arm.c 36.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49 50
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

51 52
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
53
static u32 kvm_next_vmid;
54
static DEFINE_SPINLOCK(kvm_vmid_lock);
55

56 57
static bool vgic_present;

58
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 60
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

61 62 63 64 65
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

66
int kvm_arch_hardware_setup(void *opaque)
67 68 69 70
{
	return 0;
}

71
int kvm_arch_check_processor_compat(void *opaque)
72
{
73
	return 0;
74 75
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
96

97 98 99 100 101
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

102 103 104 105
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
106 107
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
108
	int ret;
109

110
	ret = kvm_arm_setup_stage2(kvm, type);
111 112
	if (ret)
		return ret;
113

114
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
115
	if (ret)
116
		return ret;
117

118
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
119 120 121
	if (ret)
		goto out_free_stage2_pgd;

122
	kvm_vgic_early_init(kvm);
123

124
	/* The maximum number of VCPUs is limited by the host's GIC model */
125
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
126

127 128
	return ret;
out_free_stage2_pgd:
129
	kvm_free_stage2_pgd(&kvm->arch.mmu);
130
	return ret;
131 132
}

133
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
134 135 136 137 138
{
	return VM_FAULT_SIGBUS;
}


139 140 141 142
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
143 144 145 146
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

147 148
	kvm_vgic_destroy(kvm);

149 150
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
151
			kvm_vcpu_destroy(kvm->vcpus[i]);
152 153 154
			kvm->vcpus[i] = NULL;
		}
	}
155
	atomic_set(&kvm->online_vcpus, 0);
156 157
}

158
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
159 160 161
{
	int r;
	switch (ext) {
162
	case KVM_CAP_IRQCHIP:
163 164
		r = vgic_present;
		break;
165
	case KVM_CAP_IOEVENTFD:
166
	case KVM_CAP_DEVICE_CTRL:
167 168 169 170
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
171
	case KVM_CAP_ARM_PSCI:
172
	case KVM_CAP_ARM_PSCI_0_2:
173
	case KVM_CAP_READONLY_MEM:
174
	case KVM_CAP_MP_STATE:
175
	case KVM_CAP_IMMEDIATE_EXIT:
176
	case KVM_CAP_VCPU_EVENTS:
177
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
178
	case KVM_CAP_ARM_NISV_TO_USER:
179
	case KVM_CAP_ARM_INJECT_EXT_DABT:
180 181
		r = 1;
		break;
182 183
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
184
		break;
185 186 187 188
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
189
	case KVM_CAP_MAX_VCPU_ID:
190 191 192 193
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
194
		break;
V
Vladimir Murzin 已提交
195 196 197 198 199 200
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
201 202 203 204 205 206 207
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
208
	default:
209
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
210 211 212 213 214 215 216 217 218 219 220
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
236

237 238 239 240 241 242 243 244 245 246 247
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

248
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
249
{
250 251 252 253 254 255
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

256 257
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

258 259 260 261 262 263 264 265 266
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

267 268
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

269 270 271 272
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

273
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
274 275
}

276
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277 278 279
{
}

280
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
281
{
282 283 284
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

285
	kvm_mmu_free_memory_caches(vcpu);
286
	kvm_timer_vcpu_terminate(vcpu);
287
	kvm_pmu_vcpu_destroy(vcpu);
288 289

	kvm_arm_vcpu_destroy(vcpu);
290 291 292 293
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
294
	return kvm_timer_is_pending(vcpu);
295 296
}

297 298
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
299 300 301
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
302
	 * so that we have the latest PMR and group enables. This ensures
303 304
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
305 306 307
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
308 309 310
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
311
	vgic_v4_put(vcpu, true);
312
	preempt_enable();
313 314 315 316
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
317 318 319
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
320 321
}

322 323
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
324
	struct kvm_s2_mmu *mmu;
325 326
	int *last_ran;

327 328
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
329 330 331 332 333 334

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
335
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
336 337 338
		*last_ran = vcpu->vcpu_id;
	}

