intel_engine_cs.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_user.h"
35 36
#include "intel_gt.h"
#include "intel_gt_requests.h"
37
#include "intel_gt_pm.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144
 * @gt: the gt
145 146 147 148 149 150 151 152 153 154 155
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157
{
158
	struct intel_uncore *uncore = gt->uncore;
159 160 161 162 163 164
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
165
		switch (INTEL_GEN(gt->i915)) {
166
		default:
167
			MISSING_CASE(INTEL_GEN(gt->i915));
168
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169
		case 12:
170 171
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
172
		case 10:
O
Oscar Mateo 已提交
173
			return GEN10_LR_CONTEXT_RENDER_SIZE;
174 175 176
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
177
			return GEN8_LR_CONTEXT_RENDER_SIZE;
178
		case 7:
179
			if (IS_HASWELL(gt->i915))
180 181
				return HSW_CXT_TOTAL_SIZE;

182
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 184 185
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
186
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 188 189
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
190
		case 4:
191 192 193 194 195 196 197 198 199 200
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
201
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202 203 204 205
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
206
			return round_up(cxt_size * 64, PAGE_SIZE);
207 208 209 210 211 212 213 214 215
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
216
		/* fall through */
217 218 219
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
220
		if (INTEL_GEN(gt->i915) < 8)
221 222 223 224 225
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

241
static void __sprint_engine_name(struct intel_engine_cs *engine)
242
{
243 244 245 246 247 248 249 250
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
251 252
}

253 254 255 256 257 258
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
259
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 261
		return;

262 263
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
264
	else
265
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 267 268 269 270 271 272 273
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

274
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 276
{
	const struct engine_info *info = &intel_engines[id];
277
	struct drm_i915_private *i915 = gt->i915;
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304
	engine->i915 = i915;
305 306
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
318 319
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
320 321
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
322 323
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
324

325 326 327 328
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

329 330
	engine->defaults = engine->props; /* never to change again */

331
	engine->context_size = intel_engine_context_size(gt, engine->class);
332 333
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
334
	if (engine->context_size)
335
		DRIVER_CAPS(i915)->has_logical_contexts = true;
336

337 338 339
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

340
	ewma__engine_latency_init(&engine->latency);
341
	seqlock_init(&engine->stats.lock);
342

343 344
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

345 346 347
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

348
	gt->engine_class[info->class][info->instance] = engine;
349
	gt->engine[id] = engine;
350

351
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

384
static void intel_setup_engine_capabilities(struct intel_gt *gt)
385 386 387 388
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

389
	for_each_engine(engine, gt, id)
390 391 392
		__setup_engine_capabilities(engine);
}

393
/**
394
 * intel_engines_release() - free the resources allocated for Command Streamers
395
 * @gt: pointer to struct intel_gt
396
 */
397
void intel_engines_release(struct intel_gt *gt)
398 399 400 401
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

415
	/* Decouple the backend; but keep the layout for late GPU resets */
416
	for_each_engine(engine, gt, id) {
417 418 419
		if (!engine->release)
			continue;

420 421 422
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

423 424 425 426
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
427 428 429
	}
}

430 431 432 433 434 435 436 437
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

438 439 440 441 442
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

443 444 445
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

446
	for_each_engine(engine, gt, id) {
447
		intel_engine_free_request_pool(engine);
448 449 450 451 452
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

453
/**
454
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
455
 * @gt: pointer to struct intel_gt
456 457 458
 *
 * Return: non-zero if the initialization failed.
 */
459
int intel_engines_init_mmio(struct intel_gt *gt)
460
{
461
	struct drm_i915_private *i915 = gt->i915;
462 463
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
464
	unsigned int mask = 0;
465
	unsigned int i;
466
	int err;
467

468 469 470
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
471

472
	if (i915_inject_probe_failure(i915))
473 474
		return -ENODEV;

475
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
476
		if (!HAS_ENGINE(i915, i))
477 478
			continue;

479
		err = intel_engine_setup(gt, i);
480 481 482
		if (err)
			goto cleanup;

