arm.c 50.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69 70 71 72
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

73
int kvm_arch_hardware_setup(void *opaque)
74 75 76 77
{
	return 0;
}

78
int kvm_arch_check_processor_compat(void *opaque)
79
{
80
	return 0;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
96 97 98 99 100 101
	case KVM_CAP_ARM_MTE:
		if (!system_supports_mte() || kvm->created_vcpus)
			return -EINVAL;
		r = 0;
		kvm->arch.mte_enabled = true;
		break;
102 103 104 105 106 107 108
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
109

110 111 112 113 114
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

115
static void set_default_spectre(struct kvm *kvm)
116 117 118 119 120 121 122 123 124 125 126
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
127 128
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
129 130
}

131 132 133 134
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
135 136
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
137
	int ret;
138

139
	ret = kvm_arm_setup_stage2(kvm, type);
140 141
	if (ret)
		return ret;
142

143
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
144
	if (ret)
145
		return ret;
146

147
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
148 149 150
	if (ret)
		goto out_free_stage2_pgd;

151
	kvm_vgic_early_init(kvm);
152

153
	/* The maximum number of VCPUs is limited by the host's GIC model */
154
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
155

156
	set_default_spectre(kvm);
157

158 159
	return ret;
out_free_stage2_pgd:
160
	kvm_free_stage2_pgd(&kvm->arch.mmu);
161
	return ret;
162 163
}

164
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 166 167 168 169
{
	return VM_FAULT_SIGBUS;
}


170 171 172 173
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
174 175 176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

178 179
	bitmap_free(kvm->arch.pmu_filter);

180 181
	kvm_vgic_destroy(kvm);

182 183
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
184
			kvm_vcpu_destroy(kvm->vcpus[i]);
185 186 187
			kvm->vcpus[i] = NULL;
		}
	}
188
	atomic_set(&kvm->online_vcpus, 0);
189 190
}

191
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 193 194
{
	int r;
	switch (ext) {
195
	case KVM_CAP_IRQCHIP:
196 197
		r = vgic_present;
		break;
198
	case KVM_CAP_IOEVENTFD:
199
	case KVM_CAP_DEVICE_CTRL:
200 201 202 203
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
204
	case KVM_CAP_ARM_PSCI:
205
	case KVM_CAP_ARM_PSCI_0_2:
206
	case KVM_CAP_READONLY_MEM:
207
	case KVM_CAP_MP_STATE:
208
	case KVM_CAP_IMMEDIATE_EXIT:
209
	case KVM_CAP_VCPU_EVENTS:
210
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
211
	case KVM_CAP_ARM_NISV_TO_USER:
212
	case KVM_CAP_ARM_INJECT_EXT_DABT:
213 214
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
215
	case KVM_CAP_PTP_KVM:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
220 221
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
222
		break;
223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
227
	case KVM_CAP_MAX_VCPU_ID:
228 229 230 231
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
232
		break;
V
Vladimir Murzin 已提交
233 234 235 236 237 238
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
239 240 241 242 243 244 245
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
246 247 248
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
249 250 251
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
269
		break;
270 271 272 273 274 275 276 277 278
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
279
	}
280

281 282 283 284 285 286 287 288 289
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
305

306 307 308 309 310 311 312 313 314 315 316
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

317
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
318
{
319 320 321 322 323 324
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

325 326
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

327 328 329 330 331 332 333 334 335
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

336 337
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

338 339 340 341
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

342
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
343 344
}

345
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
346 347 348
{
}

349
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
350
{
351 352 353
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

354
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
355
	kvm_timer_vcpu_terminate(vcpu);
356
	kvm_pmu_vcpu_destroy(vcpu);
357 358

	kvm_arm_vcpu_destroy(vcpu);
359 360 361 362
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
363
	return kvm_timer_is_pending(vcpu);
364 365
}

366 367
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
368 369 370
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
371
	 * so that we have the latest PMR and group enables. This ensures
372 373
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
374 375 376
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
377 378 379
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
380
	vgic_v4_put(vcpu, true);
381
	preempt_enable();
382 383 384 385
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
386 387 388
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
389 390
}

391 392
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
393
	struct kvm_s2_mmu *mmu;
394 395
	int *last_ran;