339
	vcpu->cpu = cpu;
340

341
	kvm_vgic_load(vcpu);
342
	kvm_timer_vcpu_load(vcpu);
343 344
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
345
	kvm_arch_vcpu_load_fp(vcpu);
346
	kvm_vcpu_pmu_restore_guest(vcpu);
347 348
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
349 350

	if (single_task_running())
351
		vcpu_clear_wfx_traps(vcpu);
352
	else
353
		vcpu_set_wfx_traps(vcpu);
354

355
	if (vcpu_has_ptrauth(vcpu))
356
		vcpu_ptrauth_disable(vcpu);
357 358 359 360
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
361
	kvm_arch_vcpu_put_fp(vcpu);
362 363
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
364
	kvm_timer_vcpu_put(vcpu);
365
	kvm_vgic_put(vcpu);
366
	kvm_vcpu_pmu_restore_host(vcpu);
367

368
	vcpu->cpu = -1;
369 370
}

A
Andrew Jones 已提交
371 372 373
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
374
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
375 376 377
	kvm_vcpu_kick(vcpu);
}

378 379 380
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
381
	if (vcpu->arch.power_off)
382 383 384 385 386
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
387 388 389 390 391
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392 393
	int ret = 0;

394 395
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
396
		vcpu->arch.power_off = false;
397 398
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
399
		vcpu_power_off(vcpu);
400 401
		break;
	default:
402
		ret = -EINVAL;
403 404
	}

405
	return ret;
406 407
}

408 409 410 411 412 413 414
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
415 416
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
417 418
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
419
		&& !v->arch.power_off && !v->arch.pause);
420 421
}

422 423
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
424
	return vcpu_mode_priv(vcpu);
425 426
}

427 428 429 430 431 432 433
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
434
	preempt_disable();
435
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
436
	preempt_enable();
437 438 439 440
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
441
 * @vmid: The VMID to check
442 443 444
 *
 * return true if there is a new generation of VMIDs being used
 *
445 446
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
447 448 449
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
450
 */
451
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
452
{
453 454
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
455
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
456 457 458
}

/**
459 460
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
461
 */
462
static void update_vmid(struct kvm_vmid *vmid)
463
{
464
	if (!need_new_vmid_gen(vmid))
465 466
		return;

467
	spin_lock(&kvm_vmid_lock);
468 469 470 471 472 473

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
474
	if (!need_new_vmid_gen(vmid)) {
475
		spin_unlock(&kvm_vmid_lock);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

498
	vmid->vmid = kvm_next_vmid;
499
	kvm_next_vmid++;
500
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
501

502
	smp_wmb();
503
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
504 505

	spin_unlock(&kvm_vmid_lock);
506 507 508 509
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
510
	struct kvm *kvm = vcpu->kvm;
511
	int ret = 0;
512

513 514 515
	if (likely(vcpu->arch.has_run_once))
		return 0;

516 517 518
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

519
	vcpu->arch.has_run_once = true;
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
537 538
	}

539
	ret = kvm_timer_enable(vcpu);
540 541 542 543
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
544

545
	return ret;
546 547
}

548 549 550 551 552
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

553
void kvm_arm_halt_guest(struct kvm *kvm)
554 555 556 557 558 559
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
560
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
561 562
}

563
void kvm_arm_resume_guest(struct kvm *kvm)
564 565 566 567
{
	int i;
	struct kvm_vcpu *vcpu;

568 569
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
570
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
571
	}
572 573
}

574
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
575
{
576
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
577

578 579 580
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
581

A
Andrew Jones 已提交
582
	if (vcpu->arch.power_off || vcpu->arch.pause) {
583
		/* Awaken to handle a signal, request we sleep again later. */
584
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
585
	}
586 587 588 589 590 591 592

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
593 594
}

595 596 597 598 599
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

600 601 602
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
603 604
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
605

606 607 608
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

609 610 611 612 613
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
614 615 616

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
617 618 619 620 621 622 623 624

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
625 626 627
	}
}

628 629 630 631 632 633 634 635 636 637
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
638
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
639
{
640
	struct kvm_run *run = vcpu->run;
641 642
	int ret;

643
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
644 645 646 647
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
648
		return ret;
649

