arm.c 51.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
178 179
	bitmap_free(kvm->arch.pmu_filter);

180 181
	kvm_vgic_destroy(kvm);

182
	kvm_destroy_vcpus(kvm);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209
	case KVM_CAP_PTP_KVM:
210 211
		r = 1;
		break;
212 213
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217
	case KVM_CAP_NR_VCPUS:
218 219 220 221 222 223 224 225
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
226 227
		break;
	case KVM_CAP_MAX_VCPUS:
228
	case KVM_CAP_MAX_VCPU_ID:
229 230 231 232
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
233
		break;
V
Vladimir Murzin 已提交
234 235 236 237 238 239
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
240 241 242 243 244 245 246
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
247 248 249
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
250 251 252
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
270
		break;
271 272 273 274 275 276 277 278 279
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
280
	}
281

282 283 284 285 286 287 288 289 290
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

291 292
struct kvm *kvm_arch_alloc_vm(void)
{
293 294
	size_t sz = sizeof(struct kvm);

295
	if (!has_vhe())
296
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
297

298
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
299 300
}

301 302 303 304 305 306 307 308 309 310 311
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

312
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
313
{
314 315 316 317 318 319
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

320 321
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

322 323 324 325 326 327 328 329 330
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

331 332
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

333 334 335 336
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

337
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
338 339
}

340
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
341 342 343
{
}

344
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
345
{
346 347 348
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

349
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
350
	kvm_timer_vcpu_terminate(vcpu);
351
	kvm_pmu_vcpu_destroy(vcpu);
352 353

	kvm_arm_vcpu_destroy(vcpu);
354 355 356 357
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
358
	return kvm_timer_is_pending(vcpu);
359 360
}

361 362
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
363 364 365
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
366
	 * so that we have the latest PMR and group enables. This ensures
367 368
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
369 370 371
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
372 373 374
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
375
	vgic_v4_put(vcpu, true);
376
	preempt_enable();
377 378 379 380
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
381 382 383
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
384 385
}

386 387
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
388
	struct kvm_s2_mmu *mmu;
389 390
	int *last_ran;

391 392
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
393 394

	/*
395 396 397 398 399
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
400 401 402 403
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
404
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
405 406 407
		*last_ran = vcpu->vcpu_id;
	}

408
	vcpu->cpu = cpu;
409

410
	kvm_vgic_load(vcpu);
411
	kvm_timer_vcpu_load(vcpu);
412 413
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
414
	kvm_arch_vcpu_load_fp(vcpu);
415
	kvm_vcpu_pmu_restore_guest(vcpu);
416 417
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
418 419

	if (single_task_running())
420
		vcpu_clear_wfx_traps(vcpu);
421
	else
422
		vcpu_set_wfx_traps(vcpu);
423

424
	if (vcpu_has_ptrauth(vcpu))
425
		vcpu_ptrauth_disable(vcpu);
426
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
427 428 429 430
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
431
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
432
	kvm_arch_vcpu_put_fp(vcpu);
433 434
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
435
	kvm_timer_vcpu_put(vcpu);
436
	kvm_vgic_put(vcpu);
437
	kvm_vcpu_pmu_restore_host(vcpu);
438

439
	vcpu->cpu = -1;
440 441
}

A
Andrew Jones 已提交
442 443 444
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
445
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
446 447 448
	kvm_vcpu_kick(vcpu);
}

449 450 451
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
452
	if (vcpu->arch.power_off)
453 454 455 456 457
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
458 459 460 461 462
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
463 464
	int ret = 0;

465 466
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
467
		vcpu->arch.power_off = false;
468 469
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
470
		vcpu_power_off(vcpu);
471 472
		break;
	default:
473
		ret = -EINVAL;
474 475
	}

476
	return ret;
477 478
}

479 480 481 482 483 484 485
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
486 487
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
488 489
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
490
		&& !v->arch.power_off && !v->arch.pause);
491 492
}

493 494
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
495
	return vcpu_mode_priv(vcpu);
496 497
}

498 499 500 501 502 503 504
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
505
	preempt_disable();
506
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
507
	preempt_enable();
508 509 510 511
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
512
 * @vmid: The VMID to check
513 514 515
 *
 * return true if there is a new generation of VMIDs being used
 *
516 517
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
518 519 520
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
521
 */
522
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
523
{
524 525
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
526
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
527 528 529
}

/**
530 531
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
532
 */
533
static void update_vmid(struct kvm_vmid *vmid)
534
{
535
	if (!need_new_vmid_gen(vmid))
536 537
		return;

538
	spin_lock(&kvm_vmid_lock);
539 540 541 542 543 544

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
545
	if (!need_new_vmid_gen(vmid)) {
546
		spin_unlock(&kvm_vmid_lock);
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

569
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
570
	kvm_next_vmid++;
571
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
572

