i915_gem_execbuffer.c 79.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gpu_commands.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_buffer_pool.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53
/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
54 55 56 57
#define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
58
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 60

#define __EXEC_HAS_RELOC	BIT(31)
61
#define __EXEC_ENGINE_PINNED	BIT(30)
62 63
#define __EXEC_USERPTR_USED	BIT(29)
#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
64
#define UPDATE			PIN_OFFSET_FIXED
65 66

#define BATCH_OFFSET_BIAS (256*1024)
67

68
#define __I915_EXEC_ILLEGAL_FLAGS \
69 70 71
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
72

73 74 75 76 77 78 79 80 81
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

233 234 235 236 237 238 239
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

240
struct i915_execbuffer {
241 242 243 244
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
245
	struct eb_vma *vma;
246 247

	struct intel_engine_cs *engine; /** engine to queue the request to */
248 249
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
250

251
	struct i915_request *request; /** our request to build */
252
	struct eb_vma *batch; /** identity of the batch obj/vma */
253
	struct i915_vma *trampoline; /** trampoline used for chaining */
254 255 256 257 258 259 260 261 262 263

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

264 265
	struct i915_gem_ww_ctx ww;

266 267 268 269 270
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
271
	struct reloc_cache {
272
		struct drm_mm_node node; /** temporary GTT binding */
273 274
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
275
		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
276
		bool use_64bit_reloc : 1;
277 278 279
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
280
	} reloc_cache;
281 282 283

	u64 invalid_flags; /** Set of execobj.flags that are invalid */

284
	u64 batch_len; /** Length of batch within object */
285 286
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
287
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
288 289 290 291 292 293 294 295

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
296

297 298
	struct eb_fence *fences;
	unsigned long num_fences;
299 300
};

301
static int eb_parse(struct i915_execbuffer *eb);
302 303 304
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
					  bool throttle);
static void eb_unpin_engine(struct i915_execbuffer *eb);
305

306 307
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
308
	return intel_engine_requires_cmd_parser(eb->engine) ||
309 310
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
311 312
}

313
static int eb_create(struct i915_execbuffer *eb)
314
{
315 316
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
317

318 319 320 321 322 323 324 325 326 327 328
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
329
		do {
330
			gfp_t flags;
331 332 333 334 335 336 337

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
338
			flags = GFP_KERNEL;
339 340 341
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

342
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
343
					      flags);
344 345 346 347
			if (eb->buckets)
				break;
		} while (--size);

348
		if (unlikely(!size))
349
			return -ENOMEM;
350

351
		eb->lut_size = size;
352
	} else {
353
		eb->lut_size = -eb->buffer_count;
354
	}
355

356
	return 0;
357 358
}

359 360
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
361 362
		 const struct i915_vma *vma,
		 unsigned int flags)
363 364 365 366 367 368 369
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

370
	if (flags & EXEC_OBJECT_PINNED &&
371 372 373
	    vma->node.start != entry->offset)
		return true;

374
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
375 376 377
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

378
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
379
	    (vma->node.start + vma->node.size + 4095) >> 32)
380 381
		return true;

382 383 384 385
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

386 387 388
	return false;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

415
static inline int
416
eb_pin_vma(struct i915_execbuffer *eb,
417
	   const struct drm_i915_gem_exec_object2 *entry,
418
	   struct eb_vma *ev)
419
{
420
	struct i915_vma *vma = ev->vma;
421
	u64 pin_flags;
422
	int err;
423

424
	if (vma->node.size)
425
		pin_flags = vma->node.start;
426
	else
427
		pin_flags = entry->offset & PIN_OFFSET_MASK;
428

429
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
430
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
431
		pin_flags |= PIN_GLOBAL;
432

433
	/* Attempt to reuse the current location if available */
434 435 436 437 438
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
	if (err == -EDEADLK)
		return err;

	if (unlikely(err)) {
439
		if (entry->flags & EXEC_OBJECT_PINNED)
440
			return err;
441 442

		/* Failing that pick any _free_ space if suitable */
443
		err = i915_vma_pin_ww(vma, &eb->ww,
444 445 446
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
447 448 449
					     PIN_USER | PIN_NOEVICT);
		if (unlikely(err))
			return err;
450
	}
451

452
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
453 454
		err = i915_vma_pin_fence(vma);
		if (unlikely(err)) {
455
			i915_vma_unpin(vma);
456
			return err;
457 458
		}

459
		if (vma->fence)
460
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461 462
	}

463
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
464 465 466 467
	if (eb_vma_misplaced(entry, vma, ev->flags))
		return -EBADSLT;

	return 0;
468 469
}

470 471 472 473 474 475
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

476 477 478 479
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
480 481 482
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

483 484 485 486
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
487
{
488 489 490 491
	/* Relocations are disallowed for all platforms after TGL-LP.  This
	 * also covers all platforms with local memory.
	 */
	if (entry->relocation_count &&
492
	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
493 494
		return -EINVAL;

495 496
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
497

498 499
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
500 501 502 503 504 505 506
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
507
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
508 509 510 511 512 513 514 515
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
516
	}
517 518 519 520 521 522 523
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