C
Christoffer Dall 已提交
650
	if (run->exit_reason == KVM_EXIT_MMIO) {
651
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
652
		if (ret)
653
			return ret;
C
Christoffer Dall 已提交
654 655
	}

656 657 658 659
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
660

661
	kvm_sigset_activate(vcpu);
662 663 664 665 666 667 668 669 670

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

671
		update_vmid(&vcpu->arch.hw_mmu->vmid);
672

673 674
		check_vcpu_requests(vcpu);

675 676 677 678 679
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
680
		preempt_disable();
681

682
		kvm_pmu_flush_hwstate(vcpu);
683

684 685
		local_irq_disable();

686 687
		kvm_vgic_flush_hwstate(vcpu);

688
		/*
689 690
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
691
		 */
692
		if (signal_pending(current)) {
693 694 695 696
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

712 713 714 715
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
716
		 * Documentation/virt/kvm/vcpu-requests.rst
717 718 719
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

720
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
721
		    kvm_request_pending(vcpu)) {
722
			vcpu->mode = OUTSIDE_GUEST_MODE;
723
			isb(); /* Ensure work in x_flush_hwstate is committed */
724
			kvm_pmu_sync_hwstate(vcpu);
725
			if (static_branch_unlikely(&userspace_irqchip_in_use))
726
				kvm_timer_sync_user(vcpu);
727
			kvm_vgic_sync_hwstate(vcpu);
728
			local_irq_enable();
729
			preempt_enable();
730 731 732
			continue;
		}

733 734
		kvm_arm_setup_debug(vcpu);

735 736 737 738
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
739
		guest_enter_irqoff();
740

741
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
742

743
		vcpu->mode = OUTSIDE_GUEST_MODE;
744
		vcpu->stat.exits++;
745 746 747 748
		/*
		 * Back from guest
		 *************************************************************/

749 750
		kvm_arm_clear_debug(vcpu);

751
		/*
752
		 * We must sync the PMU state before the vgic state so
753 754 755 756 757
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

758 759 760 761 762
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
763 764
		kvm_vgic_sync_hwstate(vcpu);

765 766 767 768 769
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
770
		if (static_branch_unlikely(&userspace_irqchip_in_use))
771
			kvm_timer_sync_user(vcpu);
772

773 774
		kvm_arch_vcpu_ctxsync_fp(vcpu);

775 776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
788
		 * We do local_irq_enable() before calling guest_exit() so
789 790
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
791
		 * preemption after calling guest_exit() so that if we get
792 793 794
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
795
		guest_exit();
796
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
797

798
		/* Exit types that need handling before we can be preempted */
799
		handle_exit_early(vcpu, ret);
800

801 802
		preempt_enable();

803
		ret = handle_exit(vcpu, ret);
804 805
	}

806
	/* Tell userspace about in-kernel device output levels */
807 808 809 810
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
811

812 813
	kvm_sigset_deactivate(vcpu);

814
	vcpu_put(vcpu);
815
	return ret;
816 817
}

818 819 820 821
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
822
	unsigned long *hcr;
823 824 825 826 827 828

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

829
	hcr = vcpu_hcr(vcpu);
830
	if (level)
831
		set = test_and_set_bit(bit_index, hcr);
832
	else
833
		set = test_and_clear_bit(bit_index, hcr);
834 835 836 837 838 839 840 841 842 843 844 845

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
846
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
847 848 849 850 851
	kvm_vcpu_kick(vcpu);

	return 0;
}

852 853
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
854 855 856 857 858 859 860 861 862
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
863
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
864 865 866 867
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

868 869 870 871
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
872

873 874
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
875

876 877 878
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
897

898
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
899 900 901 902
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

903
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
904 905
			return -EINVAL;

906
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
907 908 909
	}

	return -EINVAL;
910 911
}

912 913 914
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
915
	unsigned int i, ret;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
950 951 952 953 954
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
955

956 957
	return ret;
}
958

959 960 961 962 963 964 965 966 967
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

968 969 970
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
971
	 *
972 973 974 975
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
976
	 */
977 978 979 980 981 982
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
983

984 985
	vcpu_reset_hcr(vcpu);