396 397
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
398 399

	/*
400 401 402 403 404
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
405 406 407 408
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
409
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
410 411 412
		*last_ran = vcpu->vcpu_id;
	}

413
	vcpu->cpu = cpu;
414

415
	kvm_vgic_load(vcpu);
416
	kvm_timer_vcpu_load(vcpu);
417 418
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
419
	kvm_arch_vcpu_load_fp(vcpu);
420
	kvm_vcpu_pmu_restore_guest(vcpu);
421 422
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
423 424

	if (single_task_running())
425
		vcpu_clear_wfx_traps(vcpu);
426
	else
427
		vcpu_set_wfx_traps(vcpu);
428

429
	if (vcpu_has_ptrauth(vcpu))
430
		vcpu_ptrauth_disable(vcpu);
431
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
432 433 434 435
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
436
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
437
	kvm_arch_vcpu_put_fp(vcpu);
438 439
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
440
	kvm_timer_vcpu_put(vcpu);
441
	kvm_vgic_put(vcpu);
442
	kvm_vcpu_pmu_restore_host(vcpu);
443

444
	vcpu->cpu = -1;
445 446
}

A
Andrew Jones 已提交
447 448 449
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
450
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
451 452 453
	kvm_vcpu_kick(vcpu);
}

454 455 456
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
457
	if (vcpu->arch.power_off)
458 459 460 461 462
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
463 464 465 466 467
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
468 469
	int ret = 0;

470 471
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
472
		vcpu->arch.power_off = false;
473 474
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
475
		vcpu_power_off(vcpu);
476 477
		break;
	default:
478
		ret = -EINVAL;
479 480
	}

481
	return ret;
482 483
}

484 485 486 487 488 489 490
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
491 492
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
493 494
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
495
		&& !v->arch.power_off && !v->arch.pause);
496 497
}

498 499
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
500
	return vcpu_mode_priv(vcpu);
501 502
}

503 504 505 506 507 508 509
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
510
	preempt_disable();
511
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
512
	preempt_enable();
513 514 515 516
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
517
 * @vmid: The VMID to check
518 519 520
 *
 * return true if there is a new generation of VMIDs being used
 *
521 522
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
523 524 525
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
526
 */
527
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
528
{
529 530
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
531
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
532 533 534
}

/**
535 536
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
537
 */
538
static void update_vmid(struct kvm_vmid *vmid)
539
{
540
	if (!need_new_vmid_gen(vmid))
541 542
		return;

543
	spin_lock(&kvm_vmid_lock);
544 545 546 547 548 549

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
550
	if (!need_new_vmid_gen(vmid)) {
551
		spin_unlock(&kvm_vmid_lock);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

574
	vmid->vmid = kvm_next_vmid;
575
	kvm_next_vmid++;
576
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
577

578
	smp_wmb();
579
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
580 581

	spin_unlock(&kvm_vmid_lock);
582 583 584 585
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
586
	struct kvm *kvm = vcpu->kvm;
587
	int ret = 0;
588

589 590 591
	if (likely(vcpu->arch.has_run_once))
		return 0;

592 593 594
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

595
	vcpu->arch.has_run_once = true;
596

597 598
	kvm_arm_vcpu_init_debug(vcpu);

599 600 601 602 603
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
604 605 606
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
607 608 609 610 611 612
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
613 614
	}

615
	ret = kvm_timer_enable(vcpu);
616 617 618 619
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
620

621
	return ret;
622 623
}

624 625 626 627 628
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

629
void kvm_arm_halt_guest(struct kvm *kvm)
630 631 632 633 634 635
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
636
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
637 638
}

639
void kvm_arm_resume_guest(struct kvm *kvm)
640 641 642 643
{
	int i;
	struct kvm_vcpu *vcpu;

644 645
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
646
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
647
	}
648 649
}

650
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
651
{
652
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
653

654 655 656
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
657

A
Andrew Jones 已提交
658
	if (vcpu->arch.power_off || vcpu->arch.pause) {
659
		/* Awaken to handle a signal, request we sleep again later. */
660
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
661
	}
662 663 664 665 666 667 668

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
669 670
}

671 672 673 674 675
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

676 677 678
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
679 680
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
681

682 683 684
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

685 686 687 688 689
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
690 691 692

