arm.c 41.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49 50
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;

51 52
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
55
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
56

57 58
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59
static u32 kvm_next_vmid;
60
static DEFINE_SPINLOCK(kvm_vmid_lock);
61

62 63
static bool vgic_present;

64
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
65 66
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

67 68 69 70 71
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

72
int kvm_arch_hardware_setup(void *opaque)
73 74 75 76
{
	return 0;
}

77
int kvm_arch_check_processor_compat(void *opaque)
78
{
79
	return 0;
80 81
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
102

103 104 105 106 107
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

108 109 110 111
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
112 113
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
114
	int ret;
115

116
	ret = kvm_arm_setup_stage2(kvm, type);
117 118
	if (ret)
		return ret;
119

120
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
121
	if (ret)
122
		return ret;
123

124
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
125 126 127
	if (ret)
		goto out_free_stage2_pgd;

128
	kvm_vgic_early_init(kvm);
129

130
	/* The maximum number of VCPUs is limited by the host's GIC model */
131
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
132

133 134
	return ret;
out_free_stage2_pgd:
135
	kvm_free_stage2_pgd(&kvm->arch.mmu);
136
	return ret;
137 138
}

139
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
140 141 142 143 144
{
	return VM_FAULT_SIGBUS;
}


145 146 147 148
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
149 150 151 152
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

153 154
	bitmap_free(kvm->arch.pmu_filter);

155 156
	kvm_vgic_destroy(kvm);

157 158
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
159
			kvm_vcpu_destroy(kvm->vcpus[i]);
160 161 162
			kvm->vcpus[i] = NULL;
		}
	}
163
	atomic_set(&kvm->online_vcpus, 0);
164 165
}

166
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
167 168 169
{
	int r;
	switch (ext) {
170
	case KVM_CAP_IRQCHIP:
171 172
		r = vgic_present;
		break;
173
	case KVM_CAP_IOEVENTFD:
174
	case KVM_CAP_DEVICE_CTRL:
175 176 177 178
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
179
	case KVM_CAP_ARM_PSCI:
180
	case KVM_CAP_ARM_PSCI_0_2:
181
	case KVM_CAP_READONLY_MEM:
182
	case KVM_CAP_MP_STATE:
183
	case KVM_CAP_IMMEDIATE_EXIT:
184
	case KVM_CAP_VCPU_EVENTS:
185
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
186
	case KVM_CAP_ARM_NISV_TO_USER:
187
	case KVM_CAP_ARM_INJECT_EXT_DABT:
188 189
		r = 1;
		break;
190 191
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
192
		break;
193 194 195 196
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
197
	case KVM_CAP_MAX_VCPU_ID:
198 199 200 201
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
202
		break;
V
Vladimir Murzin 已提交
203 204 205 206 207 208
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
209 210 211 212 213 214 215
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
216 217 218
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
219
	default:
220
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
221 222 223 224 225 226 227 228 229 230 231
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
247

248 249 250 251 252 253 254 255 256 257 258
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

259
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
260
{
261 262 263 264 265 266
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

267 268
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

269 270 271 272 273 274 275 276 277
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

278 279
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

280 281 282 283
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

284
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
285 286
}

287
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
288 289 290
{
}

291
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292
{
293 294 295
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

296
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
297
	kvm_timer_vcpu_terminate(vcpu);
298
	kvm_pmu_vcpu_destroy(vcpu);
299 300

	kvm_arm_vcpu_destroy(vcpu);
301 302 303 304
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
305
	return kvm_timer_is_pending(vcpu);
306 307
}

308 309
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
310 311 312
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
313
	 * so that we have the latest PMR and group enables. This ensures
314 315
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
316 317 318
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
319 320 321
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
322
	vgic_v4_put(vcpu, true);
323
	preempt_enable();
324 325 326 327
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
328 329 330
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
331 332
}

333 334
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
335
	struct kvm_s2_mmu *mmu;
336 337
	int *last_ran;

338 339
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
340 341 342 343 344 345

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
346
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
347 348 349
		*last_ran = vcpu->vcpu_id;
	}

350
	vcpu->cpu = cpu;
351

352
	kvm_vgic_load(vcpu);
353
	kvm_timer_vcpu_load(vcpu);
354 355
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
356
	kvm_arch_vcpu_load_fp(vcpu);
357
	kvm_vcpu_pmu_restore_guest(vcpu);
358 359
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
360 361

	if (single_task_running())
362
		vcpu_clear_wfx_traps(vcpu);
363
	else
364
		vcpu_set_wfx_traps(vcpu);
365

