arm.c 52.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = kvm_share_hyp(kvm, kvm + 1);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
178 179
	bitmap_free(kvm->arch.pmu_filter);

180 181
	kvm_vgic_destroy(kvm);

182
	kvm_destroy_vcpus(kvm);
183 184

	kvm_unshare_hyp(kvm, kvm + 1);
185 186
}

187
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 189 190
{
	int r;
	switch (ext) {
191
	case KVM_CAP_IRQCHIP:
192 193
		r = vgic_present;
		break;
194
	case KVM_CAP_IOEVENTFD:
195
	case KVM_CAP_DEVICE_CTRL:
196 197 198 199
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
200
	case KVM_CAP_ARM_PSCI:
201
	case KVM_CAP_ARM_PSCI_0_2:
202
	case KVM_CAP_READONLY_MEM:
203
	case KVM_CAP_MP_STATE:
204
	case KVM_CAP_IMMEDIATE_EXIT:
205
	case KVM_CAP_VCPU_EVENTS:
206
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207
	case KVM_CAP_ARM_NISV_TO_USER:
208
	case KVM_CAP_ARM_INJECT_EXT_DABT:
209 210
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
211
	case KVM_CAP_PTP_KVM:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
216 217
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
218
		break;
219
	case KVM_CAP_NR_VCPUS:
220 221 222 223 224 225 226 227
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
228 229
		break;
	case KVM_CAP_MAX_VCPUS:
230
	case KVM_CAP_MAX_VCPU_ID:
231 232 233 234
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
235
		break;
V
Vladimir Murzin 已提交
236 237 238 239 240 241
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
242 243 244 245 246 247 248
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
249 250 251
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
252 253 254
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
272
		break;
273 274 275 276 277 278 279 280 281
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
282
	}
283

284 285 286 287 288 289 290 291 292
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

293 294
struct kvm *kvm_arch_alloc_vm(void)
{
295 296
	size_t sz = sizeof(struct kvm);

297
	if (!has_vhe())
298
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
299

300
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
301 302
}

303 304 305 306 307 308 309 310 311 312 313
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

314
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315
{
316 317 318 319 320 321
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

322 323
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

324 325 326 327 328 329 330 331 332
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

333 334
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

335 336 337 338
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

339
	return kvm_share_hyp(vcpu, vcpu + 1);
340 341
}

342
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
343 344 345
{
}

346
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
347
{
348
	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
349 350
		static_branch_dec(&userspace_irqchip_in_use);

351
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
352
	kvm_timer_vcpu_terminate(vcpu);
353
	kvm_pmu_vcpu_destroy(vcpu);
354 355

	kvm_arm_vcpu_destroy(vcpu);
356 357 358 359
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
360
	return kvm_timer_is_pending(vcpu);
361 362
}

363 364
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
365

366 367 368 369
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
370

371 372
}

373 374
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
375
	struct kvm_s2_mmu *mmu;
376 377
	int *last_ran;

378 379
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
380 381

	/*
382 383 384 385 386
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
387 388 389 390
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
391
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
392 393 394
		*last_ran = vcpu->vcpu_id;
	}

395
	vcpu->cpu = cpu;
396

397
	kvm_vgic_load(vcpu);
398
	kvm_timer_vcpu_load(vcpu);
399 400
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
401
	kvm_arch_vcpu_load_fp(vcpu);
402
	kvm_vcpu_pmu_restore_guest(vcpu);
403 404
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
405 406

	if (single_task_running())
407
		vcpu_clear_wfx_traps(vcpu);
408
	else
409
		vcpu_set_wfx_traps(vcpu);
410

411
	if (vcpu_has_ptrauth(vcpu))
412
		vcpu_ptrauth_disable(vcpu);
413
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
414 415 416 417
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
418
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
419
	kvm_arch_vcpu_put_fp(vcpu);
420 421
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
422
	kvm_timer_vcpu_put(vcpu);
423
	kvm_vgic_put(vcpu);
424
	kvm_vcpu_pmu_restore_host(vcpu);
425

426
	vcpu->cpu = -1;
427 428
}

A
Andrew Jones 已提交
429 430 431
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
432
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
433 434 435
	kvm_vcpu_kick(vcpu);
}

436 437 438
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
439
	if (vcpu->arch.power_off)
440 441 442 443 444
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
445 446 447 448 449
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
450 451
	int ret = 0;