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
693 694 695 696 697 698 699 700

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
701 702 703 704

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
705 706 707
	}
}

708 709 710 711 712 713 714 715 716
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

717 718 719 720 721 722 723 724 725 726
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
727
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
728
{
729
	struct kvm_run *run = vcpu->run;
730 731
	int ret;

732
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
733 734 735 736
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
737
		return ret;
738

C
Christoffer Dall 已提交
739
	if (run->exit_reason == KVM_EXIT_MMIO) {
740
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
741
		if (ret)
742
			return ret;
C
Christoffer Dall 已提交
743 744
	}

745
	vcpu_load(vcpu);
746

747 748 749 750 751
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

752
	kvm_sigset_activate(vcpu);
753 754 755 756 757 758 759 760 761

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

762
		update_vmid(&vcpu->arch.hw_mmu->vmid);
763

764 765
		check_vcpu_requests(vcpu);

766 767 768 769 770
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
771
		preempt_disable();
772

773
		kvm_pmu_flush_hwstate(vcpu);
774

775 776
		local_irq_disable();

777 778
		kvm_vgic_flush_hwstate(vcpu);

779
		/*
780 781
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
782
		 */
783
		if (signal_pending(current)) {
784 785 786 787
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

803 804 805 806
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
807
		 * Documentation/virt/kvm/vcpu-requests.rst
808 809 810
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

811
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
812
		    kvm_request_pending(vcpu)) {
813
			vcpu->mode = OUTSIDE_GUEST_MODE;
814
			isb(); /* Ensure work in x_flush_hwstate is committed */
815
			kvm_pmu_sync_hwstate(vcpu);
816
			if (static_branch_unlikely(&userspace_irqchip_in_use))
817
				kvm_timer_sync_user(vcpu);
818
			kvm_vgic_sync_hwstate(vcpu);
819
			local_irq_enable();
820
			preempt_enable();
821 822 823
			continue;
		}

824 825
		kvm_arm_setup_debug(vcpu);

826 827 828 829
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
830
		guest_enter_irqoff();
831

832
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
833

834
		vcpu->mode = OUTSIDE_GUEST_MODE;
835
		vcpu->stat.exits++;
836 837 838 839
		/*
		 * Back from guest
		 *************************************************************/

840 841
		kvm_arm_clear_debug(vcpu);

842
		/*
843
		 * We must sync the PMU state before the vgic state so
844 845 846 847 848
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

849 850 851 852 853
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
854 855
		kvm_vgic_sync_hwstate(vcpu);

856 857 858 859 860
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
861
		if (static_branch_unlikely(&userspace_irqchip_in_use))
862
			kvm_timer_sync_user(vcpu);
863

864 865
		kvm_arch_vcpu_ctxsync_fp(vcpu);

866 867 868 869 870 871 872 873 874 875 876 877 878
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
879
		 * We do local_irq_enable() before calling guest_exit() so
880 881
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
882
		 * preemption after calling guest_exit() so that if we get
883 884 885
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
886
		guest_exit();
887
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
888

889
		/* Exit types that need handling before we can be preempted */
890
		handle_exit_early(vcpu, ret);
891

892 893
		preempt_enable();

894 895 896 897 898 899 900 901
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
902
		if (vcpu_mode_is_bad_32bit(vcpu)) {
903 904 905 906 907 908 909 910 911 912
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

913
		ret = handle_exit(vcpu, ret);
914 915
	}

916
	/* Tell userspace about in-kernel device output levels */
917 918 919 920
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
921

922
	kvm_sigset_deactivate(vcpu);
923

924
out:
925 926 927 928 929 930 931 932 933 934
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
935

936
	vcpu_put(vcpu);
937
	return ret;
938 939
}

940 941 942 943
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
944
	unsigned long *hcr;
945 946 947 948 949 950

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

951
	hcr = vcpu_hcr(vcpu);
952
	if (level)
953
		set = test_and_set_bit(bit_index, hcr);
954
	else
955
		set = test_and_clear_bit(bit_index, hcr);
956 957 958 959 960 961 962 963 964 965 966 967

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
968
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
969 970 971 972 973
	kvm_vcpu_kick(vcpu);

	return 0;
}

974 975
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
976 977 978 979 980 981 982 983 984
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
985
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
986 987 988 989
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