366
	if (vcpu_has_ptrauth(vcpu))
367
		vcpu_ptrauth_disable(vcpu);
368 369 370 371
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
372
	kvm_arch_vcpu_put_fp(vcpu);
373 374
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
375
	kvm_timer_vcpu_put(vcpu);
376
	kvm_vgic_put(vcpu);
377
	kvm_vcpu_pmu_restore_host(vcpu);
378

379
	vcpu->cpu = -1;
380 381
}

A
Andrew Jones 已提交
382 383 384
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
385
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
386 387 388
	kvm_vcpu_kick(vcpu);
}

389 390 391
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392
	if (vcpu->arch.power_off)
393 394 395 396 397
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
398 399 400 401 402
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
403 404
	int ret = 0;

405 406
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
407
		vcpu->arch.power_off = false;
408 409
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
410
		vcpu_power_off(vcpu);
411 412
		break;
	default:
413
		ret = -EINVAL;
414 415
	}

416
	return ret;
417 418
}

419 420 421 422 423 424 425
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
426 427
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
428 429
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430
		&& !v->arch.power_off && !v->arch.pause);
431 432
}

433 434
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
435
	return vcpu_mode_priv(vcpu);
436 437
}

438 439 440 441 442 443 444
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
445
	preempt_disable();
446
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447
	preempt_enable();
448 449 450 451
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
452
 * @vmid: The VMID to check
453 454 455
 *
 * return true if there is a new generation of VMIDs being used
 *
456 457
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
458 459 460
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
461
 */
462
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463
{
464 465
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 468 469
}

/**
470 471
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
472
 */
473
static void update_vmid(struct kvm_vmid *vmid)
474
{
475
	if (!need_new_vmid_gen(vmid))
476 477
		return;

478
	spin_lock(&kvm_vmid_lock);
479 480 481 482 483 484

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
485
	if (!need_new_vmid_gen(vmid)) {
486
		spin_unlock(&kvm_vmid_lock);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

509
	vmid->vmid = kvm_next_vmid;
510
	kvm_next_vmid++;
511
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
512

513
	smp_wmb();
514
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
515 516

	spin_unlock(&kvm_vmid_lock);
517 518 519 520
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
521
	struct kvm *kvm = vcpu->kvm;
522
	int ret = 0;
523

524 525 526
	if (likely(vcpu->arch.has_run_once))
		return 0;

527 528 529
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

530
	vcpu->arch.has_run_once = true;
531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
548 549
	}

550
	ret = kvm_timer_enable(vcpu);
551 552 553 554
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
555

556
	return ret;
557 558
}

559 560 561 562 563
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

564
void kvm_arm_halt_guest(struct kvm *kvm)
565 566 567 568 569 570
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
571
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
572 573
}

574
void kvm_arm_resume_guest(struct kvm *kvm)
575 576 577 578
{
	int i;
	struct kvm_vcpu *vcpu;

579 580
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
581
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
582
	}
583 584
}

585
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
586
{
587
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
588

589 590 591
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
592

A
Andrew Jones 已提交
593
	if (vcpu->arch.power_off || vcpu->arch.pause) {
594
		/* Awaken to handle a signal, request we sleep again later. */
595
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
596
	}
597 598 599 600 601 602 603

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
604 605
}

606 607 608 609 610
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

611 612 613
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
614 615
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
616

617 618 619
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

620 621 622 623 624
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
625 626 627

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
628 629 630 631 632 633 634 635

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
636 637 638
	}
}

639 640 641 642 643 644 645 646 647 648
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
649
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
650
{
651
	struct kvm_run *run = vcpu->run;
652 653
	int ret;

654
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
655 656 657 658
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
659
		return ret;
660

C
Christoffer Dall 已提交
661
	if (run->exit_reason == KVM_EXIT_MMIO) {
662
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
663
		if (ret)
664
			return ret;
C
Christoffer Dall 已提交
665 666
	}

667 668 669 670
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
671

672
	kvm_sigset_activate(vcpu);
673 674 675 676 677 678 679 680 681

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

682
		update_vmid(&vcpu->arch.hw_mmu->vmid);
683

684 685
		check_vcpu_requests(vcpu);

