arm.c 45.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69
extern u64 kvm_nvhe_sym(__cpu_logical_map)[NR_CPUS];

70 71 72 73 74
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

75
int kvm_arch_hardware_setup(void *opaque)
76 77 78 79
{
	return 0;
}

80
int kvm_arch_check_processor_compat(void *opaque)
81
{
82
	return 0;
83 84
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
105

106 107 108 109 110
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

111
static void set_default_spectre(struct kvm *kvm)
112 113 114 115 116 117 118 119 120 121 122
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
123 124
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
125 126
}

127 128 129 130
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
131 132
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
133
	int ret;
134

135
	ret = kvm_arm_setup_stage2(kvm, type);
136 137
	if (ret)
		return ret;
138

139
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
140
	if (ret)
141
		return ret;
142

143
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
144 145 146
	if (ret)
		goto out_free_stage2_pgd;

147
	kvm_vgic_early_init(kvm);
148

149
	/* The maximum number of VCPUs is limited by the host's GIC model */
150
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
151

152
	set_default_spectre(kvm);
153

154 155
	return ret;
out_free_stage2_pgd:
156
	kvm_free_stage2_pgd(&kvm->arch.mmu);
157
	return ret;
158 159
}

160
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
161 162 163 164 165
{
	return VM_FAULT_SIGBUS;
}


166 167 168 169
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
170 171 172 173
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

174 175
	bitmap_free(kvm->arch.pmu_filter);

176 177
	kvm_vgic_destroy(kvm);

178 179
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
180
			kvm_vcpu_destroy(kvm->vcpus[i]);
181 182 183
			kvm->vcpus[i] = NULL;
		}
	}
184
	atomic_set(&kvm->online_vcpus, 0);
185 186
}

187
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 189 190
{
	int r;
	switch (ext) {
191
	case KVM_CAP_IRQCHIP:
192 193
		r = vgic_present;
		break;
194
	case KVM_CAP_IOEVENTFD:
195
	case KVM_CAP_DEVICE_CTRL:
196 197 198 199
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
200
	case KVM_CAP_ARM_PSCI:
201
	case KVM_CAP_ARM_PSCI_0_2:
202
	case KVM_CAP_READONLY_MEM:
203
	case KVM_CAP_MP_STATE:
204
	case KVM_CAP_IMMEDIATE_EXIT:
205
	case KVM_CAP_VCPU_EVENTS:
206
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207
	case KVM_CAP_ARM_NISV_TO_USER:
208
	case KVM_CAP_ARM_INJECT_EXT_DABT:
209 210
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
211 212
		r = 1;
		break;
213 214
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
215
		break;
216 217 218 219
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
220
	case KVM_CAP_MAX_VCPU_ID:
221 222 223 224
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
225
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239 240 241
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
259
		break;
260 261 262 263 264 265 266 267 268
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
269
	}
270

271 272 273 274 275 276 277 278 279
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
295

296 297 298 299 300 301 302 303 304 305 306
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

307
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
308
{
309 310 311 312 313 314
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

315 316
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

317 318 319 320 321 322 323 324 325
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

326 327
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

328 329 330 331
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

332
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
333 334
}

335
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
336 337 338
{
}

339
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
340
{
341 342 343
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

344
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
345
	kvm_timer_vcpu_terminate(vcpu);
346
	kvm_pmu_vcpu_destroy(vcpu);
347 348

	kvm_arm_vcpu_destroy(vcpu);
349 350 351 352
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
353
	return kvm_timer_is_pending(vcpu);
354 355
}

356 357
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
358 359 360
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
361
	 * so that we have the latest PMR and group enables. This ensures
362 363
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
364 365 366
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
367 368 369
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
370
	vgic_v4_put(vcpu, true);
371
	preempt_enable();
372 373 374 375
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
376 377 378
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
379 380
}

381 382
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
383
	struct kvm_s2_mmu *mmu;
384 385
	int *last_ran;

386 387
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
388 389 390 391 392 393

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
394
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
395 396 397
		*last_ran = vcpu->vcpu_id;
	}

398
	vcpu->cpu = cpu;
399

400
	kvm_vgic_load(vcpu);
401
	kvm_timer_vcpu_load(vcpu);
402 403
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
404
	kvm_arch_vcpu_load_fp(vcpu);
405
	kvm_vcpu_pmu_restore_guest(vcpu);
406 407
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
408 409

	if (single_task_running())
410
		vcpu_clear_wfx_traps(vcpu);
411
	else
412
		vcpu_set_wfx_traps(vcpu);
413