990 991 992 993
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
994

995 996
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
997

998 999 1000
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1019

1020
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1021 1022 1023 1024
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1025
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1026 1027
			return -EINVAL;

1028
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1029 1030 1031
	}

	return -EINVAL;
1032 1033
}

1034 1035 1036
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1037
	unsigned int i, ret;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1072 1073 1074 1075 1076
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1077

1078 1079
	return ret;
}
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1090 1091 1092
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1093
	 *
1094 1095 1096 1097
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1098
	 */
1099 1100 1101 1102
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1103
			icache_inval_all_pou();
1104
	}
1105

1106 1107
	vcpu_reset_hcr(vcpu);

1108
	/*
1109
	 * Handle the "start in power-off" case.
1110
	 */
1111
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1112
		vcpu_power_off(vcpu);
1113
	else
1114
		vcpu->arch.power_off = false;
1115 1116 1117 1118

	return 0;
}

1119 1120 1121 1122 1123 1124 1125
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1126
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1140
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1154
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1155 1156 1157 1158 1159 1160
		break;
	}

	return ret;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1187 1188 1189 1190 1191
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1192
	struct kvm_device_attr attr;
1193 1194
	long r;

1195 1196 1197 1198
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1199
		r = -EFAULT;
1200
		if (copy_from_user(&init, argp, sizeof(init)))
1201
			break;
1202

1203 1204
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1205 1206 1207 1208
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1209

1210
		r = -ENOEXEC;
1211
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1212
			break;
1213

1214
		r = -EFAULT;
1215
		if (copy_from_user(&reg, argp, sizeof(reg)))
1216 1217
			break;

1218
		if (ioctl == KVM_SET_ONE_REG)
1219
			r = kvm_arm_set_reg(vcpu, &reg);
1220
		else
1221 1222
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1223 1224 1225 1226 1227 1228
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1229
		r = -ENOEXEC;
1230
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231
			break;
1232

1233 1234 1235 1236
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1237
		r = -EFAULT;
1238
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1239
			break;
1240 1241 1242
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1243 1244
			break;
		r = -E2BIG;
1245
		if (n < reg_list.n)
1246 1247 1248
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1249
	}
1250
	case KVM_SET_DEVICE_ATTR: {
1251
		r = -EFAULT;
1252
		if (copy_from_user(&attr, argp, sizeof(attr)))
1253 1254 1255
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1256 1257
	}
	case KVM_GET_DEVICE_ATTR: {
1258
		r = -EFAULT;
1259
		if (copy_from_user(&attr, argp, sizeof(attr)))
1260 1261 1262
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1263 1264
	}
	case KVM_HAS_DEVICE_ATTR: {
1265
		r = -EFAULT;
1266
		if (copy_from_user(&attr, argp, sizeof(attr)))
1267 1268 1269
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1270
	}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1301
	default:
1302
		r = -EINVAL;
1303
	}
1304 1305

	return r;
1306 1307
}

1308
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1309
{
1310

1311 1312
}

1313
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1314
					const struct kvm_memory_slot *memslot)
1315
{
1316
	kvm_flush_remote_tlbs(kvm);
1317 1318
}

1319 1320 1321
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1322 1323 1324 1325 1326 1327 1328 1329 1330
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1331 1332
		if (!vgic_present)
			return -ENXIO;
1333
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1334 1335 1336
	default:
		return -ENODEV;
	}
1337 1338
}

1339 1340 1341
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1342 1343 1344 1345
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1346
	case KVM_CREATE_IRQCHIP: {
1347
		int ret;
1348 1349
		if (!vgic_present)
			return -ENXIO;
1350 1351 1352 1353
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1354
	}
1355 1356 1357 1358 1359 1360 1361
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1375 1376 1377 1378 1379 1380 1381
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1382 1383 1384
	default:
		return -EINVAL;
	}
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1400 1401 1402 1403
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1404
{
1405
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1418

1419
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1420
		return 0;
1421

1422 1423 1424 1425 1426
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1427 1428
	}

1429 1430
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1431 1432 1433
	return 0;
}

1434
static void cpu_prepare_hyp_mode(int cpu)
1435
{
1436
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1437
	unsigned long tcr;
1438