686 687 688 689 690
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
691
		preempt_disable();
692

693
		kvm_pmu_flush_hwstate(vcpu);
694

695 696
		local_irq_disable();

697 698
		kvm_vgic_flush_hwstate(vcpu);

699
		/*
700 701
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
702
		 */
703
		if (signal_pending(current)) {
704 705 706 707
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

723 724 725 726
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
727
		 * Documentation/virt/kvm/vcpu-requests.rst
728 729 730
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

731
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
732
		    kvm_request_pending(vcpu)) {
733
			vcpu->mode = OUTSIDE_GUEST_MODE;
734
			isb(); /* Ensure work in x_flush_hwstate is committed */
735
			kvm_pmu_sync_hwstate(vcpu);
736
			if (static_branch_unlikely(&userspace_irqchip_in_use))
737
				kvm_timer_sync_user(vcpu);
738
			kvm_vgic_sync_hwstate(vcpu);
739
			local_irq_enable();
740
			preempt_enable();
741 742 743
			continue;
		}

744 745
		kvm_arm_setup_debug(vcpu);

746 747 748 749
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
750
		guest_enter_irqoff();
751

752
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
753

754
		vcpu->mode = OUTSIDE_GUEST_MODE;
755
		vcpu->stat.exits++;
756 757 758 759
		/*
		 * Back from guest
		 *************************************************************/

760 761
		kvm_arm_clear_debug(vcpu);

762
		/*
763
		 * We must sync the PMU state before the vgic state so
764 765 766 767 768
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

769 770 771 772 773
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
774 775
		kvm_vgic_sync_hwstate(vcpu);

776 777 778 779 780
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
781
		if (static_branch_unlikely(&userspace_irqchip_in_use))
782
			kvm_timer_sync_user(vcpu);
783

784 785
		kvm_arch_vcpu_ctxsync_fp(vcpu);

786 787 788 789 790 791 792 793 794 795 796 797 798
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
799
		 * We do local_irq_enable() before calling guest_exit() so
800 801
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
802
		 * preemption after calling guest_exit() so that if we get
803 804 805
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
806
		guest_exit();
807
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
808

809
		/* Exit types that need handling before we can be preempted */
810
		handle_exit_early(vcpu, ret);
811

812 813
		preempt_enable();

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

833
		ret = handle_exit(vcpu, ret);
834 835
	}

836
	/* Tell userspace about in-kernel device output levels */
837 838 839 840
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
841

842 843
	kvm_sigset_deactivate(vcpu);

844
	vcpu_put(vcpu);
845
	return ret;
846 847
}

848 849 850 851
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
852
	unsigned long *hcr;
853 854 855 856 857 858

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

859
	hcr = vcpu_hcr(vcpu);
860
	if (level)
861
		set = test_and_set_bit(bit_index, hcr);
862
	else
863
		set = test_and_clear_bit(bit_index, hcr);
864 865 866 867 868 869 870 871 872 873 874 875

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
876
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
877 878 879 880 881
	kvm_vcpu_kick(vcpu);

	return 0;
}

882 883
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
884 885 886 887 888 889 890 891 892
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
893
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
894 895 896 897
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

898 899 900 901
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
902

903 904
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
905

906 907 908
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
927

928
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
929 930 931 932
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

933
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
934 935
			return -EINVAL;

936
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
937 938 939
	}

	return -EINVAL;
940 941
}

942 943 944
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
945
	unsigned int i, ret;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
980 981 982 983 984
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
985

986 987
	return ret;
}
988

989 990 991 992 993 994 995 996 997
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

998 999 1000
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1001
	 *
1002 1003 1004 1005
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1006
	 */
1007 1008 1009 1010 1011 1012
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1013

1014 1015
	vcpu_reset_hcr(vcpu);

1016
	/*
1017
	 * Handle the "start in power-off" case.
1018
	 */
1019
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1020
		vcpu_power_off(vcpu);
1021
	else
1022
		vcpu->arch.power_off = false;
1023 1024 1025 1026

	return 0;
}

1027 1028 1029 1030 1031 1032 1033
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1034
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1048
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1062
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1063 1064 1065 1066 1067 1068
		break;
	}

	return ret;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1095 1096 1097 1098 1099
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1100
	struct kvm_device_attr attr;
1101 1102
	long r;