414
	if (vcpu_has_ptrauth(vcpu))
415
		vcpu_ptrauth_disable(vcpu);
416 417 418 419
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
420
	kvm_arch_vcpu_put_fp(vcpu);
421 422
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
423
	kvm_timer_vcpu_put(vcpu);
424
	kvm_vgic_put(vcpu);
425
	kvm_vcpu_pmu_restore_host(vcpu);
426

427
	vcpu->cpu = -1;
428 429
}

A
Andrew Jones 已提交
430 431 432
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
433
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
434 435 436
	kvm_vcpu_kick(vcpu);
}

437 438 439
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
440
	if (vcpu->arch.power_off)
441 442 443 444 445
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
446 447 448 449 450
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
451 452
	int ret = 0;

453 454
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
455
		vcpu->arch.power_off = false;
456 457
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
458
		vcpu_power_off(vcpu);
459 460
		break;
	default:
461
		ret = -EINVAL;
462 463
	}

464
	return ret;
465 466
}

467 468 469 470 471 472 473
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
474 475
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
476 477
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
478
		&& !v->arch.power_off && !v->arch.pause);
479 480
}

481 482
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
483
	return vcpu_mode_priv(vcpu);
484 485
}

486 487 488 489 490 491 492
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
493
	preempt_disable();
494
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
495
	preempt_enable();
496 497 498 499
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
500
 * @vmid: The VMID to check
501 502 503
 *
 * return true if there is a new generation of VMIDs being used
 *
504 505
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
506 507 508
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
509
 */
510
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
511
{
512 513
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
514
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
515 516 517
}

/**
518 519
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
520
 */
521
static void update_vmid(struct kvm_vmid *vmid)
522
{
523
	if (!need_new_vmid_gen(vmid))
524 525
		return;

526
	spin_lock(&kvm_vmid_lock);
527 528 529 530 531 532

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
533
	if (!need_new_vmid_gen(vmid)) {
534
		spin_unlock(&kvm_vmid_lock);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

557
	vmid->vmid = kvm_next_vmid;
558
	kvm_next_vmid++;
559
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
560

561
	smp_wmb();
562
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
563 564

	spin_unlock(&kvm_vmid_lock);
565 566 567 568
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
569
	struct kvm *kvm = vcpu->kvm;
570
	int ret = 0;
571

572 573 574
	if (likely(vcpu->arch.has_run_once))
		return 0;

575 576 577
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

578
	vcpu->arch.has_run_once = true;
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
596 597
	}

598
	ret = kvm_timer_enable(vcpu);
599 600 601 602
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
603

604
	return ret;
605 606
}

607 608 609 610 611
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

612
void kvm_arm_halt_guest(struct kvm *kvm)
613 614 615 616 617 618
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
619
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
620 621
}

622
void kvm_arm_resume_guest(struct kvm *kvm)
623 624 625 626
{
	int i;
	struct kvm_vcpu *vcpu;

627 628
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
629
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
630
	}
631 632
}

633
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
634
{
635
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
636

637 638 639
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
640

A
Andrew Jones 已提交
641
	if (vcpu->arch.power_off || vcpu->arch.pause) {
642
		/* Awaken to handle a signal, request we sleep again later. */
643
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
644
	}
645 646 647 648 649 650 651

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
652 653
}

654 655 656 657 658
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

659 660 661
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
662 663
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
664

665 666 667
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

668 669 670 671 672
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
673 674 675

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
676 677 678 679 680 681 682 683

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
684 685 686
	}
}

687 688 689 690 691 692 693 694 695 696
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
697
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
698
{
699
	struct kvm_run *run = vcpu->run;
700 701
	int ret;

702
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
703 704 705 706
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
707
		return ret;
708

C
Christoffer Dall 已提交
709
	if (run->exit_reason == KVM_EXIT_MMIO) {
710
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
711
		if (ret)
712
			return ret;
C
Christoffer Dall 已提交
713 714
	}

715 716 717 718
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
719

720
	kvm_sigset_activate(vcpu);
721 722 723 724 725 726 727 728 729

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

730
		update_vmid(&vcpu->arch.hw_mmu->vmid);
731

732 733
		check_vcpu_requests(vcpu);

734 735 736 737 738
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
739
		preempt_disable();
740

741
		kvm_pmu_flush_hwstate(vcpu);
742

743 744
		local_irq_disable();

745 746
		kvm_vgic_flush_hwstate(vcpu);

747
		/*
748 749
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
750
		 */
751
		if (signal_pending(current)) {
752 753 754 755
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

771 772 773 774
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
775
		 * Documentation/virt/kvm/vcpu-requests.rst
776 777 778
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