452 453
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
454
		vcpu->arch.power_off = false;
455 456
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
457
		vcpu_power_off(vcpu);
458 459
		break;
	default:
460
		ret = -EINVAL;
461 462
	}

463
	return ret;
464 465
}

466 467 468 469 470 471 472
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
473 474
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
475 476
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
477
		&& !v->arch.power_off && !v->arch.pause);
478 479
}

480 481
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
482
	return vcpu_mode_priv(vcpu);
483 484
}

485
#ifdef CONFIG_GUEST_PERF_EVENTS
486 487 488 489
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
{
	return *vcpu_pc(vcpu);
}
490
#endif
491

492 493 494 495 496 497 498
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
499
	preempt_disable();
500
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
501
	preempt_enable();
502 503 504 505
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
506
 * @vmid: The VMID to check
507 508 509
 *
 * return true if there is a new generation of VMIDs being used
 *
510 511
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
512 513 514
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
515
 */
516
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517
{
518 519
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 522 523
}

/**
524 525
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
526
 */
527
static void update_vmid(struct kvm_vmid *vmid)
528
{
529
	if (!need_new_vmid_gen(vmid))
530 531
		return;

532
	spin_lock(&kvm_vmid_lock);
533 534 535 536 537 538

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
539
	if (!need_new_vmid_gen(vmid)) {
540
		spin_unlock(&kvm_vmid_lock);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

563
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
564
	kvm_next_vmid++;
565
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566

567
	smp_wmb();
568
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569 570

	spin_unlock(&kvm_vmid_lock);
571 572
}

573
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574
{
575
	return vcpu->arch.target >= 0;
576 577
}

578 579 580 581 582 583
/*
 * Handle both the initialisation that is being done when the vcpu is
 * run for the first time, as well as the updates that must be
 * performed each time we get a new thread dealing with this vcpu.
 */
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
584
{
585
	struct kvm *kvm = vcpu->kvm;
586
	int ret;
587

588 589
	if (!kvm_vcpu_initialized(vcpu))
		return -ENOEXEC;
590

591 592 593
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

594 595 596 597
	ret = kvm_arch_vcpu_run_map_fp(vcpu);
	if (ret)
		return ret;

598
	if (likely(vcpu_has_run_once(vcpu)))
599
		return 0;
600

601 602
	kvm_arm_vcpu_init_debug(vcpu);

603 604 605 606 607
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
608 609 610
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
611 612
	}

613
	ret = kvm_timer_enable(vcpu);
614 615 616 617
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
618 619 620 621 622 623 624 625 626 627
	if (ret)
		return ret;

	if (!irqchip_in_kernel(kvm)) {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
	}
628

629 630 631 632 633 634 635 636
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

637 638 639 640
	mutex_lock(&kvm->lock);
	kvm->arch.ran_once = true;
	mutex_unlock(&kvm->lock);

641
	return ret;
642 643
}

644 645 646 647 648
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

649
void kvm_arm_halt_guest(struct kvm *kvm)
650
{
651
	unsigned long i;
652 653 654 655
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
656
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
657 658
}

659
void kvm_arm_resume_guest(struct kvm *kvm)
660
{
661
	unsigned long i;
662 663
	struct kvm_vcpu *vcpu;

664 665
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
666
		__kvm_vcpu_wake_up(vcpu);
667
	}
668 669
}

670
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
671
{
672
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
673

674 675 676
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
677

A
Andrew Jones 已提交
678
	if (vcpu->arch.power_off || vcpu->arch.pause) {
679
		/* Awaken to handle a signal, request we sleep again later. */
680
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
681
	}
682 683 684 685 686 687 688

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/**
 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
 * @vcpu:	The VCPU pointer
 *
 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
 * on when a wake event arrives, e.g. there may already be a pending wake event.
 */
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
{
	/*
	 * Sync back the state of the GIC CPU interface so that we have
	 * the latest PMR and group enables. This ensures that
	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
	 * we have pending interrupts, e.g. when determining if the
	 * vCPU should block.
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	vgic_v4_put(vcpu, true);
	preempt_enable();

716
	kvm_vcpu_halt(vcpu);
717 718 719 720 721 722 723
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);

	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
}

724 725 726
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
727 728
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
729

730 731 732
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

733 734 735 736 737
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
738 739 740