1439 1440 1441 1442
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1443
	 * Also drop the KASAN tag which gets in the way...
1444
	 */
1445
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1446
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1469
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1470
	params->pgd_pa = kvm_mmu_get_httbr();
1471 1472 1473 1474 1475
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1476

1477 1478 1479 1480 1481
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1482 1483
}

1484
static void hyp_install_host_vector(void)
1485 1486 1487 1488 1489 1490
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1491

1492 1493 1494 1495 1496 1497 1498
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1499
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1500
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1501
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1502 1503 1504 1505 1506
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1507 1508 1509 1510 1511 1512

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1513
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1514
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1515
	}
1516 1517
}

1518 1519 1520 1521 1522 1523
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1524 1525 1526 1527 1528 1529 1530 1531
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1532
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1533 1534 1535
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1536
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1537 1538 1539
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1540
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1541 1542 1543 1544 1545
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1546
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1547
	void *vector = hyp_spectre_vector_selector[data->slot];
1548

1549 1550 1551 1552
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1553 1554
}

1555 1556
static void cpu_hyp_reinit(void)
{
1557
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1558

1559
	cpu_hyp_reset();
1560

1561
	if (is_kernel_in_hyp_mode())
1562
		kvm_timer_init_vhe();
1563
	else
1564
		cpu_init_hyp_mode();
1565

1566 1567
	cpu_set_hyp_vector();

1568
	kvm_arm_init_debug();
1569 1570 1571

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1572 1573
}

1574 1575 1576
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1577
		cpu_hyp_reinit();
1578
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1579
	}
1580
}
1581

1582 1583 1584 1585
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1598 1599
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1600
}
1601

1602 1603 1604 1605 1606
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1622
		return NOTIFY_OK;
1623
	case CPU_PM_ENTER_FAILED:
1624 1625 1626 1627
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1628

1629 1630 1631 1632 1633
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1634 1635 1636 1637 1638 1639
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1640
static void hyp_cpu_pm_init(void)
1641
{
1642 1643
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1644
}
1645
static void hyp_cpu_pm_exit(void)
1646
{
1647 1648
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1649
}
1650 1651 1652 1653
#else
static inline void hyp_cpu_pm_init(void)
{
}
1654 1655 1656
static inline void hyp_cpu_pm_exit(void)
{
}
1657 1658
#endif

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1670
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1671 1672
}

1673 1674 1675
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1687 1688 1689 1690
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1691 1692 1693 1694
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1695
	}
1696 1697 1698
	return true;
}

1699 1700
static int init_subsystems(void)
{
1701
	int err = 0;
1702

1703
	/*
1704
	 * Enable hardware so that subsystem initialisation can access EL2.
1705
	 */
1706
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1707 1708 1709 1710 1711 1712

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1724
		err = 0;
1725 1726
		break;
	default:
1727
		goto out;
1728 1729 1730 1731 1732
	}

	/*
	 * Init HYP architected timer support
	 */
1733
	err = kvm_timer_hyp_init(vgic_present);
1734
	if (err)
1735
		goto out;
1736 1737

	kvm_perf_init();
M
Marc Zyngier 已提交
1738
	kvm_sys_reg_table_init();
1739

1740
out:
1741 1742
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1743 1744

	return err;
1745 1746 1747 1748 1749 1750 1751
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1752
	for_each_possible_cpu(cpu) {
1753
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1754 1755
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
	hyp_install_host_vector();
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1778 1779 1780
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1794 1795 1796 1797 1798
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1799
	u32 hyp_va_bits;
1800
	int cpu;
1801 1802 1803 1804 1805 1806 1807 1808
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1809 1810 1811 1812

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1813
	err = kvm_mmu_init(&hyp_va_bits);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1826
			goto out_err;
1827 1828 1829 1830 1831
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1850 1851 1852
	/*
	 * Map the Hyp-code called directly from the host
	 */
1853
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1854
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1855 1856
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1857
		goto out_err;
1858 1859
	}

1860 1861
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1862
	if (err) {
1863
		kvm_err("Cannot map .hyp.rodata section\n");
1864 1865 1866
		goto out_err;
	}

1867
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1868
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1869 1870
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1871 1872 1873
		goto out_err;
	}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1887 1888 1889
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1890
		goto out_err;
1891 1892
	}