524 525 526 527 528 529 530 531 532
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

533
	return 0;
534 535
}

536
static void
537 538 539
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
540
{
541
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
542
	struct eb_vma *ev = &eb->vma[i];
543

544
	ev->vma = vma;
545 546 547
	ev->exec = entry;
	ev->flags = entry->flags;

548
	if (eb->lut_size > 0) {
549 550
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
551 552
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
553
	}
554

555
	if (entry->relocation_count)
556
		list_add_tail(&ev->reloc_link, &eb->relocs);
557

558 559 560 561 562 563 564 565 566 567
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
568
		if (entry->relocation_count &&
569 570
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
571
		if (eb->reloc_cache.has_fence)
572
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
573

574
		eb->batch = ev;
575
	}
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

595
static int eb_reserve_vma(struct i915_execbuffer *eb,
596
			  struct eb_vma *ev,
597
			  u64 pin_flags)
598
{
599 600
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
601 602
	int err;

603 604 605 606 607 608 609
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

610
	err = i915_vma_pin_ww(vma, &eb->ww,
611
			   entry->pad_to_size, entry->alignment,
612
			   eb_pin_flags(entry, ev->flags) | pin_flags);
613 614 615 616 617 618 619 620
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

621
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
622
		err = i915_vma_pin_fence(vma);
623 624 625 626 627
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

628
		if (vma->fence)
629
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
630 631
	}

632
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
633
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
634

635 636 637 638 639 640
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
641
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
642
	struct list_head last;
643
	struct eb_vma *ev;
644
	unsigned int i, pass;
645
	int err = 0;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
662 663
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
664 665 666
			if (err)
				break;
		}
667
		if (err != -ENOSPC)
668
			return err;
669 670 671 672 673

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
674
			unsigned int flags;
675

676 677
			ev = &eb->vma[i];
			flags = ev->flags;
678 679
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
680 681
				continue;

682
			eb_unreserve_vma(ev);
683

684
			if (flags & EXEC_OBJECT_PINNED)
685
				/* Pinned must have their slot */
686
				list_add(&ev->bind_link, &eb->unbound);
687
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
688
				/* Map require the lowest 256MiB (aperture) */
689
				list_add_tail(&ev->bind_link, &eb->unbound);
690 691
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
692
				list_add(&ev->bind_link, &last);
693
			else
694
				list_add_tail(&ev->bind_link, &last);
695 696 697 698 699 700 701 702 703
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
704
			mutex_lock(&eb->context->vm->mutex);
705
			err = i915_gem_evict_vm(eb->context->vm);
706
			mutex_unlock(&eb->context->vm->mutex);
707
			if (err)
708
				return err;
709 710 711
			break;

		default:
712
			return -ENOSPC;
713
		}
714 715

		pin_flags = PIN_USER;
716
	} while (1);
717
}
718

719 720
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
721 722 723 724
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
725 726 727 728 729 730 731
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
732 733
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);
734

735
	eb->gem_context = ctx;
736
	if (rcu_access_pointer(ctx->vm))
737
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
738 739 740 741

	return 0;
}

742 743
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
744
{
745 746
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
747
	int err;
748

749 750 751 752 753 754 755 756 757 758 759 760
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
761
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
762
		if (likely(!i915_gem_context_is_closed(ctx)))
763
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
764 765
		else
			err = -ENOENT;
766 767 768
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

769
			spin_lock(&obj->lut_lock);
770 771 772 773 774 775
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
776
			spin_unlock(&obj->lut_lock);
777
		}
778
		mutex_unlock(&ctx->lut_mutex);
779 780 781
	}
	if (unlikely(err))
		goto err;
782

783
	return 0;
784

785
err:
C
Chris Wilson 已提交
786
	i915_vma_close(vma);
787 788 789 790
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
791

792 793
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
794 795
	struct i915_address_space *vm = eb->context->vm;

796 797
	do {
		struct drm_i915_gem_object *obj;
798
		struct i915_vma *vma;
799
		int err;
800

801 802
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
803
		if (likely(vma && vma->vm == vm))
804 805 806 807
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
808

809
		obj = i915_gem_object_lookup(eb->file, handle);
810 811
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
812

813
		vma = i915_vma_instance(obj, vm, NULL);
814
		if (IS_ERR(vma)) {
815 816
			i915_gem_object_put(obj);
			return vma;
817 818
		}

819 820 821
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
822

823 824 825 826 827
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
828

829 830
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
831
	struct drm_i915_private *i915 = eb->i915;
832 833 834
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
835

836 837 838 839 840 841 842 843
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
844
			goto err;
845
		}
846

847
		err = eb_validate_vma(eb, &eb->exec[i], vma);
848 849
		if (unlikely(err)) {
			i915_vma_put(vma);
850
			goto err;
851
		}
852