573
	smp_wmb();
574
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
575 576

	spin_unlock(&kvm_vmid_lock);
577 578 579 580
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
581
	struct kvm *kvm = vcpu->kvm;
582
	int ret = 0;
583

584 585 586
	if (likely(vcpu->arch.has_run_once))
		return 0;

587 588 589
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

590
	vcpu->arch.has_run_once = true;
591

592 593
	kvm_arm_vcpu_init_debug(vcpu);

594 595 596 597 598
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
599 600 601
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
602 603 604 605 606 607
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
608 609
	}

610
	ret = kvm_timer_enable(vcpu);
611 612 613 614
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
615

616 617 618 619 620 621 622 623
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

624
	return ret;
625 626
}

627 628 629 630 631
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

632
void kvm_arm_halt_guest(struct kvm *kvm)
633
{
634
	unsigned long i;
635 636 637 638
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
639
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
640 641
}

642
void kvm_arm_resume_guest(struct kvm *kvm)
643
{
644
	unsigned long i;
645 646
	struct kvm_vcpu *vcpu;

647 648
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
649
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
650
	}
651 652
}

653
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
654
{
655
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
656

657 658 659
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
660

A
Andrew Jones 已提交
661
	if (vcpu->arch.power_off || vcpu->arch.pause) {
662
		/* Awaken to handle a signal, request we sleep again later. */
663
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
664
	}
665 666 667 668 669 670 671

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
672 673
}

674 675 676 677 678
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

679 680 681
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
682 683
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
684

685 686 687
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

688 689 690 691 692
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
693 694 695

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
696 697 698 699 700 701 702 703

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
704 705 706 707

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
708 709 710
	}
}

711 712 713 714 715 716 717 718 719
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

759 760 761 762 763 764 765 766 767 768
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
769
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
770
{
771
	struct kvm_run *run = vcpu->run;
772 773
	int ret;

774
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
775 776 777 778
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
779
		return ret;
780

C
Christoffer Dall 已提交
781
	if (run->exit_reason == KVM_EXIT_MMIO) {
782
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
783
		if (ret)
784
			return ret;
C
Christoffer Dall 已提交
785 786
	}

787
	vcpu_load(vcpu);
788

789 790 791 792 793
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

794
	kvm_sigset_activate(vcpu);
795 796 797 798 799 800 801

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
802 803 804
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
805

806
		update_vmid(&vcpu->arch.hw_mmu->vmid);
807

808 809
		check_vcpu_requests(vcpu);

810 811 812 813 814
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
815
		preempt_disable();
816

817
		kvm_pmu_flush_hwstate(vcpu);
818

819 820
		local_irq_disable();

821 822
		kvm_vgic_flush_hwstate(vcpu);

823 824 825 826
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
827
		 * Documentation/virt/kvm/vcpu-requests.rst
828 829 830
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

831
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
832
			vcpu->mode = OUTSIDE_GUEST_MODE;
833
			isb(); /* Ensure work in x_flush_hwstate is committed */
834
			kvm_pmu_sync_hwstate(vcpu);
835
			if (static_branch_unlikely(&userspace_irqchip_in_use))
836
				kvm_timer_sync_user(vcpu);
837
			kvm_vgic_sync_hwstate(vcpu);
838
			local_irq_enable();
839
			preempt_enable();
840 841 842
			continue;
		}

843 844
		kvm_arm_setup_debug(vcpu);

845 846 847 848
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
849
		guest_enter_irqoff();
850

851
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
852

853
		vcpu->mode = OUTSIDE_GUEST_MODE;
854
		vcpu->stat.exits++;
855 856 857 858
		/*
		 * Back from guest
		 *************************************************************/

859 860
		kvm_arm_clear_debug(vcpu);

861
		/*
862
		 * We must sync the PMU state before the vgic state so
863 864 865 866 867
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

868 869 870 871 872
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
873 874
		kvm_vgic_sync_hwstate(vcpu);

875 876 877 878 879
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
880
		if (static_branch_unlikely(&userspace_irqchip_in_use))
881
			kvm_timer_sync_user(vcpu);
882

883 884
		kvm_arch_vcpu_ctxsync_fp(vcpu);

885 886 887 888 889 890 891 892 893 894 895 896 897
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
898
		 * We do local_irq_enable() before calling guest_exit() so
899 900
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
901
		 * preemption after calling guest_exit() so that if we get
902 903 904
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
905
		guest_exit();
906
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
907

908
		/* Exit types that need handling before we can be preempted */
909
		handle_exit_early(vcpu, ret);
910

911 912
		preempt_enable();

913 914 915 916 917 918 919 920
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
921
		if (vcpu_mode_is_bad_32bit(vcpu)) {
922 923 924 925 926 927 928 929 930 931
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

932
		ret = handle_exit(vcpu, ret);
933 934
	}

935
	/* Tell userspace about in-kernel device output levels */
936 937 938 939
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
940

941
	kvm_sigset_deactivate(vcpu);
942

943
out:
944 945 946 947 948 949 950 951 952 953
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
954