1893 1894 1895 1896 1897
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1898 1899
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1900 1901 1902

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1903
			goto out_err;
1904 1905 1906 1907
		}
	}

	for_each_possible_cpu(cpu) {
1908 1909
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1910

1911
		/* Map Hyp percpu pages */
1912
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1913
		if (err) {
1914
			kvm_err("Cannot map hyp percpu region\n");
1915 1916
			goto out_err;
		}
1917 1918 1919

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1920 1921
	}

1922
	if (is_protected_kvm_enabled()) {
1923 1924
		init_cpu_logical_map();

1925 1926
		if (!init_psci_relay()) {
			err = -ENODEV;
1927
			goto out_err;
1928
		}
1929 1930
	}

1931 1932 1933 1934
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1935
			goto out_err;
1936
		}
1937 1938
	}

1939
	return 0;
1940

1941
out_err:
1942
	teardown_hyp_mode();
1943 1944 1945 1946
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1947
static void _kvm_host_prot_finalize(void *discard)
1948 1949 1950 1951
{
	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
}

1952 1953 1954 1955 1956 1957 1958 1959 1960
static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
{
	return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
}

#define pkvm_mark_hyp_section(__section)		\
	pkvm_mark_hyp(__pa_symbol(__section##_start),	\
			__pa_symbol(__section##_end))

1961 1962
static int finalize_hyp_mode(void)
{
1963 1964
	int cpu, ret;

1965 1966 1967
	if (!is_protected_kvm_enabled())
		return 0;

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	ret = pkvm_mark_hyp_section(__hyp_idmap_text);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_text);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_rodata);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_bss);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
	if (ret)
		return ret;

	for_each_possible_cpu(cpu) {
		phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
		phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());

		ret = pkvm_mark_hyp(start, end);
		if (ret)
			return ret;

		start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
		end = start + PAGE_SIZE;
		ret = pkvm_mark_hyp(start, end);
		if (ret)
			return ret;
	}

2003 2004 2005 2006
	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
2007
	static_branch_enable(&kvm_protected_mode_initialized);
2008
	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
2009 2010 2011 2012

	return 0;
}

2013 2014 2015 2016 2017
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2042 2043
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2044 2045 2046 2047 2048 2049 2050
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2051 2052
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2071 2072 2073
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2074 2075
int kvm_arch_init(void *opaque)
{
2076
	int err;
2077
	int ret, cpu;
2078
	bool in_hyp_mode;
2079 2080

	if (!is_hyp_mode_available()) {
2081
		kvm_info("HYP mode not available\n");
2082 2083 2084
		return -ENODEV;
	}

2085 2086
	in_hyp_mode = is_kernel_in_hyp_mode();

2087 2088
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2089 2090 2091
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2092 2093 2094 2095 2096 2097
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
2098 2099
	}

2100
	err = kvm_set_ipa_limit();
2101
	if (err)
2102
		return err;
2103

2104
	err = kvm_arm_init_sve();
2105 2106 2107
	if (err)
		return err;

2108
	if (!in_hyp_mode) {
2109
		err = init_hyp_mode();
2110 2111 2112
		if (err)
			goto out_err;
	}
2113

2114 2115 2116 2117 2118 2119
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2120 2121 2122
	err = init_subsystems();
	if (err)
		goto out_hyp;
2123

2124 2125 2126 2127 2128 2129 2130 2131
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2132
	if (is_protected_kvm_enabled()) {
2133
		kvm_info("Protected nVHE mode initialized successfully\n");
2134
	} else if (in_hyp_mode) {
2135
		kvm_info("VHE mode initialized successfully\n");
2136
	} else {
2137
		kvm_info("Hyp mode initialized successfully\n");
2138
	}
2139

2140
	return 0;
2141 2142

out_hyp:
2143
	hyp_cpu_pm_exit();
2144 2145
	if (!in_hyp_mode)
		teardown_hyp_mode();
2146 2147
out_err:
	return err;
2148 2149 2150 2151 2152
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2153
	kvm_perf_teardown();
2154 2155
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2166 2167 2168
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
		return 0;

2169 2170 2171 2172
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2173 2174 2175 2176 2177
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2178 2179 2180 2181 2182 2183 2184
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);