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
741 742 743 744 745 746 747 748

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
749 750 751 752

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
753 754 755
	}
}

756 757 758 759 760 761 762 763 764
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 * the vCPU is running.
 *
 * This must be noinstr as instrumentation may make use of RCU, and this is not
 * safe during the EQS.
 */
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
{
	int ret;

	guest_state_enter_irqoff();
	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
	guest_state_exit_irqoff();

	return ret;
}

822 823 824 825 826 827 828 829 830 831
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
832
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
833
{
834
	struct kvm_run *run = vcpu->run;
835 836
	int ret;

C
Christoffer Dall 已提交
837
	if (run->exit_reason == KVM_EXIT_MMIO) {
838
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
839
		if (ret)
840
			return ret;
C
Christoffer Dall 已提交
841 842
	}

843
	vcpu_load(vcpu);
844

845 846 847 848 849
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

850
	kvm_sigset_activate(vcpu);
851 852 853 854 855 856 857

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
858 859 860
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
861

862
		update_vmid(&vcpu->arch.hw_mmu->vmid);
863

864 865
		check_vcpu_requests(vcpu);

866 867 868 869 870
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
871
		preempt_disable();
872

873
		kvm_pmu_flush_hwstate(vcpu);
874

875 876
		local_irq_disable();

877 878
		kvm_vgic_flush_hwstate(vcpu);

879 880 881 882
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
883
		 * Documentation/virt/kvm/vcpu-requests.rst
884 885 886
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

887
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
888
			vcpu->mode = OUTSIDE_GUEST_MODE;
889
			isb(); /* Ensure work in x_flush_hwstate is committed */
890
			kvm_pmu_sync_hwstate(vcpu);
891
			if (static_branch_unlikely(&userspace_irqchip_in_use))
892
				kvm_timer_sync_user(vcpu);
893
			kvm_vgic_sync_hwstate(vcpu);
894
			local_irq_enable();
895
			preempt_enable();
896 897 898
			continue;
		}

899
		kvm_arm_setup_debug(vcpu);
900
		kvm_arch_vcpu_ctxflush_fp(vcpu);
901

902 903 904 905
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
906
		guest_timing_enter_irqoff();
907

908
		ret = kvm_arm_vcpu_enter_exit(vcpu);
909

910
		vcpu->mode = OUTSIDE_GUEST_MODE;
911
		vcpu->stat.exits++;
912 913 914 915
		/*
		 * Back from guest
		 *************************************************************/

916 917
		kvm_arm_clear_debug(vcpu);

918
		/*
919
		 * We must sync the PMU state before the vgic state so
920 921 922 923 924
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

925 926 927 928 929
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
930 931
		kvm_vgic_sync_hwstate(vcpu);

932 933 934 935 936
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
937
		if (static_branch_unlikely(&userspace_irqchip_in_use))
938
			kvm_timer_sync_user(vcpu);
939

940 941
		kvm_arch_vcpu_ctxsync_fp(vcpu);

942
		/*
943 944 945 946
		 * We must ensure that any pending interrupts are taken before
		 * we exit guest timing so that timer ticks are accounted as
		 * guest time. Transiently unmask interrupts so that any
		 * pending interrupts are taken.
947
		 *
948 949 950
		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
		 * context synchronization event) is necessary to ensure that
		 * pending interrupts are taken.
951 952
		 */
		local_irq_enable();
953 954 955 956 957 958
		isb();
		local_irq_disable();

		guest_timing_exit_irqoff();

		local_irq_enable();
959

960
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
961

962
		/* Exit types that need handling before we can be preempted */
963
		handle_exit_early(vcpu, ret);
964

965 966
		preempt_enable();

967 968 969 970 971 972 973 974
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
975
		if (vcpu_mode_is_bad_32bit(vcpu)) {
976 977 978 979 980 981 982 983 984 985
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

986
		ret = handle_exit(vcpu, ret);
987 988
	}

989
	/* Tell userspace about in-kernel device output levels */
990 991 992 993
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
994

995
	kvm_sigset_deactivate(vcpu);
996

997
out:
998 999 1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1008

1009
	vcpu_put(vcpu);
1010
	return ret;
1011 1012
}

1013 1014 1015 1016
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
1017
	unsigned long *hcr;
1018 1019 1020 1021 1022 1023