1103 1104 1105 1106
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1107
		r = -EFAULT;
1108
		if (copy_from_user(&init, argp, sizeof(init)))
1109
			break;
1110

1111 1112
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1113 1114 1115 1116
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1117

1118
		r = -ENOEXEC;
1119
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1120
			break;
1121

1122
		r = -EFAULT;
1123
		if (copy_from_user(&reg, argp, sizeof(reg)))
1124 1125
			break;

1126
		if (ioctl == KVM_SET_ONE_REG)
1127
			r = kvm_arm_set_reg(vcpu, &reg);
1128
		else
1129 1130
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1131 1132 1133 1134 1135 1136
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1137
		r = -ENOEXEC;
1138
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1139
			break;
1140

1141 1142 1143 1144
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1145
		r = -EFAULT;
1146
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1147
			break;
1148 1149 1150
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1151 1152
			break;
		r = -E2BIG;
1153
		if (n < reg_list.n)
1154 1155 1156
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1157
	}
1158
	case KVM_SET_DEVICE_ATTR: {
1159
		r = -EFAULT;
1160
		if (copy_from_user(&attr, argp, sizeof(attr)))
1161 1162 1163
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1164 1165
	}
	case KVM_GET_DEVICE_ATTR: {
1166
		r = -EFAULT;
1167
		if (copy_from_user(&attr, argp, sizeof(attr)))
1168 1169 1170
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1171 1172
	}
	case KVM_HAS_DEVICE_ATTR: {
1173
		r = -EFAULT;
1174
		if (copy_from_user(&attr, argp, sizeof(attr)))
1175 1176 1177
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1178
	}
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1209
	default:
1210
		r = -EINVAL;
1211
	}
1212 1213

	return r;
1214 1215
}

1216
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1217
{
1218

1219 1220
}

1221 1222
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1223
{
1224
	kvm_flush_remote_tlbs(kvm);
1225 1226
}

1227 1228 1229
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1230 1231 1232 1233 1234 1235 1236 1237 1238
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1239 1240
		if (!vgic_present)
			return -ENXIO;
1241
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1242 1243 1244
	default:
		return -ENODEV;
	}
1245 1246
}

1247 1248 1249
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1250 1251 1252 1253
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1254
	case KVM_CREATE_IRQCHIP: {
1255
		int ret;
1256 1257
		if (!vgic_present)
			return -ENXIO;
1258 1259 1260 1261
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1262
	}
1263 1264 1265 1266 1267 1268 1269
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1283 1284 1285
	default:
		return -EINVAL;
	}
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static int kvm_map_vectors(void)
{
	/*
	 * SV2  = ARM64_SPECTRE_V2
	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
	 *
	 * !SV2 + !HEL2 -> use direct vectors
	 *  SV2 + !HEL2 -> use hardened vectors in place
	 * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
	 *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
	 */
	if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
	}

	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;

		/*
		 * Always allocate a spare vector slot, as we don't
		 * know yet which CPUs have a BP hardening slot that
		 * we can reuse.
		 */
		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
		return create_hyp_exec_mappings(vect_pa, size,
						&__kvm_bp_vect_base);
	}

	return 0;
}

1335
static void cpu_init_hyp_mode(void)
1336
{
1337
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1338
	struct arm_smccc_res res;
1339
	unsigned long tcr;
1340 1341

	/* Switch from the HYP stub to our own HYP init vector */
1342
	__hyp_set_vectors(kvm_get_idmap_vector());
1343

1344 1345 1346 1347 1348
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1349 1350
	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1373 1374 1375 1376 1377 1378 1379 1380
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();

	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1381

1382 1383 1384 1385 1386 1387 1388
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1389
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1390
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1391 1392 1393 1394 1395 1396

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1397
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1398
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1399
	}
1400 1401
}

1402 1403 1404 1405 1406 1407
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1408 1409
static void cpu_hyp_reinit(void)
{
1410
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1411

1412 1413
	cpu_hyp_reset();

1414
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1415

1416
	if (is_kernel_in_hyp_mode())
1417
		kvm_timer_init_vhe();
1418
	else
1419
		cpu_init_hyp_mode();
1420

1421
	kvm_arm_init_debug();
1422 1423 1424

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1425 1426
}

1427 1428 1429
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1430
		cpu_hyp_reinit();
1431
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1432
	}
1433
}
1434