779
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
780
		    kvm_request_pending(vcpu)) {
781
			vcpu->mode = OUTSIDE_GUEST_MODE;
782
			isb(); /* Ensure work in x_flush_hwstate is committed */
783
			kvm_pmu_sync_hwstate(vcpu);
784
			if (static_branch_unlikely(&userspace_irqchip_in_use))
785
				kvm_timer_sync_user(vcpu);
786
			kvm_vgic_sync_hwstate(vcpu);
787
			local_irq_enable();
788
			preempt_enable();
789 790 791
			continue;
		}

792 793
		kvm_arm_setup_debug(vcpu);

794 795 796 797
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
798
		guest_enter_irqoff();
799

800
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
801

802
		vcpu->mode = OUTSIDE_GUEST_MODE;
803
		vcpu->stat.exits++;
804 805 806 807
		/*
		 * Back from guest
		 *************************************************************/

808 809
		kvm_arm_clear_debug(vcpu);

810
		/*
811
		 * We must sync the PMU state before the vgic state so
812 813 814 815 816
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

817 818 819 820 821
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
822 823
		kvm_vgic_sync_hwstate(vcpu);

824 825 826 827 828
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
829
		if (static_branch_unlikely(&userspace_irqchip_in_use))
830
			kvm_timer_sync_user(vcpu);
831

832 833
		kvm_arch_vcpu_ctxsync_fp(vcpu);

834 835 836 837 838 839 840 841 842 843 844 845 846
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
847
		 * We do local_irq_enable() before calling guest_exit() so
848 849
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
850
		 * preemption after calling guest_exit() so that if we get
851 852 853
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
854
		guest_exit();
855
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
856

857
		/* Exit types that need handling before we can be preempted */
858
		handle_exit_early(vcpu, ret);
859

860 861
		preempt_enable();

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

881
		ret = handle_exit(vcpu, ret);
882 883
	}

884
	/* Tell userspace about in-kernel device output levels */
885 886 887 888
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
889

890 891
	kvm_sigset_deactivate(vcpu);

892
	vcpu_put(vcpu);
893
	return ret;
894 895
}

896 897 898 899
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
900
	unsigned long *hcr;
901 902 903 904 905 906

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

907
	hcr = vcpu_hcr(vcpu);
908
	if (level)
909
		set = test_and_set_bit(bit_index, hcr);
910
	else
911
		set = test_and_clear_bit(bit_index, hcr);
912 913 914 915 916 917 918 919 920 921 922 923

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
924
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
925 926 927 928 929
	kvm_vcpu_kick(vcpu);

	return 0;
}

930 931
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
932 933 934 935 936 937 938 939 940
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
941
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
942 943 944 945
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

946 947 948 949
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
950

951 952
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
953

954 955 956
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
975

976
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
977 978 979 980
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

981
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
982 983
			return -EINVAL;

984
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
985 986 987
	}

	return -EINVAL;
988 989
}

990 991 992
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
993
	unsigned int i, ret;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1028 1029 1030 1031 1032
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1033

1034 1035
	return ret;
}
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1046 1047 1048
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1049
	 *
1050 1051 1052 1053
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1054
	 */
1055 1056 1057 1058 1059 1060
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1061

1062 1063
	vcpu_reset_hcr(vcpu);

1064
	/*
1065
	 * Handle the "start in power-off" case.
1066
	 */
1067
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1068
		vcpu_power_off(vcpu);
1069
	else
1070
		vcpu->arch.power_off = false;
1071 1072 1073 1074

	return 0;
}

1075 1076 1077 1078 1079 1080 1081
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1082
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1096
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1110
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1111 1112 1113 1114 1115 1116
		break;
	}

	return ret;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1143 1144 1145 1146 1147
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1148
	struct kvm_device_attr attr;
1149 1150
	long r;

1151 1152 1153 1154
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1155
		r = -EFAULT;
1156
		if (copy_from_user(&init, argp, sizeof(init)))
1157
			break;
1158

1159 1160
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1161 1162 1163 1164
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1165

1166
		r = -ENOEXEC;
1167
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1168
			break;
1169

1170
		r = -EFAULT;
1171
		if (copy_from_user(&reg, argp, sizeof(reg)))
1172 1173
			break;

1174
		if (ioctl == KVM_SET_ONE_REG)
1175
			r = kvm_arm_set_reg(vcpu, &reg);
1176
		else
1177 1178
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1179 1180 1181 1182 1183 1184
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1185
		r = -ENOEXEC;
1186
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1187
			break;
1188