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

1024
	hcr = vcpu_hcr(vcpu);
1025
	if (level)
1026
		set = test_and_set_bit(bit_index, hcr);
1027
	else
1028
		set = test_and_clear_bit(bit_index, hcr);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
1041
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1042 1043 1044 1045 1046
	kvm_vcpu_kick(vcpu);

	return 0;
}

1047 1048
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1058
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1059 1060 1061 1062
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1063 1064 1065 1066
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1067

1068 1069
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1070

1071 1072 1073
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1092

1093
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1094 1095 1096 1097
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1098
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1099 1100
			return -EINVAL;

1101
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1102 1103 1104
	}

	return -EINVAL;
1105 1106
}

1107 1108 1109
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1110
	unsigned int i, ret;
1111
	u32 phys_target = kvm_target_cpu();
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1145 1146 1147 1148 1149
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1150

1151 1152
	return ret;
}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1163 1164 1165
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1166
	 *
1167 1168 1169 1170
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1171
	 */
1172
	if (vcpu_has_run_once(vcpu)) {
1173 1174 1175
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1176
			icache_inval_all_pou();
1177
	}
1178

1179
	vcpu_reset_hcr(vcpu);
1180
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1181

1182
	/*
1183
	 * Handle the "start in power-off" case.
1184
	 */
1185
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1186
		vcpu_power_off(vcpu);
1187
	else
1188
		vcpu->arch.power_off = false;
1189 1190 1191 1192

	return 0;
}

1193 1194 1195 1196 1197 1198 1199
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1200
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1214
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1228
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1229 1230 1231 1232 1233 1234
		break;
	}

	return ret;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1261 1262 1263 1264 1265
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1266
	struct kvm_device_attr attr;
1267 1268
	long r;

1269 1270 1271 1272
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1273
		r = -EFAULT;
1274
		if (copy_from_user(&init, argp, sizeof(init)))
1275
			break;
1276

1277 1278
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1279 1280 1281 1282
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1283

1284
		r = -ENOEXEC;
1285
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1286
			break;
1287

1288
		r = -EFAULT;
1289
		if (copy_from_user(&reg, argp, sizeof(reg)))
1290 1291
			break;

1292 1293 1294 1295 1296 1297 1298 1299
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1300
		if (ioctl == KVM_SET_ONE_REG)
1301
			r = kvm_arm_set_reg(vcpu, &reg);
1302
		else
1303 1304
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1305 1306 1307 1308 1309 1310
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1311
		r = -ENOEXEC;
1312
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1313
			break;
1314

1315 1316 1317 1318
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1319
		r = -EFAULT;
1320
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1321
			break;
1322 1323 1324
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1325 1326
			break;
		r = -E2BIG;
1327
		if (n < reg_list.n)
1328 1329 1330
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1331
	}
1332
	case KVM_SET_DEVICE_ATTR: {
1333
		r = -EFAULT;
1334
		if (copy_from_user(&attr, argp, sizeof(attr)))
1335 1336 1337
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1338 1339
	}
	case KVM_GET_DEVICE_ATTR: {
1340
		r = -EFAULT;
1341
		if (copy_from_user(&attr, argp, sizeof(attr)))
1342 1343 1344
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1345 1346
	}
	case KVM_HAS_DEVICE_ATTR: {
1347
		r = -EFAULT;
1348
		if (copy_from_user(&attr, argp, sizeof(attr)))
1349 1350 1351
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1352
	}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1383
	default:
1384
		r = -EINVAL;
1385
	}
1386 1387

	return r;
1388 1389
}

1390
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1391
{
1392

1393 1394
}

1395
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1396
					const struct kvm_memory_slot *memslot)
1397
{
1398
	kvm_flush_remote_tlbs(kvm);
1399 1400
}

1401 1402 1403
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1404 1405 1406 1407 1408 1409 1410 1411 1412
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1413 1414
		if (!vgic_present)
			return -ENXIO;
1415
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1416 1417 1418
	default:
		return -ENODEV;
	}
1419 1420
}

1421 1422 1423
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1424 1425 1426 1427
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1428
	case KVM_CREATE_IRQCHIP: {
1429
		int ret;
1430 1431
		if (!vgic_present)
			return -ENXIO;
1432 1433 1434 1435
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1436
	}
1437 1438 1439 1440 1441 1442 1443
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1444 1445 1446
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1447
		kvm_vcpu_preferred_target(&init);
1448 1449 1450 1451 1452 1453