483
		mask |= BIT(i);
484 485 486 487 488 489 490
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
491
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
492
		device_info->engine_mask = mask;
493

494
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
495

496
	intel_gt_check_and_clear_faults(gt);
497

498
	intel_setup_engine_capabilities(gt);
499

500 501 502
	return 0;

cleanup:
503
	intel_engines_free(gt);
504 505 506
	return err;
}

507
void intel_engine_init_execlists(struct intel_engine_cs *engine)
508 509 510
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

511
	execlists->port_mask = 1;
512
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
513 514
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

515 516 517 518
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

519
	execlists->queue_priority_hint = INT_MIN;
520
	execlists->queue = RB_ROOT_CACHED;
521 522
}

523
static void cleanup_status_page(struct intel_engine_cs *engine)
524
{
525 526
	struct i915_vma *vma;

527 528 529
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

530 531 532
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
533

534 535 536 537
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
538
	i915_gem_object_put(vma->obj);
539 540 541 542 543 544 545
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

546
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
547 548 549 550 551 552 553 554 555 556 557
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
558
		flags = PIN_MAPPABLE;
559
	else
560
		flags = PIN_HIGH;
561

562
	return i915_ggtt_pin(vma, 0, flags);
563 564 565 566 567 568 569 570 571
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

572 573 574 575 576 577 578
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
579 580
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
581 582
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
583 584 585
		return PTR_ERR(obj);
	}

586
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
587

588
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
589 590 591 592 593 594 595 596
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
597
		goto err;
598 599
	}

600
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
601
	engine->status_page.vma = vma;
602 603 604 605 606 607 608

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

609 610 611
	return 0;

err_unpin:
612
	i915_gem_object_unpin_map(obj);
613 614 615 616 617
err:
	i915_gem_object_put(obj);
	return ret;
}

618
static int engine_setup_common(struct intel_engine_cs *engine)
619 620 621
{
	int err;

622 623
	init_llist_head(&engine->barrier_tasks);

624 625 626 627
	err = init_status_page(engine);
	if (err)
		return err;

628
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
629
	intel_engine_init_breadcrumbs(engine);
630
	intel_engine_init_execlists(engine);
631
	intel_engine_init_cmd_parser(engine);
632
	intel_engine_init__pm(engine);
633
	intel_engine_init_retire(engine);
634

635 636 637 638
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

639 640 641 642
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

643 644 645
	return 0;
}

646 647 648 649 650 651
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

652
static int measure_breadcrumb_dw(struct intel_context *ce)
653
{
654
	struct intel_engine_cs *engine = ce->engine;
655
	struct measure_breadcrumb *frame;
656
	int dw;
657

658
	GEM_BUG_ON(!engine->gt->scratch);
659 660 661 662 663

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

664 665 666
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
667

668 669 670 671 672
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
673

674
	mutex_lock(&ce->timeline->mutex);
675
	spin_lock_irq(&engine->active.lock);
676

677
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
678

679
	spin_unlock_irq(&engine->active.lock);
680
	mutex_unlock(&ce->timeline->mutex);
681

682
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
683

684
	kfree(frame);
685 686 687
	return dw;
}

688 689 690 691
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
692
	INIT_LIST_HEAD(&engine->active.hold);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

710 711 712
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
713
	static struct lock_class_key kernel;
714 715 716
	struct intel_context *ce;
	int err;

717
	ce = intel_context_create(engine);
718 719 720
	if (IS_ERR(ce))
		return ce;

721
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
722

723
	err = intel_context_pin(ce); /* perma-pin so it is always available */
724 725 726 727 728
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

729 730 731 732 733 734 735 736
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

737 738 739
	return ce;
}

740 741 742 743 744 745 746 747 748 749 750
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
751
static int engine_init_common(struct intel_engine_cs *engine)
752
{
753
	struct intel_context *ce;
754 755
	int ret;

756 757
	engine->set_default_submission(engine);

758 759
	/*
	 * We may need to do things with the shrinker which
760 761 762 763 764 765
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
766 767 768 769
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

770 771 772 773 774
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
775
	engine->kernel_context = ce;
776