853
		eb_add_vma(eb, i, batch, vma);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

		if (i915_gem_object_is_userptr(vma->obj)) {
			err = i915_gem_object_userptr_submit_init(vma->obj);
			if (err) {
				if (i + 1 < eb->buffer_count) {
					/*
					 * Execbuffer code expects last vma entry to be NULL,
					 * since we already initialized this entry,
					 * set the next value to NULL or we mess up
					 * cleanup handling.
					 */
					eb->vma[i + 1].vma = NULL;
				}

				return err;
			}

			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
			eb->args->flags |= __EXEC_USERPTR_USED;
		}
874 875
	}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
891 892 893 894
	if (unlikely(eb->batch_len == 0)) { /* impossible! */
		drm_dbg(&i915->drm, "Invalid batch length\n");
		return -EINVAL;
	}
895 896 897 898

	return 0;

err:
899
	eb->vma[i].vma = NULL;
900
	return err;
901 902
}

903
static int eb_lock_vmas(struct i915_execbuffer *eb)
904 905 906 907 908 909 910 911 912 913 914
{
	unsigned int i;
	int err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	}

	return 0;
}

static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	err = eb_lock_vmas(eb);
	if (err)
		return err;

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
935

936 937 938 939 940
		err = eb_pin_vma(eb, entry, ev);
		if (err == -EDEADLK)
			return err;

		if (!err) {
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

956 957 958 959 960 961
		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
			err = dma_resv_reserve_shared(vma->resv, 1);
			if (err)
				return err;
		}

962 963 964 965 966 967 968 969 970 971
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

972
static struct eb_vma *
973
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
974
{
975 976
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
977
			return NULL;
978
		return &eb->vma[handle];
979 980
	} else {
		struct hlist_head *head;
981
		struct eb_vma *ev;
982

983
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
984 985 986
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
987 988 989
		}
		return NULL;
	}
990 991
}

992
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
993 994 995 996 997 998 999 1000 1001 1002 1003
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

1004
		eb_unreserve_vma(ev);
1005

1006 1007
		if (final)
			i915_vma_put(vma);
1008
	}
1009 1010

	eb_unpin_engine(eb);
1011 1012
}

1013
static void eb_destroy(const struct i915_execbuffer *eb)
1014
{
1015
	if (eb->lut_size > 0)
1016
		kfree(eb->buckets);
1017 1018
}

1019
static inline u64
1020
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1021
		  const struct i915_vma *target)
1022
{
1023
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1024 1025
}

1026 1027
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
1028
{
1029 1030
	cache->page = -1;
	cache->vaddr = 0;
1031
	/* Must be a variable in the struct to allow GCC to unroll. */
1032
	cache->graphics_ver = GRAPHICS_VER(i915);
1033
	cache->has_llc = HAS_LLC(i915);
1034
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1035
	cache->has_fence = cache->graphics_ver < 4;
1036
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1037
	cache->node.flags = 0;
1038
}
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1059
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1060 1061 1062 1063 1064 1065 1066 1067
{
	void *vaddr;

	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1068 1069
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1070 1071 1072 1073
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1074
		i915_gem_object_finish_access(obj);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1099
			unsigned long pageno)
1100 1101
{
	void *vaddr;
1102
	struct page *page;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1123 1124 1125 1126 1127
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1128
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1129
	cache->page = pageno;
1130 1131 1132 1133 1134

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1135
			 struct i915_execbuffer *eb,
1136 1137
			 unsigned long page)
{
1138
	struct reloc_cache *cache = &eb->reloc_cache;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1160 1161 1162 1163 1164 1165 1166
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1202
			 struct i915_execbuffer *eb,
1203 1204
			 unsigned long page)
{
1205
	struct reloc_cache *cache = &eb->reloc_cache;
1206 1207 1208 1209 1210 1211 1212
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1213
			vaddr = reloc_iomap(obj, eb, page);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1244
static u64
1245
relocate_entry(struct i915_vma *vma,
1246
	       const struct drm_i915_gem_relocation_entry *reloc,
1247
	       struct i915_execbuffer *eb,
1248 1249 1250
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1251
	u64 offset = reloc->offset;
1252 1253
	bool wide = eb->reloc_cache.use_64bit_reloc;
	void *vaddr;
1254 1255

repeat:
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	vaddr = reloc_vaddr(vma->obj, eb,
			    offset >> PAGE_SHIFT);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_addr),
			eb->reloc_cache.vaddr);

	if (wide) {
		offset += sizeof(u32);
		target_addr >>= 32;
		wide = false;
		goto repeat;
1271
	}
1272

1273
	return target->node.start | UPDATE;
1274 1275
}

1276 1277
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1278
		  struct eb_vma *ev,
1279
		  const struct drm_i915_gem_relocation_entry *reloc)
1280
{
1281
	struct drm_i915_private *i915 = eb->i915;
1282
	struct eb_vma *target;
1283
	int err;
1284

1285
	/* we've already hold a reference to all valid objects */
1286 1287
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1288
		return -ENOENT;
1289

