intel_engine_id user_ring_map[] = {
2303 2304 2305 2306 2307
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2308 2309
};

2310
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

M
Matthew Brost 已提交
2344 2345
static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
			   bool throttle)
2346 2347
{
	struct intel_timeline *tl;
2348
	struct i915_request *rq = NULL;
2349

2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2358
	tl = intel_context_timeline_lock(ce);
M
Matthew Brost 已提交
2359 2360
	if (IS_ERR(tl))
		return PTR_ERR(tl);
2361 2362

	intel_context_enter(ce);
2363 2364
	if (throttle)
		rq = eb_throttle(eb, ce);
2365 2366
	intel_context_timeline_unlock(tl);

M
Matthew Brost 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;

		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      timeout) < 0) {
			i915_request_put(rq);

			tl = intel_context_timeline_lock(ce);
			intel_context_exit(ce);
			intel_context_timeline_unlock(tl);

			if (nonblock)
				return -EWOULDBLOCK;
			else
				return -EINTR;
		}
		i915_request_put(rq);
	}

	return 0;
}

static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
{
	struct intel_context *ce = eb->context, *child;
	int err;
	int i = 0, j = 0;

	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);

	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	err = intel_context_pin_ww(ce, &eb->ww);
	if (err)
		return err;
	for_each_child(ce, child) {
		err = intel_context_pin_ww(child, &eb->ww);
		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
	}

	for_each_child(ce, child) {
		err = eb_pin_timeline(eb, child, throttle);
		if (err)
			goto unwind;
		++i;
	}
	err = eb_pin_timeline(eb, ce, throttle);
	if (err)
		goto unwind;

2424
	eb->args->flags |= __EXEC_ENGINE_PINNED;
M
Matthew Brost 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	return 0;

unwind:
	for_each_child(ce, child) {
		if (j++ < i) {
			mutex_lock(&child->timeline->mutex);
			intel_context_exit(child);
			mutex_unlock(&child->timeline->mutex);
		}
	}
	for_each_child(ce, child)
		intel_context_unpin(child);
	intel_context_unpin(ce);
	return err;
2439 2440
}

2441
static void eb_unpin_engine(struct i915_execbuffer *eb)
2442
{
M
Matthew Brost 已提交
2443
	struct intel_context *ce = eb->context, *child;
2444

2445 2446 2447 2448 2449
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

M
Matthew Brost 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458
	for_each_child(ce, child) {
		mutex_lock(&child->timeline->mutex);
		intel_context_exit(child);
		mutex_unlock(&child->timeline->mutex);

		intel_context_unpin(child);
	}

	mutex_lock(&ce->timeline->mutex);
2459
	intel_context_exit(ce);
M
Matthew Brost 已提交
2460
	mutex_unlock(&ce->timeline->mutex);
2461

2462
	intel_context_unpin(ce);
2463
}
2464

2465
static unsigned int
2466
eb_select_legacy_ring(struct i915_execbuffer *eb)
2467
{
2468
	struct drm_i915_private *i915 = eb->i915;
2469
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2470 2471
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2472 2473
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2474 2475 2476
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2477
		return -1;
2478 2479
	}

2480
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2481 2482 2483
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2484
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2485 2486
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2487
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2488 2489
			bsd_idx--;
		} else {
2490 2491 2492
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2493
			return -1;
2494 2495
		}

2496
		return _VCS(bsd_idx);
2497 2498
	}

2499
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2500 2501
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2502
		return -1;
2503 2504
	}

2505 2506 2507 2508
	return user_ring_map[user_ring_id];
}

static int
2509
eb_select_engine(struct i915_execbuffer *eb)
2510
{
M
Matthew Brost 已提交
2511
	struct intel_context *ce, *child;
2512 2513 2514
	unsigned int idx;
	int err;

2515
	if (i915_gem_context_user_engines(eb->gem_context))
2516
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2517
	else
2518
		idx = eb_select_legacy_ring(eb);
2519 2520 2521 2522 2523