986
	/*
987
	 * Handle the "start in power-off" case.
988
	 */
989
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
990
		vcpu_power_off(vcpu);
991
	else
992
		vcpu->arch.power_off = false;
993 994 995 996

	return 0;
}

997 998 999 1000 1001 1002 1003
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1004
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1018
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1032
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1033 1034 1035 1036 1037 1038
		break;
	}

	return ret;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1065 1066 1067 1068 1069
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1070
	struct kvm_device_attr attr;
1071 1072
	long r;

1073 1074 1075 1076
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1077
		r = -EFAULT;
1078
		if (copy_from_user(&init, argp, sizeof(init)))
1079
			break;
1080

1081 1082
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1083 1084 1085 1086
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1087

1088
		r = -ENOEXEC;
1089
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1090
			break;
1091

1092
		r = -EFAULT;
1093
		if (copy_from_user(&reg, argp, sizeof(reg)))
1094 1095
			break;

1096
		if (ioctl == KVM_SET_ONE_REG)
1097
			r = kvm_arm_set_reg(vcpu, &reg);
1098
		else
1099 1100
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1101 1102 1103 1104 1105 1106
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1107
		r = -ENOEXEC;
1108
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1109
			break;
1110

1111 1112 1113 1114
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1115
		r = -EFAULT;
1116
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1117
			break;
1118 1119 1120
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1121 1122
			break;
		r = -E2BIG;
1123
		if (n < reg_list.n)
1124 1125 1126
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1127
	}
1128
	case KVM_SET_DEVICE_ATTR: {
1129
		r = -EFAULT;
1130
		if (copy_from_user(&attr, argp, sizeof(attr)))
1131 1132 1133
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1134 1135
	}
	case KVM_GET_DEVICE_ATTR: {
1136
		r = -EFAULT;
1137
		if (copy_from_user(&attr, argp, sizeof(attr)))
1138 1139 1140
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1141 1142
	}
	case KVM_HAS_DEVICE_ATTR: {
1143
		r = -EFAULT;
1144
		if (copy_from_user(&attr, argp, sizeof(attr)))
1145 1146 1147
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1148
	}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1179
	default:
1180
		r = -EINVAL;
1181
	}
1182 1183

	return r;
1184 1185
}

1186
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1187
{
1188

1189 1190
}

1191 1192
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1193
{
1194
	kvm_flush_remote_tlbs(kvm);
1195 1196
}

1197 1198 1199
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1200 1201 1202 1203 1204 1205 1206 1207 1208
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1209 1210
		if (!vgic_present)
			return -ENXIO;
1211
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1212 1213 1214
	default:
		return -ENODEV;
	}
1215 1216
}

1217 1218 1219
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1220 1221 1222 1223
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1224
	case KVM_CREATE_IRQCHIP: {
1225
		int ret;
1226 1227
		if (!vgic_present)
			return -ENXIO;
1228 1229 1230 1231
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1232
	}
1233 1234 1235 1236 1237 1238 1239
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1253 1254 1255
	default:
		return -EINVAL;
	}
1256 1257
}

1258
static void cpu_init_hyp_mode(void)
1259
{
1260
	phys_addr_t pgd_ptr;
1261 1262
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1263
	unsigned long tpidr_el2;
1264 1265

	/* Switch from the HYP stub to our own HYP init vector */
1266
	__hyp_set_vectors(kvm_get_idmap_vector());
1267

1268 1269 1270 1271 1272 1273
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1274
		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1275

1276
	pgd_ptr = kvm_mmu_get_httbr();
1277
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1278
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1295
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1296
	}
1297 1298 1299

	/* Copy information whether SSBD callback is required to hyp. */
	hyp_init_aux_data();
1300 1301
}

1302 1303 1304 1305 1306 1307
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1308 1309
static void cpu_hyp_reinit(void)
{
1310
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1311

1312 1313
	cpu_hyp_reset();

1314
	if (is_kernel_in_hyp_mode())
1315
		kvm_timer_init_vhe();
1316
	else
1317
		cpu_init_hyp_mode();
1318