1290
	/* Validate that the target is in a valid r/w GPU domain */
1291
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1292
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1293
			  "target %d offset %d "
1294
			  "read %08x write %08x",
1295
			  reloc->target_handle,
1296 1297 1298
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1299
		return -EINVAL;
1300
	}
1301 1302
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1303
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1304
			  "target %d offset %d "
1305
			  "read %08x write %08x",
1306
			  reloc->target_handle,
1307 1308 1309
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1310
		return -EINVAL;
1311 1312
	}

1313
	if (reloc->write_domain) {
1314
		target->flags |= EXEC_OBJECT_WRITE;
1315

1316 1317 1318 1319 1320 1321 1322
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1323
		    GRAPHICS_VER(eb->i915) == 6) {
1324 1325
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1326
					    PIN_GLOBAL, NULL);
1327
			if (err)
1328 1329
				return err;
		}
1330
	}
1331

1332 1333
	/*
	 * If the relocation already has the right value in it, no
1334 1335
	 * more work needs to be done.
	 */
1336 1337
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1338
		return 0;
1339 1340

	/* Check that the relocation address is valid... */
1341
	if (unlikely(reloc->offset >
1342
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1343
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1344 1345 1346
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1347
			  (int)ev->vma->size);
1348
		return -EINVAL;
1349
	}
1350
	if (unlikely(reloc->offset & 3)) {
1351
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1352 1353 1354
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1355
		return -EINVAL;
1356 1357
	}

1358 1359 1360 1361 1362 1363
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1364
	 * out of our synchronisation.
1365
	 */
1366
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1367

1368
	/* and update the user's relocation entry */
1369
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1370 1371
}

1372
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1373
{
1374
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1375
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1376
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1377 1378 1379
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1380

1381
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1382
		return -EINVAL;
1383

1384 1385 1386 1387 1388
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1389
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1390 1391 1392 1393 1394
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1395
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1396
		unsigned int copied;
1397

1398 1399
		/*
		 * This is the fast path and we cannot handle a pagefault
1400 1401 1402 1403 1404 1405
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1406 1407 1408
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1409 1410 1411 1412
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1413

1414
		remain -= count;
1415
		do {
1416
			u64 offset = eb_relocate_entry(eb, ev, r);
1417

1418 1419
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1420 1421
				remain = (int)offset;
				goto out;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1445 1446
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1447
			}
1448 1449 1450
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1451
out:
1452
	reloc_cache_reset(&eb->reloc_cache, eb);
1453
	return remain;
1454 1455
}

1456 1457
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1458
{
1459 1460 1461 1462
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1463 1464
	int err;

1465 1466
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1467

1468 1469 1470 1471
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1472
	}
1473 1474
	err = 0;
err:
1475
	reloc_cache_reset(&eb->reloc_cache, eb);
1476 1477
	return err;
}
1478

1479 1480 1481 1482 1483
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1484

1485 1486 1487
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1488

1489 1490
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1504 1505
}

1506
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1507
{
1508
	struct drm_i915_gem_relocation_entry *relocs;
1509 1510
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1511
	int err;
1512

1513
	for (i = 0; i < count; i++) {
1514 1515 1516 1517
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1518

1519 1520
		if (nreloc == 0)
			continue;
1521

1522 1523 1524
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1525

1526 1527
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1528

1529 1530 1531 1532
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1533
		}
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static int eb_reinit_userptr(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int ret;

	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
		return 0;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];

		if (!i915_gem_object_is_userptr(ev->vma->obj))
			continue;

		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
		if (ret)
			return ret;

		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
	}

	return 0;
}

1628 1629
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
					   struct i915_request *rq)
1630 1631 1632 1633 1634 1635 1636 1637 1638
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1639
	}
1640

1641
	/* We may process another execbuffer during the unlock... */
1642
	eb_release_vmas(eb, false);
1643 1644
	i915_gem_ww_ctx_fini(&eb->ww);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (rq) {
		/* nonblocking is always false */
		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			rq = NULL;

			err = -EINTR;
			goto err_relock;
		}

		i915_request_put(rq);
		rq = NULL;
	}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1683
	if (!err)
1684
		err = eb_reinit_userptr(eb);
1685

1686
err_relock:
1687
	i915_gem_ww_ctx_init(&eb->ww, true);
1688 1689 1690
	if (err)
		goto out;

1691 1692
	/* reacquire the objects */
repeat_validate:
1693 1694 1695
	rq = eb_pin_engine(eb, false);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
1696
		rq = NULL;
1697 1698 1699 1700 1701 1702
		goto err;
	}

	/* We didn't throttle, should be NULL */
	GEM_WARN_ON(rq);

1703
	err = eb_validate_vmas(eb);
1704
	if (err)
1705 1706 1707
		goto err;

	GEM_BUG_ON(!eb->batch);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			err = eb_relocate_vma(eb, ev);
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1721 1722 1723
	if (err == -EDEADLK)
		goto err;

1724 1725 1726 1727 1728 1729
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1730 1731 1732 1733 1734
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1735 1736 1737 1738 1739 1740 1741 1742
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1743
	if (err == -EDEADLK) {
1744
		eb_release_vmas(eb, false);
1745 1746 1747 1748 1749
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1771 1772 1773
	if (rq)
		i915_request_put(rq);