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

M
Matthew Brost 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (intel_context_is_parallel(ce)) {
		if (eb->buffer_count < ce->parallel.number_children + 1) {
			intel_context_put(ce);
			return -EINVAL;
		}
		if (eb->batch_start_offset || eb->args->batch_len) {
			intel_context_put(ce);
			return -EINVAL;
		}
	}
	eb->num_batches = ce->parallel.number_children + 1;

	for_each_child(ce, child)
		intel_context_get(child);
2538
	intel_gt_pm_get(ce->engine->gt);
2539

2540 2541 2542 2543 2544
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}
M
Matthew Brost 已提交
2545 2546 2547 2548 2549 2550 2551
	for_each_child(ce, child) {
		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
			err = intel_context_alloc_state(child);
			if (err)
				goto err;
		}
	}
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
M
Matthew Brost 已提交
2562
	eb->gt = ce->engine->gt;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
M
Matthew Brost 已提交
2573 2574
	for_each_child(ce, child)
		intel_context_put(child);
2575
	intel_context_put(ce);
2576
	return err;
2577 2578
}

2579 2580 2581
static void
eb_put_engine(struct i915_execbuffer *eb)
{
M
Matthew Brost 已提交
2582 2583 2584 2585 2586
	struct intel_context *child;

	intel_gt_pm_put(eb->gt);
	for_each_child(eb->context, child)
		intel_context_put(child);
2587 2588 2589
	intel_context_put(eb->context);
}

2590
static void
2591
__free_fence_array(struct eb_fence *fences, unsigned int n)
2592
{
2593
	while (n--) {
2594
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2595
		dma_fence_put(fences[n].dma_fence);
2596
		dma_fence_chain_free(fences[n].chain_fence);
2597
	}
2598 2599 2600
	kvfree(fences);
}

2601
static int
2602 2603
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2604
{
2605 2606 2607 2608 2609
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2610

2611 2612
	nfences = timeline_fences->fence_count;
	if (!nfences)
2613
		return 0;
2614

2615 2616 2617
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2618 2619
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2620
		return -EINVAL;
2621

2622 2623 2624 2625 2626 2627
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2628
		return -EFAULT;
2629

2630 2631 2632 2633
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2634
		return -ENOMEM;
2635

2636 2637 2638 2639 2640 2641 2642 2643
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2644
		struct drm_syncobj *syncobj;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2666

2667 2668 2669 2670 2671
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2672 2673
		}

2674 2675 2676 2677 2678
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2679
			dma_fence_put(fence);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

2710
			f->chain_fence = dma_fence_chain_alloc();
2711 2712 2713 2714 2715 2716 2717
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2718 2719
		}

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2774 2775
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2786 2787
		}

2788 2789 2790
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2791 2792 2793 2794 2795 2796
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2797 2798
	}

2799
	return 0;
2800
}
2801

2802 2803 2804 2805
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2806 2807 2808
}

static int
M
Matthew Brost 已提交
2809 2810
await_fence_array(struct i915_execbuffer *eb,
		  struct i915_request *rq)
2811 2812 2813 2814
{
	unsigned int n;
	int err;

2815
	for (n = 0; n < eb->num_fences; n++) {
2816 2817 2818
		struct drm_syncobj *syncobj;
		unsigned int flags;

2819
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2820

2821 2822
		if (!eb->fences[n].dma_fence)
			continue;
2823

M
Matthew Brost 已提交
2824
		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2825 2826 2827 2828 2829 2830 2831
		if (err < 0)
			return err;
	}

	return 0;
}

M
Matthew Brost 已提交
2832 2833
static void signal_fence_array(const struct i915_execbuffer *eb,
			       struct dma_fence * const fence)
2834 2835 2836
{
	unsigned int n;

2837
	for (n = 0; n < eb->num_fences; n++) {
2838 2839 2840
		struct drm_syncobj *syncobj;
		unsigned int flags;

2841
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2842 2843 2844
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2858 2859 2860
	}
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2873 2874 2875 2876 2877 2878 2879 2880 2881
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