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1454 1455 1456 1457 1458 1459 1460
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1461 1462 1463
	default:
		return -EINVAL;
	}
1464 1465
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1479 1480 1481 1482
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1483
{
1484
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1497

1498
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1499
		return 0;
1500

1501 1502 1503 1504 1505
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1506 1507
	}

1508 1509
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1510 1511 1512
	return 0;
}

1513
static void cpu_prepare_hyp_mode(int cpu)
1514
{
1515
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1516
	unsigned long tcr;
1517

1518 1519 1520 1521
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1522
	 * Also drop the KASAN tag which gets in the way...
1523
	 */
1524
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1525
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1548
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1549
	params->pgd_pa = kvm_mmu_get_httbr();
1550 1551 1552 1553 1554
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1555

1556 1557 1558 1559 1560
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1561 1562
}

1563
static void hyp_install_host_vector(void)
1564 1565 1566 1567 1568 1569
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1570

1571 1572 1573 1574 1575 1576 1577
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1578
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1579
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1580
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1581 1582 1583 1584 1585
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1586 1587 1588 1589 1590 1591

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1592
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1593
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1594
	}
1595 1596
}

1597 1598 1599 1600 1601 1602
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1603 1604 1605 1606 1607 1608 1609 1610
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1611
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1612 1613 1614
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1615
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1616 1617 1618
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1619
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1620 1621 1622 1623 1624
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1625
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1626
	void *vector = hyp_spectre_vector_selector[data->slot];
1627

1628 1629 1630 1631
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1632 1633
}

1634
static void cpu_hyp_init_context(void)
1635
{
1636
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1637

1638
	if (!is_kernel_in_hyp_mode())
1639
		cpu_init_hyp_mode();
1640
}
1641

1642 1643
static void cpu_hyp_init_features(void)
{
1644
	cpu_set_hyp_vector();
1645
	kvm_arm_init_debug();
1646

1647 1648 1649
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1650 1651
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1652 1653
}

1654 1655 1656 1657 1658 1659 1660
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1661 1662 1663
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1664
		cpu_hyp_reinit();
1665
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1666
	}
1667
}
1668

1669 1670 1671 1672
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1673 1674
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1685 1686
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1687
}
1688

1689 1690 1691 1692 1693
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1709
		return NOTIFY_OK;
1710
	case CPU_PM_ENTER_FAILED:
1711 1712 1713 1714
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1715

1716 1717 1718 1719 1720
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1721 1722 1723 1724 1725 1726
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1727
static void hyp_cpu_pm_init(void)
1728
{
1729 1730
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1731
}
1732
static void hyp_cpu_pm_exit(void)
1733
{
1734 1735
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1736
}
1737 1738 1739 1740
#else
static inline void hyp_cpu_pm_init(void)
{
}
1741 1742 1743
static inline void hyp_cpu_pm_exit(void)
{
}
1744 1745
#endif

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1757
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1758 1759
}

1760 1761 1762
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1774 1775 1776 1777
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1778 1779 1780 1781
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1782
	}
1783 1784 1785
	return true;
}

1786 1787
static int init_subsystems(void)
{
1788
	int err = 0;
1789

1790
	/*
1791
	 * Enable hardware so that subsystem initialisation can access EL2.
1792
	 */
1793
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1794 1795 1796 1797 1798 1799

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1811
		err = 0;
1812 1813
		break;
	default:
1814
		goto out;
1815 1816 1817 1818 1819
	}

	/*
	 * Init HYP architected timer support
	 */
1820
	err = kvm_timer_hyp_init(vgic_present);
1821
	if (err)
1822
		goto out;
1823

1824 1825
	kvm_register_perf_callbacks(NULL);

M
Marc Zyngier 已提交
1826
	kvm_sys_reg_table_init();
1827

1828
out:
1829 1830
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1831 1832

	return err;
1833 1834 1835 1836 1837 1838 1839
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1840
	for_each_possible_cpu(cpu) {
1841
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1842 1843
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1844 1845
}