1319
	kvm_arm_init_debug();
1320 1321 1322

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1323 1324
}

1325 1326 1327
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1328
		cpu_hyp_reinit();
1329
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1330
	}
1331
}
1332

1333 1334 1335 1336
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1351

1352 1353 1354 1355 1356
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1372
		return NOTIFY_OK;
1373
	case CPU_PM_ENTER_FAILED:
1374 1375 1376 1377
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1378

1379 1380 1381 1382 1383
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1394 1395 1396 1397
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1398 1399 1400 1401
#else
static inline void hyp_cpu_pm_init(void)
{
}
1402 1403 1404
static inline void hyp_cpu_pm_exit(void)
{
}
1405 1406
#endif

1407 1408
static int init_common_resources(void)
{
1409
	return kvm_set_ipa_limit();
1410 1411 1412 1413
}

static int init_subsystems(void)
{
1414
	int err = 0;
1415

1416
	/*
1417
	 * Enable hardware so that subsystem initialisation can access EL2.
1418
	 */
1419
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1420 1421 1422 1423 1424 1425

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1437
		err = 0;
1438 1439
		break;
	default:
1440
		goto out;
1441 1442 1443 1444 1445
	}

	/*
	 * Init HYP architected timer support
	 */
1446
	err = kvm_timer_hyp_init(vgic_present);
1447
	if (err)
1448
		goto out;
1449 1450 1451 1452

	kvm_perf_init();
	kvm_coproc_table_init();

1453 1454 1455 1456
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1492
			goto out_err;
1493 1494 1495 1496 1497 1498 1499 1500
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1501
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1502
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1503 1504
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1505
		goto out_err;
1506 1507
	}

1508
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1509
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1510 1511
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1512 1513 1514 1515 1516 1517 1518
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1519
		goto out_err;
1520 1521
	}

1522 1523 1524 1525 1526 1527
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1528 1529 1530 1531 1532
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1533 1534
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1535 1536 1537

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1538
			goto out_err;
1539 1540 1541 1542
		}
	}

	for_each_possible_cpu(cpu) {
1543
		kvm_host_data_t *cpu_data;
1544

1545
		cpu_data = per_cpu_ptr_hyp_sym(kvm_host_data, cpu);
1546
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1547 1548

		if (err) {
1549
			kvm_err("Cannot map host CPU state: %d\n", err);
1550
			goto out_err;
1551 1552 1553
		}
	}

1554 1555
	err = hyp_map_aux_data();
	if (err)
1556
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1557

1558
	return 0;
1559

1560
out_err:
1561
	teardown_hyp_mode();
1562 1563 1564 1565
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1566 1567 1568 1569 1570
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1595 1596
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1597 1598 1599 1600 1601 1602 1603
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1604 1605
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1624 1625 1626
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1627 1628
int kvm_arch_init(void *opaque)
{
1629
	int err;
1630
	int ret, cpu;
1631
	bool in_hyp_mode;
1632 1633

	if (!is_hyp_mode_available()) {
1634
		kvm_info("HYP mode not available\n");
1635 1636 1637
		return -ENODEV;
	}

1638 1639 1640 1641
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1642 1643 1644
		return -ENODEV;
	}

1645 1646 1647 1648
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1649 1650 1651 1652 1653 1654
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1655 1656
	}

1657
	err = init_common_resources();
1658
	if (err)
1659
		return err;
1660

1661
	err = kvm_arm_init_sve();
1662 1663 1664
	if (err)
		return err;

1665
	if (!in_hyp_mode) {
1666
		err = init_hyp_mode();
1667 1668 1669
		if (err)
			goto out_err;
	}
1670

1671 1672 1673
	err = init_subsystems();
	if (err)
		goto out_hyp;
1674

1675 1676 1677 1678 1679
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1680
	return 0;
1681 1682

out_hyp:
1683
	hyp_cpu_pm_exit();
1684 1685
	if (!in_hyp_mode)
		teardown_hyp_mode();
1686 1687
out_err:
	return err;
1688 1689 1690 1691 1692
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1693
	kvm_perf_teardown();
1694 1695 1696 1697 1698 1699 1700 1701 1702
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);