M
Matthew Brost 已提交
2882 2883
static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
			  int err, bool last_parallel)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
{
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2897
	if (likely(!intel_context_is_closed(eb->context))) {
2898 2899 2900
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2901 2902
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2903
		err = -ENOENT; /* override any transient errors */
2904 2905
	}

M
Matthew Brost 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	if (intel_context_is_parallel(eb->context)) {
		if (err) {
			__i915_request_skip(rq);
			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
				&rq->fence.flags);
		}
		if (last_parallel)
			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
				&rq->fence.flags);
	}

2917 2918 2919 2920 2921 2922 2923
	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
2924 2925

	return err;
2926 2927
}

M
Matthew Brost 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static int eb_requests_add(struct i915_execbuffer *eb, int err)
{
	int i;

	/*
	 * We iterate in reverse order of creation to release timeline mutexes in
	 * same order.
	 */
	for_each_batch_add_order(eb, i) {
		struct i915_request *rq = eb->requests[i];

		if (!rq)
			continue;
		err |= eb_request_add(eb, rq, err, i == 0);
	}

	return err;
}

2947
static const i915_user_extension_fn execbuf_extensions[] = {
2948
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

M
Matthew Brost 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static void eb_requests_get(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_get(eb->requests[i]);
	}
}

static void eb_requests_put(struct i915_execbuffer *eb)
{
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		if (!eb->requests[i])
			break;

		i915_request_put(eb->requests[i]);
	}
}

static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	struct dma_fence_array *fence_array;
	struct dma_fence **fences;
	unsigned int i;

	GEM_BUG_ON(!intel_context_is_parent(eb->context));

	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
	if (!fences)
		return ERR_PTR(-ENOMEM);

3011
	for_each_batch_create_order(eb, i) {
M
Matthew Brost 已提交
3012
		fences[i] = &eb->requests[i]->fence;
3013 3014 3015
		__set_bit(I915_FENCE_FLAG_COMPOSITE,
			  &eb->requests[i]->fence.flags);
	}
M
Matthew Brost 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

	fence_array = dma_fence_array_create(eb->num_batches,
					     fences,
					     eb->context->parallel.fence_context,
					     eb->context->parallel.seqno,
					     false);
	if (!fence_array) {
		kfree(fences);
		return ERR_PTR(-ENOMEM);
	}

	/* Move ownership to the dma_fence_array created above */
	for_each_batch_create_order(eb, i)
		dma_fence_get(fences[i]);

	if (out_fence_fd != -1) {
		out_fence = sync_file_create(&fence_array->base);
		/* sync_file now owns fence_arry, drop creation ref */
		dma_fence_put(&fence_array->base);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	eb->composite_fence = &fence_array->base;

	return out_fence;
}

static struct sync_file *
eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
	      struct dma_fence *in_fence, int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	int err;

	if (unlikely(eb->gem_context->syncobj)) {
		struct dma_fence *fence;

		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
		err = i915_request_await_dma_fence(rq, fence);
		dma_fence_put(fence);
		if (err)
			return ERR_PTR(err);
	}

	if (in_fence) {
		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(rq, in_fence);
		else
			err = i915_request_await_dma_fence(rq, in_fence);
		if (err < 0)
			return ERR_PTR(err);
	}

	if (eb->fences) {
		err = await_fence_array(eb, rq);
		if (err)
			return ERR_PTR(err);
	}

	if (intel_context_is_parallel(eb->context)) {
		out_fence = eb_composite_fence_create(eb, out_fence_fd);
		if (IS_ERR(out_fence))
			return ERR_PTR(-ENOMEM);
	} else if (out_fence_fd != -1) {
		out_fence = sync_file_create(&rq->fence);
		if (!out_fence)
			return ERR_PTR(-ENOMEM);
	}

	return out_fence;
}

static struct intel_context *
eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
{
	struct intel_context *child;

	if (likely(context_number == 0))
		return eb->context;

	for_each_child(eb->context, child)
		if (!--context_number)
			return child;