1846 1847 1848 1849 1850 1851
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1852
	cpu_hyp_init_context();
1853 1854 1855
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1856 1857 1858 1859 1860 1861 1862
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1873 1874 1875 1876
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1877 1878
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1879
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1894 1895 1896 1897 1898
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1899
	u32 hyp_va_bits;
1900
	int cpu;
1901 1902 1903 1904 1905 1906 1907 1908
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1909 1910 1911 1912

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1913
	err = kvm_mmu_init(&hyp_va_bits);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1926
			goto out_err;
1927 1928 1929 1930 1931
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1950 1951 1952
	/*
	 * Map the Hyp-code called directly from the host
	 */
1953
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1954
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1955 1956
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1957
		goto out_err;
1958 1959
	}

1960 1961
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1962
	if (err) {
1963
		kvm_err("Cannot map .hyp.rodata section\n");
1964 1965 1966
		goto out_err;
	}

1967
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1968
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1969 1970
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1971 1972 1973
		goto out_err;
	}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1987 1988 1989
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1990
		goto out_err;
1991 1992
	}

1993 1994 1995 1996 1997
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1998 1999
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
2000 2001 2002

		if (err) {
			kvm_err("Cannot map hyp stack\n");
2003
			goto out_err;
2004 2005 2006 2007
		}
	}

	for_each_possible_cpu(cpu) {
2008 2009
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
2010

2011
		/* Map Hyp percpu pages */
2012
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2013
		if (err) {
2014
			kvm_err("Cannot map hyp percpu region\n");
2015 2016
			goto out_err;
		}
2017 2018 2019

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
2020 2021
	}

2022
	if (is_protected_kvm_enabled()) {
2023 2024
		init_cpu_logical_map();

2025 2026
		if (!init_psci_relay()) {
			err = -ENODEV;
2027
			goto out_err;
2028
		}
2029 2030
	}

2031 2032 2033 2034
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
2035
			goto out_err;
2036
		}
2037 2038
	}

2039
	return 0;
2040

2041
out_err:
2042
	teardown_hyp_mode();
2043 2044 2045 2046
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2047
static void _kvm_host_prot_finalize(void *arg)
2048
{
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2066 2067
}

2068 2069 2070 2071 2072
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2073 2074 2075 2076 2077 2078
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2079
	return pkvm_drop_host_privileges();
2080 2081
}

2082 2083 2084
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
2085
	unsigned long i;
2086 2087 2088 2089 2090 2091 2092 2093 2094

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2106 2107
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2108 2109 2110 2111 2112 2113 2114
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2115 2116
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2135 2136 2137
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2138 2139
int kvm_arch_init(void *opaque)
{
2140
	int err;
2141
	bool in_hyp_mode;
2142 2143

	if (!is_hyp_mode_available()) {
2144
		kvm_info("HYP mode not available\n");
2145 2146 2147
		return -ENODEV;
	}

2148 2149 2150 2151 2152
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2153 2154
	in_hyp_mode = is_kernel_in_hyp_mode();

2155 2156
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2157 2158 2159
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2160
	err = kvm_set_ipa_limit();
2161
	if (err)
2162
		return err;
2163

2164
	err = kvm_arm_init_sve();
2165 2166 2167
	if (err)
		return err;

2168
	if (!in_hyp_mode) {
2169
		err = init_hyp_mode();
2170 2171 2172
		if (err)
			goto out_err;
	}
2173

2174 2175 2176 2177 2178 2179
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2180 2181 2182
	err = init_subsystems();
	if (err)
		goto out_hyp;
2183

2184 2185 2186 2187 2188 2189 2190 2191
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2192
	if (is_protected_kvm_enabled()) {
2193
		kvm_info("Protected nVHE mode initialized successfully\n");
2194
	} else if (in_hyp_mode) {
2195
		kvm_info("VHE mode initialized successfully\n");
2196
	} else {
2197
		kvm_info("Hyp mode initialized successfully\n");
2198
	}
2199

2200
	return 0;
2201 2202

out_hyp:
2203
	hyp_cpu_pm_exit();
2204 2205
	if (!in_hyp_mode)
		teardown_hyp_mode();
2206 2207
out_err:
	return err;
2208 2209 2210 2211 2212
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2213
	kvm_unregister_perf_callbacks();
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2226 2227
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2228
		return 0;
2229 2230 2231 2232
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2233
		return 0;
2234
	}
2235

2236 2237 2238 2239
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2240 2241 2242 2243 2244
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2245 2246 2247 2248 2249 2250 2251
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);