1774 1775 1776
	return err;
}

1777
static int eb_relocate_parse(struct i915_execbuffer *eb)
1778
{
1779
	int err;
1780 1781
	struct i915_request *rq = NULL;
	bool throttle = true;
1782

1783
retry:
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	rq = eb_pin_engine(eb, throttle);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		rq = NULL;
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;

		/* Need to drop all locks now for throttling, take slowpath */
		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
		if (err == -ETIME) {
			if (nonblock) {
				err = -EWOULDBLOCK;
				i915_request_put(rq);
				goto err;
			}
			goto slow;
		}
		i915_request_put(rq);
		rq = NULL;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

1814 1815 1816 1817 1818
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
1819 1820 1821

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1822
		struct eb_vma *ev;
1823

1824
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1825 1826
			err = eb_relocate_vma(eb, ev);
			if (err)
1827
				break;
1828
		}
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
1841
		eb_release_vmas(eb, false);
1842 1843 1844
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
1845 1846
	}

1847 1848 1849
	return err;

slow:
1850
	err = eb_relocate_parse_slow(eb, rq);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
1862 1863 1864 1865 1866
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1867
	unsigned int i = count;
1868 1869 1870
	int err = 0;

	while (i--) {
1871 1872 1873
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1874
		struct drm_i915_gem_object *obj = vma->obj;
1875

1876 1877
		assert_vma_held(vma);

1878
		if (flags & EXEC_OBJECT_CAPTURE) {
1879
			struct i915_capture_list *capture;
1880 1881

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1882 1883 1884 1885 1886
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1887 1888
		}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1902
			if (i915_gem_clflush_object(obj, 0))
1903
				flags &= ~EXEC_OBJECT_ASYNC;
1904 1905
		}

1906 1907 1908 1909
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1910

1911
		if (err == 0)
1912 1913
			err = i915_vma_move_to_active(vma, eb->request,
						      flags | __EXEC_OBJECT_NO_RESERVE);
1914
	}
1915

1916 1917
#ifdef CONFIG_MMU_NOTIFIER
	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
1918
		read_lock(&eb->i915->mm.notifier_lock);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

		/*
		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
		 * could not have been set
		 */
		for (i = 0; i < count; i++) {
			struct eb_vma *ev = &eb->vma[i];
			struct drm_i915_gem_object *obj = ev->vma->obj;

			if (!i915_gem_object_is_userptr(obj))
				continue;

			err = i915_gem_object_userptr_submit_done(obj);
			if (err)
				break;
		}

1936
		read_unlock(&eb->i915->mm.notifier_lock);
1937 1938 1939
	}
#endif

1940 1941 1942
	if (unlikely(err))
		goto err_skip;

1943
	/* Unconditionally flush any chipset caches (for streaming writes). */
1944
	intel_gt_chipset_flush(eb->engine->gt);
1945
	return 0;
1946 1947

err_skip:
1948
	i915_request_set_error_once(eb->request, err);
1949
	return err;
1950 1951
}

T
Tvrtko Ursulin 已提交
1952
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1953
{
1954
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1955
		return -EINVAL;
1956

C
Chris Wilson 已提交
1957
	/* Kernel clipping was a DRI1 misfeature */
1958 1959
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
1960
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1961
			return -EINVAL;
1962
	}
C
Chris Wilson 已提交
1963 1964 1965 1966 1967 1968

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1969
		return -EINVAL;
C
Chris Wilson 已提交
1970 1971

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1972
		return -EINVAL;
C
Chris Wilson 已提交
1973

T
Tvrtko Ursulin 已提交
1974
	return 0;
1975 1976
}

1977
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1978
{
1979 1980
	u32 *cs;
	int i;
1981

1982
	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
1983
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1984 1985
		return -EINVAL;
	}
1986

1987
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1988 1989
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1990

1991
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1992
	for (i = 0; i < 4; i++) {
1993 1994
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1995
	}
1996
	*cs++ = MI_NOOP;
1997
	intel_ring_advance(rq, cs);
1998 1999 2000 2001

	return 0;
}

2002
static struct i915_vma *
2003 2004
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2005 2006
		 struct i915_address_space *vm,
		 unsigned int flags)
2007
{
2008 2009
	struct i915_vma *vma;
	int err;
2010

2011 2012 2013 2014
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2015
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2016 2017 2018 2019
	if (err)
		return ERR_PTR(err);

	return vma;
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2034
static int eb_parse(struct i915_execbuffer *eb)
2035
{
2036
	struct drm_i915_private *i915 = eb->i915;
2037
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2038
	struct i915_vma *shadow, *trampoline, *batch;
2039
	unsigned long len;
2040
	int err;
2041

2042 2043 2044 2045 2046 2047 2048
	if (!eb_use_cmdparser(eb)) {
		batch = eb_dispatch_secure(eb, eb->batch->vma);
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2049

2050 2051 2052 2053 2054 2055 2056
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2057 2058
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2059 2060 2061 2062 2063
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
2064 2065
	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
		return -EINVAL;
2066