777
	return 0;
778 779 780 781

err_context:
	intel_context_put(ce);
	return ret;
782
}
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

815 816 817 818 819 820 821 822 823
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
824
	GEM_BUG_ON(!list_empty(&engine->active.requests));
825
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
826

827
	cleanup_status_page(engine);
828

829
	intel_engine_fini_retire(engine);
830
	intel_engine_fini_breadcrumbs(engine);
831
	intel_engine_cleanup_cmd_parser(engine);
832

833
	if (engine->default_state)
834
		fput(engine->default_state);
835

836 837 838 839
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
840
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
841

842
	intel_wa_list_free(&engine->ctx_wa_list);
843
	intel_wa_list_free(&engine->wa_list);
844
	intel_wa_list_free(&engine->whitelist);
845
}
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

861
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
862
{
863 864
	struct drm_i915_private *i915 = engine->i915;

865 866
	u64 acthd;

867 868 869 870
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
871
	else
872
		acthd = ENGINE_READ(engine, ACTHD);
873 874 875 876

	return acthd;
}

877
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
878 879 880
{
	u64 bbaddr;

881 882
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
883
	else
884
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
885 886 887

	return bbaddr;
}
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

904 905
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
906
	struct intel_uncore *uncore = engine->uncore;
907 908 909 910
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

911
	if (INTEL_GEN(engine->i915) < 3)
912 913
		return -ENODEV;

914
	ENGINE_TRACE(engine, "\n");
915

916
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
917 918

	err = 0;
919
	if (__intel_wait_for_register_fw(uncore,
920
					 mode, MODE_IDLE, MODE_IDLE,
921
					 1000, stop_timeout(engine),
922
					 NULL)) {
923
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
924 925 926 927
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
928
	intel_uncore_posting_read_fw(uncore, mode);
929 930 931 932

	return err;
}

933 934
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
935
	ENGINE_TRACE(engine, "\n");
936

937
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
938 939
}

940 941 942 943 944 945 946 947 948 949 950
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

951
static u32
952 953
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
954
{
955 956
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
957
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
958 959
	enum forcewake_domains fw_domains;

960
	if (INTEL_GEN(i915) >= 11) {
961 962
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
963
	} else {
964 965
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
966 967
	}

968
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
969
						    FW_REG_READ);
970
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
971 972 973
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

974 975
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
976

977
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
978

979 980
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
981
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
982

983
	val = intel_uncore_read_fw(uncore, reg);
984

985 986
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
987

988
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
989

990 991
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
992

993
	return val;
994 995 996
}

/* NB: please notice the memset */
997
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
998 999
			       struct intel_instdone *instdone)
{
1000
	struct drm_i915_private *i915 = engine->i915;
1001
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1002
	struct intel_uncore *uncore = engine->uncore;
1003 1004 1005 1006 1007 1008
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1009
	switch (INTEL_GEN(i915)) {
1010
	default:
1011 1012
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1013

1014
		if (engine->id != RCS0)
1015 1016
			break;

1017 1018
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1019 1020 1021 1022 1023 1024
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1025
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1026
			instdone->sampler[slice][subslice] =
1027
				read_subslice_reg(engine, slice, subslice,
1028 1029
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1030
				read_subslice_reg(engine, slice, subslice,
1031 1032 1033 1034
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1035 1036
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1037

1038
		if (engine->id != RCS0)
1039 1040
			break;

1041 1042 1043 1044 1045 1046
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1047 1048 1049 1050 1051

		break;
	case 6:
	case 5:
	case 4:
1052 1053
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1054
		if (engine->id == RCS0)
1055
			/* HACK: Using the wrong struct member */
1056 1057
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1058 1059 1060
		break;
	case 3:
	case 2:
1061
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1062 1063 1064
		break;
	}
}
1065

1066 1067 1068 1069
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1070 1071 1072
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1073
	if (!intel_engine_pm_get_if_awake(engine))
1074
		return true;
1075

1076
	/* First check that no commands are left in the ring */
1077 1078
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1079
		idle = false;
1080