	GEM_BUG_ON("Context not found");

	return NULL;
}

static struct sync_file *
eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
		   int out_fence_fd)
{
	struct sync_file *out_fence = NULL;
	unsigned int i;

	for_each_batch_create_order(eb, i) {
		/* Allocate a request for this batch buffer nice and early. */
		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
		if (IS_ERR(eb->requests[i])) {
3117
			out_fence = ERR_CAST(eb->requests[i]);
M
Matthew Brost 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
			eb->requests[i] = NULL;
			return out_fence;
		}

		/*
		 * Only the first request added (committed to backend) has to
		 * take the in fences into account as all subsequent requests
		 * will have fences inserted inbetween them.
		 */
		if (i + 1 == eb->num_batches) {
			out_fence = eb_fences_add(eb, eb->requests[i],
						  in_fence, out_fence_fd);
			if (IS_ERR(out_fence))
				return out_fence;
		}

		/*
		 * Whilst this request exists, batch_obj will be on the
		 * active_list, and so will hold the active reference. Only when
		 * this request is retired will the batch_obj be moved onto
		 * the inactive_list and lose its active reference. Hence we do
		 * not need to explicitly hold another reference here.
		 */
		eb->requests[i]->batch = eb->batches[i]->vma;
		if (eb->batch_pool) {
			GEM_BUG_ON(intel_context_is_parallel(eb->context));
			intel_gt_buffer_pool_mark_active(eb->batch_pool,
							 eb->requests[i]);
		}
	}

	return out_fence;
}

3152
static int
3153
i915_gem_do_execbuffer(struct drm_device *dev,
3154 3155
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3156
		       struct drm_i915_gem_exec_object2 *exec)
3157
{
3158
	struct drm_i915_private *i915 = to_i915(dev);
3159
	struct i915_execbuffer eb;
3160 3161 3162
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
3163
	int err;
3164

3165
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3166 3167
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3168

3169
	eb.i915 = i915;
3170 3171
	eb.file = file;
	eb.args = args;
3172
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3173
		args->flags |= __EXEC_HAS_RELOC;
3174

3175
	eb.exec = exec;
3176 3177
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
D
Daniel Vetter 已提交
3178
	eb.batch_pool = NULL;
3179

3180
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3181 3182
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3183
	eb.buffer_count = args->buffer_count;
3184
	eb.batch_start_offset = args->batch_start_offset;
3185
	eb.trampoline = NULL;
3186

3187
	eb.fences = NULL;
3188
	eb.num_fences = 0;
3189

M
Matthew Brost 已提交
3190 3191 3192 3193
	memset(eb.requests, 0, sizeof(struct i915_request *) *
	       ARRAY_SIZE(eb.requests));
	eb.composite_fence = NULL;

3194
	eb.batch_flags = 0;
3195
	if (args->flags & I915_EXEC_SECURE) {
3196
		if (GRAPHICS_VER(i915) >= 11)
3197 3198 3199 3200 3201 3202
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3203
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3204
			return -EPERM;
3205

3206
		eb.batch_flags |= I915_DISPATCH_SECURE;
3207
	}
3208
	if (args->flags & I915_EXEC_IS_PINNED)
3209
		eb.batch_flags |= I915_DISPATCH_PINNED;
3210

3211 3212 3213 3214 3215 3216 3217 3218
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3219 3220 3221 3222 3223
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3224
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3225 3226 3227 3228
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3229
	}
3230
#undef IN_FENCES
3231

3232 3233 3234
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3235
			err = out_fence_fd;
3236
			goto err_in_fence;
3237 3238 3239
		}
	}

3240 3241
	err = eb_create(&eb);
	if (err)
3242
		goto err_out_fence;
3243

3244
	GEM_BUG_ON(!eb.lut_size);
3245

3246 3247 3248 3249
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3250
	err = eb_select_engine(&eb);
3251
	if (unlikely(err))
3252
		goto err_context;
3253