2067
	if (!pool) {
2068 2069
		pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
						I915_MAP_WB);
2070 2071 2072 2073
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2074

2075 2076 2077
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2078

2079
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2080 2081
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2082
		goto err;
2083
	}
2084
	intel_gt_buffer_pool_mark_used(pool);
2085
	i915_gem_object_set_readonly(shadow->obj);
2086
	shadow->private = pool;
2087 2088 2089 2090 2091

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2092
		shadow = shadow_batch_pin(eb, pool->obj,
2093 2094 2095 2096 2097 2098 2099
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2100
		shadow->private = pool;
2101 2102 2103

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2104

2105 2106 2107 2108 2109 2110
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2111 2112 2113 2114 2115 2116 2117 2118 2119
	err = dma_resv_reserve_shared(shadow->resv, 1);
	if (err)
		goto err_trampoline;

	err = intel_engine_cmd_parser(eb->engine,
				      eb->batch->vma,
				      eb->batch_start_offset,
				      eb->batch_len,
				      shadow, trampoline);
2120
	if (err)
2121
		goto err_unpin_batch;
2122

2123
	eb->batch = &eb->vma[eb->buffer_count++];
2124 2125
	eb->batch->vma = i915_vma_get(shadow);
	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2126

2127
	eb->trampoline = trampoline;
2128 2129
	eb->batch_start_offset = 0;

2130 2131 2132 2133 2134 2135
secure_batch:
	if (batch) {
		eb->batch = &eb->vma[eb->buffer_count++];
		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batch->vma = i915_vma_get(batch);
	}
2136
	return 0;
2137

2138 2139 2140
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2141 2142 2143 2144 2145
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2146
err:
2147
	return err;
2148
}
2149

2150
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2151
{
2152
	int err;
2153

2154 2155 2156
	if (intel_context_nopreempt(eb->context))
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);

2157 2158 2159
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2160

2161
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2162 2163 2164
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2165 2166
	}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2179
	err = eb->engine->emit_bb_start(eb->request,
2180
					batch->node.start +
2181 2182
					eb->batch_start_offset,
					eb->batch_len,
2183 2184 2185
					eb->batch_flags);
	if (err)
		return err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

C
Chris Wilson 已提交
2197
	return 0;
2198 2199
}

2200 2201
static int num_vcs_engines(const struct drm_i915_private *i915)
{
A
Arnd Bergmann 已提交
2202
	return hweight_long(VDBOX_MASK(&i915->gt));
2203 2204
}

2205
/*
2206
 * Find one BSD ring to dispatch the corresponding BSD command.
2207
 * The engine index is returned.
2208
 */
2209
static unsigned int
2210 2211
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2212 2213 2214
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2215
	/* Check whether the file_priv has already selected one ring. */
2216
	if ((int)file_priv->bsd_engine < 0)
2217 2218
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2219

2220
	return file_priv->bsd_engine;
2221 2222
}

2223
static const enum intel_engine_id user_ring_map[] = {
2224 2225 2226 2227 2228
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2229 2230
};

2231
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

2265
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2266
{
2267
	struct intel_context *ce = eb->context;
2268
	struct intel_timeline *tl;
2269
	struct i915_request *rq = NULL;
2270 2271
	int err;

2272
	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2273

2274
	if (unlikely(intel_context_is_banned(ce)))
2275
		return ERR_PTR(-EIO);
2276

2277 2278 2279 2280 2281
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2282
	err = intel_context_pin_ww(ce, &eb->ww);
2283
	if (err)
2284
		return ERR_PTR(err);
2285

2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2294 2295
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
2296 2297
		intel_context_unpin(ce);
		return ERR_CAST(tl);
2298
	}
2299 2300

	intel_context_enter(ce);
2301 2302
	if (throttle)
		rq = eb_throttle(eb, ce);
2303 2304
	intel_context_timeline_unlock(tl);

2305 2306
	eb->args->flags |= __EXEC_ENGINE_PINNED;
	return rq;
2307 2308
}

2309
static void eb_unpin_engine(struct i915_execbuffer *eb)
2310
{
2311
	struct intel_context *ce = eb->context;
2312
	struct intel_timeline *tl = ce->timeline;
2313

2314 2315 2316 2317 2318
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

2319 2320 2321 2322
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2323
	intel_context_unpin(ce);
2324
}
2325

2326
static unsigned int
2327
eb_select_legacy_ring(struct i915_execbuffer *eb)
2328
{
2329
	struct drm_i915_private *i915 = eb->i915;
2330
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2331 2332
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2333 2334
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2335 2336 2337
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2338
		return -1;
2339 2340
	}

2341
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2342 2343 2344
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2345
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2346 2347
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2348
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2349 2350
			bsd_idx--;
		} else {
2351 2352 2353
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2354
			return -1;
2355 2356
		}

2357
		return _VCS(bsd_idx);
2358 2359
	}

2360
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2361 2362
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2363
		return -1;
2364 2365
	}