1081
	/* No bit for gen2, so assume the CS parser is idle */
1082
	if (INTEL_GEN(engine->i915) > 2 &&
1083
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1084 1085
		idle = false;

1086
	intel_engine_pm_put(engine);
1087 1088 1089 1090

	return idle;
}

1091
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1119
	/* More white lies, if wedged, hw state is inconsistent */
1120
	if (intel_gt_is_wedged(engine->gt))
1121 1122
		return true;

1123
	if (!intel_engine_pm_is_awake(engine))
1124 1125
		return true;

1126
	/* Waiting to drain ELSP? */
1127
	if (execlists_active(&engine->execlists)) {
1128
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1129

1130
		intel_engine_flush_submission(engine);
1131

1132
		if (execlists_active(&engine->execlists))
1133 1134
			return false;
	}
1135

1136
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1137
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1138 1139
		return false;

1140
	/* Ring stopped? */
1141
	return ring_is_idle(engine);
1142 1143
}

1144
bool intel_engines_are_idle(struct intel_gt *gt)
1145 1146 1147 1148
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1149 1150
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1151 1152
	 * report that it is still busy, even though we have stopped using it.
	 */
1153
	if (intel_gt_is_wedged(gt))
1154 1155
		return true;

1156
	/* Already parked (and passed an idleness test); must still be idle */
1157
	if (!READ_ONCE(gt->awake))
1158 1159
		return true;

1160
	for_each_engine(engine, gt, id) {
1161 1162 1163 1164 1165 1166 1167
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1168
void intel_engines_reset_default_submission(struct intel_gt *gt)
1169 1170 1171 1172
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1173
	for_each_engine(engine, gt, id)
1174 1175 1176
		engine->set_default_submission(engine);
}

1177 1178 1179 1180 1181 1182 1183 1184
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1185 1186
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1187 1188 1189 1190 1191 1192 1193
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1194
static int print_sched_attr(const struct i915_sched_attr *attr,
1195
			    char *buf, int x, int len)
1196 1197
{
	if (attr->priority == I915_PRIORITY_INVALID)
1198 1199 1200 1201
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1202

1203
	return x;
1204 1205
}

1206
static void print_request(struct drm_printer *m,
1207
			  struct i915_request *rq,
1208 1209
			  const char *prefix)
{
1210
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1211
	char buf[80] = "";
1212 1213
	int x = 0;

1214
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1215

1216
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1217
		   prefix,
1218
		   rq->fence.context, rq->fence.seqno,
1219 1220 1221
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1222 1223
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1224
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1225 1226
			    &rq->fence.flags) ? "-" :
		   "",
1227
		   buf,
1228
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1229
		   name);
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1297
		drm_printf(m, "[%04zx] %s\n", pos, line);
1298 1299 1300 1301 1302 1303

		prev = buf + pos;
		skip = false;
	}
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1315
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1316
					 struct drm_printer *m)
1317 1318
{
	struct drm_i915_private *dev_priv = engine->i915;
1319
	struct intel_engine_execlists * const execlists = &engine->execlists;
1320 1321
	u64 addr;

1322
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1323
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1324 1325 1326 1327 1328 1329
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1330
	drm_printf(m, "\tRING_START: 0x%08x\n",
1331
		   ENGINE_READ(engine, RING_START));
1332
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1333
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1334
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1335
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1336
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1337 1338
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1339 1340
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1341 1342
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1343
	}
1344 1345

	if (INTEL_GEN(dev_priv) >= 6) {
1346
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1347
			   ENGINE_READ(engine, RING_IMR));
1348 1349 1350 1351 1352 1353
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1354 1355
	}

1356 1357 1358 1359 1360 1361
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1362
	if (INTEL_GEN(dev_priv) >= 8)
1363
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1364
	else if (INTEL_GEN(dev_priv) >= 4)
1365
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1366
	else
1367
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1368 1369 1370 1371
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1372
			   ENGINE_READ(engine, RING_IPEIR));
1373
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1374
			   ENGINE_READ(engine, RING_IPEHR));
1375
	} else {
1376 1377
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1378
	}
1379