1435 1436 1437 1438
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1453

1454 1455 1456 1457 1458
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1474
		return NOTIFY_OK;
1475
	case CPU_PM_ENTER_FAILED:
1476 1477 1478 1479
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1480

1481 1482 1483 1484 1485
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1496 1497 1498 1499
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1500 1501 1502 1503
#else
static inline void hyp_cpu_pm_init(void)
{
}
1504 1505 1506
static inline void hyp_cpu_pm_exit(void)
{
}
1507 1508
#endif

1509 1510
static int init_common_resources(void)
{
1511
	return kvm_set_ipa_limit();
1512 1513 1514 1515
}

static int init_subsystems(void)
{
1516
	int err = 0;
1517

1518
	/*
1519
	 * Enable hardware so that subsystem initialisation can access EL2.
1520
	 */
1521
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1522 1523 1524 1525 1526 1527

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1539
		err = 0;
1540 1541
		break;
	default:
1542
		goto out;
1543 1544 1545 1546 1547
	}

	/*
	 * Init HYP architected timer support
	 */
1548
	err = kvm_timer_hyp_init(vgic_present);
1549
	if (err)
1550
		goto out;
1551 1552 1553 1554

	kvm_perf_init();
	kvm_coproc_table_init();

1555 1556 1557 1558
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1559 1560 1561 1562 1563 1564 1565
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1566
	for_each_possible_cpu(cpu) {
1567
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1568 1569
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1596
			goto out_err;
1597 1598 1599 1600 1601
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1620 1621 1622
	/*
	 * Map the Hyp-code called directly from the host
	 */
1623
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1624
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1625 1626
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1627
		goto out_err;
1628 1629
	}

1630 1631 1632 1633 1634 1635 1636 1637
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
				  PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
		goto out_err;
	}

1638
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1639
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1640 1641
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1642 1643 1644 1645 1646 1647 1648
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1649
		goto out_err;
1650 1651
	}

1652 1653 1654 1655 1656 1657
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1658 1659 1660 1661 1662
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1663 1664
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1665 1666 1667

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1668
			goto out_err;
1669 1670 1671
		}
	}

1672 1673 1674
	/*
	 * Map Hyp percpu pages
	 */
1675
	for_each_possible_cpu(cpu) {
1676 1677
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1678

1679
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1680 1681

		if (err) {
1682
			kvm_err("Cannot map hyp percpu region\n");
1683 1684
			goto out_err;
		}
1685 1686 1687
	}

	return 0;
1688

1689
out_err:
1690
	teardown_hyp_mode();
1691 1692 1693 1694
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1695 1696 1697 1698 1699
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1724 1725
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1726 1727 1728 1729 1730 1731 1732
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1733 1734
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1753 1754 1755
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1756 1757
int kvm_arch_init(void *opaque)
{
1758
	int err;
1759
	int ret, cpu;
1760
	bool in_hyp_mode;
1761 1762

	if (!is_hyp_mode_available()) {
1763
		kvm_info("HYP mode not available\n");
1764 1765 1766
		return -ENODEV;
	}

1767 1768 1769 1770
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1771 1772 1773
		return -ENODEV;
	}

1774 1775
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1776 1777 1778
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1779 1780 1781 1782 1783 1784
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1785 1786
	}

1787
	err = init_common_resources();
1788
	if (err)
1789
		return err;
1790

1791
	err = kvm_arm_init_sve();
1792 1793 1794
	if (err)
		return err;

1795
	if (!in_hyp_mode) {
1796
		err = init_hyp_mode();
1797 1798 1799
		if (err)
			goto out_err;
	}
1800

1801 1802 1803
	err = init_subsystems();
	if (err)
		goto out_hyp;
1804

1805 1806 1807
	if (is_protected_kvm_enabled())
		kvm_info("Protected nVHE mode initialized successfully\n");
	else if (in_hyp_mode)
1808 1809 1810 1811
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1812
	return 0;
1813 1814

out_hyp:
1815
	hyp_cpu_pm_exit();
1816 1817
	if (!in_hyp_mode)
		teardown_hyp_mode();
1818 1819
out_err:
	return err;
1820 1821 1822 1823 1824
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1825
	kvm_perf_teardown();
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1842 1843 1844 1845 1846
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1847 1848 1849 1850 1851 1852 1853
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);