2366 2367 2368 2369
	return user_ring_map[user_ring_id];
}

static int
2370
eb_select_engine(struct i915_execbuffer *eb)
2371 2372 2373 2374 2375
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2376
	if (i915_gem_context_user_engines(eb->gem_context))
2377
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2378
	else
2379
		idx = eb_select_legacy_ring(eb);
2380 2381 2382 2383 2384

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2385
	intel_gt_pm_get(ce->engine->gt);
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
	eb->engine = ce->engine;

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
	intel_context_put(ce);
2414
	return err;
2415 2416
}

2417 2418 2419 2420 2421 2422 2423
static void
eb_put_engine(struct i915_execbuffer *eb)
{
	intel_gt_pm_put(eb->engine->gt);
	intel_context_put(eb->context);
}

2424
static void
2425
__free_fence_array(struct eb_fence *fences, unsigned int n)
2426
{
2427
	while (n--) {
2428
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2429 2430 2431
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2432 2433 2434
	kvfree(fences);
}

2435
static int
2436 2437
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2438
{
2439 2440 2441 2442 2443
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2444

2445 2446
	nfences = timeline_fences->fence_count;
	if (!nfences)
2447
		return 0;
2448

2449 2450 2451
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2452 2453
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2454
		return -EINVAL;
2455

2456 2457 2458 2459 2460 2461
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2462
		return -EFAULT;
2463

2464 2465 2466 2467
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2468
		return -ENOMEM;
2469

2470 2471 2472 2473 2474 2475 2476 2477
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2478
		struct drm_syncobj *syncobj;
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2500

2501 2502 2503 2504 2505
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2506 2507
		}

2508 2509 2510 2511 2512
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2513
			dma_fence_put(fence);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2554 2555
		}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2610 2611
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2622 2623
		}

2624 2625 2626
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2627 2628 2629 2630 2631 2632
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2633 2634
	}

2635
	return 0;
2636
}
2637

2638 2639 2640 2641
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2642 2643 2644
}

static int
2645
await_fence_array(struct i915_execbuffer *eb)
2646 2647 2648 2649
{
	unsigned int n;
	int err;

2650
	for (n = 0; n < eb->num_fences; n++) {
2651 2652 2653
		struct drm_syncobj *syncobj;
		unsigned int flags;

2654
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2655

2656 2657
		if (!eb->fences[n].dma_fence)
			continue;
2658

2659 2660
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2661 2662 2663 2664 2665 2666 2667
		if (err < 0)
			return err;
	}

	return 0;
}

2668
static void signal_fence_array(const struct i915_execbuffer *eb)
2669 2670 2671 2672
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

2673
	for (n = 0; n < eb->num_fences; n++) {
2674 2675 2676
		struct drm_syncobj *syncobj;
		unsigned int flags;

2677
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2678 2679 2680
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2694 2695 2696
	}
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2709 2710 2711 2712 2713 2714 2715 2716 2717
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

2718
static int eb_request_add(struct i915_execbuffer *eb, int err)
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2733
	if (likely(!intel_context_is_closed(eb->context))) {
2734 2735 2736
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2737 2738
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2739
		err = -ENOENT; /* override any transient errors */
2740 2741 2742 2743 2744 2745 2746 2747 2748
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
2749 2750

	return err;
2751 2752
}

2753
static const i915_user_extension_fn execbuf_extensions[] = {
2754
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

2779
static int
2780
i915_gem_do_execbuffer(struct drm_device *dev,
2781 2782
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2783
		       struct drm_i915_gem_exec_object2 *exec)
2784
{
2785
	struct drm_i915_private *i915 = to_i915(dev);
2786
	struct i915_execbuffer eb;
2787 2788
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2789
	struct i915_vma *batch;
2790
	int out_fence_fd = -1;
2791
	int err;
2792

2793
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2794 2795
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2796

2797
	eb.i915 = i915;
2798 2799
	eb.file = file;
	eb.args = args;
2800
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2801
		args->flags |= __EXEC_HAS_RELOC;
2802

2803
	eb.exec = exec;
2804 2805
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
D
Daniel Vetter 已提交
2806
	eb.batch_pool = NULL;
2807

2808
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2809 2810
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2811
	eb.buffer_count = args->buffer_count;
2812 2813
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2814
	eb.trampoline = NULL;
2815

2816
	eb.fences = NULL;
2817
	eb.num_fences = 0;
2818

2819
	eb.batch_flags = 0;
2820
	if (args->flags & I915_EXEC_SECURE) {
2821
		if (GRAPHICS_VER(i915) >= 11)
2822 2823 2824 2825 2826 2827
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2828
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2829
			return -EPERM;
2830

2831
		eb.batch_flags |= I915_DISPATCH_SECURE;
2832
	}
2833
	if (args->flags & I915_EXEC_IS_PINNED)
2834
		eb.batch_flags |= I915_DISPATCH_PINNED;
2835

2836 2837 2838 2839 2840 2841 2842 2843
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

2844 2845 2846 2847 2848
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2849
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2850 2851 2852 2853
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
2854
	}
2855
#undef IN_FENCES
2856

2857 2858 2859
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2860
			err = out_fence_fd;
2861
			goto err_in_fence;
2862 2863 2864
		}
	}