1189 1190 1191 1192
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1193
		r = -EFAULT;
1194
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1195
			break;
1196 1197 1198
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1199 1200
			break;
		r = -E2BIG;
1201
		if (n < reg_list.n)
1202 1203 1204
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1205
	}
1206
	case KVM_SET_DEVICE_ATTR: {
1207
		r = -EFAULT;
1208
		if (copy_from_user(&attr, argp, sizeof(attr)))
1209 1210 1211
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1212 1213
	}
	case KVM_GET_DEVICE_ATTR: {
1214
		r = -EFAULT;
1215
		if (copy_from_user(&attr, argp, sizeof(attr)))
1216 1217 1218
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1219 1220
	}
	case KVM_HAS_DEVICE_ATTR: {
1221
		r = -EFAULT;
1222
		if (copy_from_user(&attr, argp, sizeof(attr)))
1223 1224 1225
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1226
	}
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1257
	default:
1258
		r = -EINVAL;
1259
	}
1260 1261

	return r;
1262 1263
}

1264
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1265
{
1266

1267 1268
}

1269 1270
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1271
{
1272
	kvm_flush_remote_tlbs(kvm);
1273 1274
}

1275 1276 1277
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1278 1279 1280 1281 1282 1283 1284 1285 1286
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1287 1288
		if (!vgic_present)
			return -ENXIO;
1289
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1290 1291 1292
	default:
		return -ENODEV;
	}
1293 1294
}

1295 1296 1297
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1298 1299 1300 1301
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1302
	case KVM_CREATE_IRQCHIP: {
1303
		int ret;
1304 1305
		if (!vgic_present)
			return -ENXIO;
1306 1307 1308 1309
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1310
	}
1311 1312 1313 1314 1315 1316 1317
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1331 1332 1333
	default:
		return -EINVAL;
	}
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1349 1350 1351
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

1352
static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1353
{
1354 1355
	return slot - (slot != HYP_VECTOR_DIRECT);
}
1356

1357
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1358
{
1359
	int idx = __kvm_vector_slot2idx(slot);
1360

1361
	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1374

1375
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1376
		return 0;
1377

1378 1379 1380 1381 1382
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1383 1384
	}

1385 1386
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1387 1388 1389
	return 0;
}

1390
static void cpu_init_hyp_mode(void)
1391
{
1392
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1393
	struct arm_smccc_res res;
1394
	unsigned long tcr;
1395 1396

	/* Switch from the HYP stub to our own HYP init vector */
1397
	__hyp_set_vectors(kvm_get_idmap_vector());
1398

1399 1400 1401 1402 1403
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1404 1405
	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1428 1429
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();
1430

1431 1432 1433 1434 1435
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1436

1437 1438 1439 1440 1441 1442 1443
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1444
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1445
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1446 1447 1448 1449 1450 1451

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1452
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1453
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1454
	}
1455 1456
}

1457 1458 1459 1460 1461 1462
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1463 1464 1465 1466 1467 1468 1469 1470
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1471
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1472 1473 1474
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1475
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1476 1477 1478
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1479
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1480 1481 1482 1483 1484
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1485
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1486
	void *vector = hyp_spectre_vector_selector[data->slot];
1487

1488
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1489 1490
}

1491 1492
static void cpu_hyp_reinit(void)
{
1493
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1494

1495
	cpu_hyp_reset();
1496
	cpu_set_hyp_vector();
1497

1498
	if (is_kernel_in_hyp_mode())
1499
		kvm_timer_init_vhe();
1500
	else
1501
		cpu_init_hyp_mode();
1502

1503
	kvm_arm_init_debug();
1504 1505 1506

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1507 1508
}

1509 1510 1511
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1512
		cpu_hyp_reinit();
1513
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1514
	}
1515
}
1516

1517 1518 1519 1520
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1533 1534
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1535
}
1536

1537 1538 1539 1540 1541
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1557
		return NOTIFY_OK;
1558
	case CPU_PM_ENTER_FAILED:
1559 1560 1561 1562
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1563

1564 1565 1566 1567 1568
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1569 1570 1571 1572 1573 1574 1575 1576
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
1577 1578
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1579
}
1580 1581
static void __init hyp_cpu_pm_exit(void)
{
1582 1583
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1584
}
1585 1586 1587 1588
#else
static inline void hyp_cpu_pm_init(void)
{
}
1589 1590 1591
static inline void hyp_cpu_pm_exit(void)
{
}
1592 1593
#endif

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
		kvm_nvhe_sym(__cpu_logical_map)[cpu] = cpu_logical_map(cpu);
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
		kvm_host_psci_config.enabled_functions_0_1 =
			(psci_ops.cpu_suspend ? KVM_HOST_PSCI_0_1_CPU_SUSPEND : 0) |
			(psci_ops.cpu_off ? KVM_HOST_PSCI_0_1_CPU_OFF : 0) |
			(psci_ops.cpu_on ? KVM_HOST_PSCI_0_1_CPU_ON : 0) |
			(psci_ops.migrate ? KVM_HOST_PSCI_0_1_MIGRATE : 0);
	}
1629 1630 1631
	return true;
}