1380
	if (HAS_EXECLISTS(dev_priv)) {
1381
		struct i915_request * const *port, *rq;
1382 1383
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1384
		const u8 num_entries = execlists->csb_size;
1385
		unsigned int idx;
1386
		u8 read, write;
1387

1388
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1389 1390 1391
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1392
			   repr_timer(&engine->execlists.preempt),
1393
			   repr_timer(&engine->execlists.timer));
1394

1395 1396 1397
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1398 1399 1400 1401 1402
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1403
		if (read >= num_entries)
1404
			read = 0;
1405
		if (write >= num_entries)
1406 1407
			write = 0;
		if (read > write)
1408
			write += num_entries;
1409
		while (read < write) {
1410 1411 1412
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1413 1414
		}

1415
		execlists_active_lock_bh(execlists);
1416
		rcu_read_lock();
1417
		for (port = execlists->active; (rq = *port); port++) {
1418
			char hdr[160];
1419 1420
			int len;

1421
			len = scnprintf(hdr, sizeof(hdr),
1422
					"\t\tActive[%d]:  ccid:%08x, ",
1423
					(int)(port - execlists->active),
1424
					rq->context->lrc.ccid);
1425
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1426
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1427 1428 1429
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1430 1431
			char hdr[160];
			int len;
1432

1433 1434 1435
			len = scnprintf(hdr, sizeof(hdr),
					"\t\tPending[%d]: ccid:%08x, ",
					(int)(port - execlists->pending),
1436
					rq->context->lrc.ccid);
1437 1438 1439
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1440
		}
1441
		rcu_read_unlock();
1442
		execlists_active_unlock_bh(execlists);
1443 1444
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1445
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1446
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1447
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1448
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1449
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1450
	}
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1497 1498 1499 1500 1501
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1502
	struct i915_request *rq;
1503
	intel_wakeref_t wakeref;
1504
	unsigned long flags;
1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1514
	if (intel_gt_is_wedged(engine->gt))
1515 1516
		drm_printf(m, "*** WEDGED ***\n");

1517
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1518 1519
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1520 1521
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1522 1523 1524 1525 1526 1527 1528

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1529 1530 1531 1532 1533 1534
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1535
	spin_lock_irqsave(&engine->active.lock, flags);
1536
	rq = intel_engine_find_active_request(engine);
1537
	if (rq) {
1538 1539
		struct intel_timeline *tl = get_timeline(rq);

1540
		print_request(m, rq, "\t\tactive ");
1541

1542
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1543
			   i915_ggtt_offset(rq->ring->vma));
1544
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1545
			   rq->ring->head);
1546
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1547
			   rq->ring->tail);
1548 1549 1550 1551
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1552 1553 1554 1555 1556 1557

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1558 1559

		print_request_ring(m, rq);
1560

1561
		if (rq->context->lrc_reg_state) {
1562
			drm_printf(m, "Logical Ring Context:\n");
1563
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1564
		}
1565
	}
1566
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1567
	spin_unlock_irqrestore(&engine->active.lock, flags);
1568

1569
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1570
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1571
	if (wakeref) {
1572
		intel_engine_print_registers(engine, m);
1573
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1574 1575 1576
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1577

1578
	intel_execlists_show_requests(engine, m, print_request, 8);
1579

1580
	drm_printf(m, "HWSP:\n");
1581
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1582

1583
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1584 1585

	intel_engine_print_breadcrumbs(engine, m);
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1596
	if (atomic_read(&engine->stats.active))
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1611
	unsigned int seq;
1612 1613
	ktime_t total;

1614 1615 1616 1617
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1618 1619 1620 1621

	return total;
}

1622 1623
static bool match_ring(struct i915_request *rq)
{
1624
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1645
	lockdep_assert_held(&engine->active.lock);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1663
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1664 1665 1666 1667
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1668
			continue;
1669 1670 1671

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1672
			continue;
1673 1674 1675 1676 1677 1678 1679 1680

		active = request;
		break;
	}

	return active;
}

1681
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1682
#include "mock_engine.c"
1683
#include "selftest_engine.c"
1684
#include "selftest_engine_cs.c"
1685
#endif