3254 3255
	err = eb_lookup_vmas(&eb);
	if (err) {
3256
		eb_release_vmas(&eb, true);
3257 3258 3259 3260 3261
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3262
	err = eb_relocate_parse(&eb);
3263
	if (err) {
3264 3265 3266 3267 3268 3269 3270 3271 3272
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3273
	}
3274

3275
	ww_acquire_done(&eb.ww.ctx);
3276

M
Matthew Brost 已提交
3277 3278 3279 3280
	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
	if (IS_ERR(out_fence)) {
		err = PTR_ERR(out_fence);
		if (eb.requests[0])
3281
			goto err_request;
M
Matthew Brost 已提交
3282 3283
		else
			goto err_vma;
3284 3285
	}

M
Matthew Brost 已提交
3286
	err = eb_submit(&eb);
3287

3288
err_request:
M
Matthew Brost 已提交
3289 3290
	eb_requests_get(&eb);
	err = eb_requests_add(&eb, err);
3291

3292
	if (eb.fences)
M
Matthew Brost 已提交
3293 3294 3295
		signal_fence_array(&eb, eb.composite_fence ?
				   eb.composite_fence :
				   &eb.requests[0]->fence);
3296

3297
	if (out_fence) {
3298
		if (err == 0) {
3299
			fd_install(out_fence_fd, out_fence->file);
3300
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3301 3302 3303 3304 3305 3306
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3307 3308 3309

	if (unlikely(eb.gem_context->syncobj)) {
		drm_syncobj_replace_fence(eb.gem_context->syncobj,
M
Matthew Brost 已提交
3310 3311 3312
					  eb.composite_fence ?
					  eb.composite_fence :
					  &eb.requests[0]->fence);
3313 3314
	}

M
Matthew Brost 已提交
3315 3316 3317 3318
	if (!out_fence && eb.composite_fence)
		dma_fence_put(eb.composite_fence);

	eb_requests_put(&eb);
3319

3320
err_vma:
3321
	eb_release_vmas(&eb, true);
3322 3323
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3324 3325 3326 3327 3328 3329
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
err_engine:
3330
	eb_put_engine(&eb);
3331
err_context:
3332
	i915_gem_context_put(eb.gem_context);
3333
err_destroy:
3334
	eb_destroy(&eb);
3335
err_out_fence:
3336 3337
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3338
err_in_fence:
3339
	dma_fence_put(in_fence);
3340 3341
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3342
	return err;
3343 3344
}

3345 3346
static size_t eb_element_size(void)
{
3347
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3363
int
3364 3365
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3366
{
3367
	struct drm_i915_private *i915 = to_i915(dev);
3368
	struct drm_i915_gem_execbuffer2 *args = data;
3369
	struct drm_i915_gem_exec_object2 *exec2_list;
3370
	const size_t count = args->buffer_count;
3371
	int err;
3372

3373
	if (!check_buffer_count(count)) {
3374
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3375 3376 3377
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3378 3379 3380
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3381

3382 3383
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3384
				    __GFP_NOWARN | GFP_KERNEL);
3385
	if (exec2_list == NULL) {
3386 3387
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3388 3389
		return -ENOMEM;
	}
3390 3391
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3392
			   sizeof(*exec2_list) * count)) {
3393
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3394
		kvfree(exec2_list);
3395 3396 3397
		return -EFAULT;
	}

3398
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3399 3400 3401 3402 3403 3404 3405 3406

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3407
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3408 3409
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3410

3411
		/* Copy the new buffer offsets back to the user's exec list. */
3412 3413 3414 3415 3416 3417 3418
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3419 3420
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3421
			goto end;
3422

3423
		for (i = 0; i < args->buffer_count; i++) {
3424 3425 3426
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3427
			exec2_list[i].offset =
3428 3429 3430 3431
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3432
		}
3433
end_user:
3434
		user_write_access_end();
3435
end:;
3436 3437
	}

3438
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3439
	kvfree(exec2_list);
3440
	return err;
3441
}