1632 1633
static int init_common_resources(void)
{
1634
	return kvm_set_ipa_limit();
1635 1636 1637 1638
}

static int init_subsystems(void)
{
1639
	int err = 0;
1640

1641
	/*
1642
	 * Enable hardware so that subsystem initialisation can access EL2.
1643
	 */
1644
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1645 1646 1647 1648 1649 1650

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1662
		err = 0;
1663 1664
		break;
	default:
1665
		goto out;
1666 1667 1668 1669 1670
	}

	/*
	 * Init HYP architected timer support
	 */
1671
	err = kvm_timer_hyp_init(vgic_present);
1672
	if (err)
1673
		goto out;
1674 1675

	kvm_perf_init();
M
Marc Zyngier 已提交
1676
	kvm_sys_reg_table_init();
1677

1678
out:
1679 1680
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1681 1682

	return err;
1683 1684 1685 1686 1687 1688 1689
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1690
	for_each_possible_cpu(cpu) {
1691
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1692 1693
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1694 1695
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1720
			goto out_err;
1721 1722 1723 1724 1725
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1744 1745 1746
	/*
	 * Map the Hyp-code called directly from the host
	 */
1747
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1748
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1749 1750
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1751
		goto out_err;
1752 1753
	}

1754 1755 1756 1757 1758 1759 1760 1761
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
				  PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
		goto out_err;
	}

1762
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1763
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1764 1765
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1766 1767 1768 1769 1770 1771 1772
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1773
		goto out_err;
1774 1775
	}

1776 1777 1778 1779 1780
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1781 1782
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1783 1784 1785

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1786
			goto out_err;
1787 1788 1789
		}
	}

1790 1791 1792
	/*
	 * Map Hyp percpu pages
	 */
1793
	for_each_possible_cpu(cpu) {
1794 1795
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1796

1797
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1798 1799

		if (err) {
1800
			kvm_err("Cannot map hyp percpu region\n");
1801 1802
			goto out_err;
		}
1803 1804
	}

1805
	if (is_protected_kvm_enabled()) {
1806 1807
		init_cpu_logical_map();

1808 1809 1810 1811
		if (!init_psci_relay())
			goto out_err;
	}

1812
	return 0;
1813

1814
out_err:
1815
	teardown_hyp_mode();
1816 1817 1818 1819
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1820 1821 1822 1823 1824
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1849 1850
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1851 1852 1853 1854 1855 1856 1857
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1858 1859
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1878 1879 1880
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1881 1882
int kvm_arch_init(void *opaque)
{
1883
	int err;
1884
	int ret, cpu;
1885
	bool in_hyp_mode;
1886 1887

	if (!is_hyp_mode_available()) {
1888
		kvm_info("HYP mode not available\n");
1889 1890 1891
		return -ENODEV;
	}

1892 1893 1894 1895
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1896 1897 1898
		return -ENODEV;
	}

1899 1900
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1901 1902 1903
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1904 1905 1906 1907 1908 1909
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1910 1911
	}

1912
	err = init_common_resources();
1913
	if (err)
1914
		return err;
1915

1916
	err = kvm_arm_init_sve();
1917 1918 1919
	if (err)
		return err;

1920
	if (!in_hyp_mode) {
1921
		err = init_hyp_mode();
1922 1923 1924
		if (err)
			goto out_err;
	}
1925

1926 1927 1928 1929 1930 1931
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

1932 1933 1934
	err = init_subsystems();
	if (err)
		goto out_hyp;
1935

1936 1937
	if (is_protected_kvm_enabled()) {
		static_branch_enable(&kvm_protected_mode_initialized);
1938
		kvm_info("Protected nVHE mode initialized successfully\n");
1939
	} else if (in_hyp_mode) {
1940
		kvm_info("VHE mode initialized successfully\n");
1941
	} else {
1942
		kvm_info("Hyp mode initialized successfully\n");
1943
	}
1944

1945
	return 0;
1946 1947

out_hyp:
1948
	hyp_cpu_pm_exit();
1949 1950
	if (!in_hyp_mode)
		teardown_hyp_mode();
1951 1952
out_err:
	return err;
1953 1954 1955 1956 1957
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1958
	kvm_perf_teardown();
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1975 1976 1977 1978 1979
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1980 1981 1982 1983 1984 1985 1986
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);