2865 2866
	err = eb_create(&eb);
	if (err)
2867
		goto err_out_fence;
2868

2869
	GEM_BUG_ON(!eb.lut_size);
2870

2871 2872 2873 2874
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2875
	err = eb_select_engine(&eb);
2876
	if (unlikely(err))
2877
		goto err_context;
2878

2879 2880
	err = eb_lookup_vmas(&eb);
	if (err) {
2881
		eb_release_vmas(&eb, true);
2882 2883 2884 2885 2886
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

2887
	err = eb_relocate_parse(&eb);
2888
	if (err) {
2889 2890 2891 2892 2893 2894 2895 2896 2897
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2898
	}
2899

2900
	ww_acquire_done(&eb.ww.ctx);
2901 2902

	batch = eb.batch->vma;
2903

2904
	/* Allocate a request for this batch buffer nice and early. */
2905
	eb.request = i915_request_create(eb.context);
2906
	if (IS_ERR(eb.request)) {
2907
		err = PTR_ERR(eb.request);
2908
		goto err_vma;
2909
	}
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	if (unlikely(eb.gem_context->syncobj)) {
		struct dma_fence *fence;

		fence = drm_syncobj_fence_get(eb.gem_context->syncobj);
		err = i915_request_await_dma_fence(eb.request, fence);
		dma_fence_put(fence);
		if (err)
			goto err_ext;
	}

2921
	if (in_fence) {
2922 2923
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
2924
							   in_fence);
2925 2926 2927
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2928 2929 2930 2931
		if (err < 0)
			goto err_request;
	}

2932
	if (eb.fences) {
2933
		err = await_fence_array(&eb);
2934 2935 2936 2937
		if (err)
			goto err_request;
	}

2938
	if (out_fence_fd != -1) {
2939
		out_fence = sync_file_create(&eb.request->fence);
2940
		if (!out_fence) {
2941
			err = -ENOMEM;
2942 2943 2944 2945
			goto err_request;
		}
	}

2946 2947
	/*
	 * Whilst this request exists, batch_obj will be on the
2948 2949 2950 2951 2952
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2953
	eb.request->batch = batch;
2954 2955
	if (eb.batch_pool)
		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
2956

2957
	trace_i915_request_queue(eb.request, eb.batch_flags);
2958
	err = eb_submit(&eb, batch);
2959

2960
err_request:
2961
	i915_request_get(eb.request);
2962
	err = eb_request_add(&eb, err);
2963

2964
	if (eb.fences)
2965
		signal_fence_array(&eb);
2966

2967
	if (out_fence) {
2968
		if (err == 0) {
2969
			fd_install(out_fence_fd, out_fence->file);
2970
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2971 2972 2973 2974 2975 2976
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2977 2978 2979 2980 2981 2982

	if (unlikely(eb.gem_context->syncobj)) {
		drm_syncobj_replace_fence(eb.gem_context->syncobj,
					  &eb.request->fence);
	}

2983
	i915_request_put(eb.request);
2984

2985
err_vma:
2986
	eb_release_vmas(&eb, true);
2987 2988
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2989 2990 2991 2992 2993 2994
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
err_engine:
2995
	eb_put_engine(&eb);
2996
err_context:
2997
	i915_gem_context_put(eb.gem_context);
2998
err_destroy:
2999
	eb_destroy(&eb);
3000
err_out_fence:
3001 3002
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3003
err_in_fence:
3004
	dma_fence_put(in_fence);
3005 3006
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3007
	return err;
3008 3009
}

3010 3011
static size_t eb_element_size(void)
{
3012
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3028
int
3029 3030
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3031
{
3032
	struct drm_i915_private *i915 = to_i915(dev);
3033
	struct drm_i915_gem_execbuffer2 *args = data;
3034
	struct drm_i915_gem_exec_object2 *exec2_list;
3035
	const size_t count = args->buffer_count;
3036
	int err;
3037

3038
	if (!check_buffer_count(count)) {
3039
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3040 3041 3042
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3043 3044 3045
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3046

3047 3048
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3049
				    __GFP_NOWARN | GFP_KERNEL);
3050
	if (exec2_list == NULL) {
3051 3052
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3053 3054
		return -ENOMEM;
	}
3055 3056
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3057
			   sizeof(*exec2_list) * count)) {
3058
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3059
		kvfree(exec2_list);
3060 3061 3062
		return -EFAULT;
	}

3063
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3064 3065 3066 3067 3068 3069 3070 3071

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3072
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3073 3074
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3075

3076
		/* Copy the new buffer offsets back to the user's exec list. */
3077 3078 3079 3080 3081 3082 3083
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3084 3085
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3086
			goto end;
3087

3088
		for (i = 0; i < args->buffer_count; i++) {
3089 3090 3091
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3092
			exec2_list[i].offset =
3093 3094 3095 3096
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3097
		}
3098
end_user:
3099
		user_write_access_end();
3100
end:;
3101 3102
	}

3103
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3104
	kvfree(exec2_list);
3105
	return err;
3106
}