955
	vcpu_put(vcpu);
956
	return ret;
957 958
}

959 960 961 962
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
963
	unsigned long *hcr;
964 965 966 967 968 969

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

970
	hcr = vcpu_hcr(vcpu);
971
	if (level)
972
		set = test_and_set_bit(bit_index, hcr);
973
	else
974
		set = test_and_clear_bit(bit_index, hcr);
975 976 977 978 979 980 981 982 983 984 985 986

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
987
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
988 989 990 991 992
	kvm_vcpu_kick(vcpu);

	return 0;
}

993 994
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
995 996 997 998 999 1000 1001 1002 1003
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1004
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1005 1006 1007 1008
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1009 1010 1011 1012
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1013

1014 1015
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1016

1017 1018 1019
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1038

1039
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1040 1041 1042 1043
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1044
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1045 1046
			return -EINVAL;

1047
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1048 1049 1050
	}

	return -EINVAL;
1051 1052
}

1053 1054 1055
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1056
	unsigned int i, ret;
1057
	u32 phys_target = kvm_target_cpu();
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1091 1092 1093 1094 1095
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1096

1097 1098
	return ret;
}
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1109 1110 1111
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1112
	 *
1113 1114 1115 1116
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1117
	 */
1118 1119 1120 1121
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1122
			icache_inval_all_pou();
1123
	}
1124

1125
	vcpu_reset_hcr(vcpu);
1126
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1127

1128
	/*
1129
	 * Handle the "start in power-off" case.
1130
	 */
1131
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1132
		vcpu_power_off(vcpu);
1133
	else
1134
		vcpu->arch.power_off = false;
1135 1136 1137 1138

	return 0;
}

1139 1140 1141 1142 1143 1144 1145
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1146
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1160
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1174
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1175 1176 1177 1178 1179 1180
		break;
	}

	return ret;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1207 1208 1209 1210 1211
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1212
	struct kvm_device_attr attr;
1213 1214
	long r;

1215 1216 1217 1218
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1219
		r = -EFAULT;
1220
		if (copy_from_user(&init, argp, sizeof(init)))
1221
			break;
1222

1223 1224
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1225 1226 1227 1228
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1229

1230
		r = -ENOEXEC;
1231
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1232
			break;
1233

1234
		r = -EFAULT;
1235
		if (copy_from_user(&reg, argp, sizeof(reg)))
1236 1237
			break;

1238 1239 1240 1241 1242 1243 1244 1245
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1246
		if (ioctl == KVM_SET_ONE_REG)
1247
			r = kvm_arm_set_reg(vcpu, &reg);
1248
		else
1249 1250
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1251 1252 1253 1254 1255 1256
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1257
		r = -ENOEXEC;
1258
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1259
			break;
1260

1261 1262 1263 1264
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1265
		r = -EFAULT;
1266
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1267
			break;
1268 1269 1270
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1271 1272
			break;
		r = -E2BIG;
1273
		if (n < reg_list.n)
1274 1275 1276
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1277
	}
1278
	case KVM_SET_DEVICE_ATTR: {
1279
		r = -EFAULT;
1280
		if (copy_from_user(&attr, argp, sizeof(attr)))
1281 1282 1283
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1284 1285
	}
	case KVM_GET_DEVICE_ATTR: {
1286
		r = -EFAULT;
1287
		if (copy_from_user(&attr, argp, sizeof(attr)))
1288 1289 1290
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1291 1292
	}
	case KVM_HAS_DEVICE_ATTR: {
1293
		r = -EFAULT;
1294
		if (copy_from_user(&attr, argp, sizeof(attr)))
1295 1296 1297
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1298
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1329
	default:
1330
		r = -EINVAL;
1331
	}
1332 1333

	return r;
1334 1335
}

1336
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1337
{
1338

1339 1340
}

1341
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1342
					const struct kvm_memory_slot *memslot)
1343
{
1344
	kvm_flush_remote_tlbs(kvm);
1345 1346
}

1347 1348 1349
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1350 1351 1352 1353 1354 1355 1356 1357 1358
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1359 1360
		if (!vgic_present)
			return -ENXIO;
1361
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1362 1363 1364
	default:
		return -ENODEV;
	}
1365 1366
}

1367 1368 1369
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1370 1371 1372 1373
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1374
	case KVM_CREATE_IRQCHIP: {
1375
		int ret;
1376 1377
		if (!vgic_present)
			return -ENXIO;
1378 1379 1380 1381
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1382
	}
1383 1384 1385 1386 1387 1388 1389
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1390 1391 1392
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1393
		kvm_vcpu_preferred_target(&init);
1394 1395 1396 1397 1398 1399

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1400 1401 1402 1403 1404 1405 1406
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1407 1408 1409
	default:
		return -EINVAL;
	}
1410 1411
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1425 1426 1427 1428
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1429
{
1430
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1443

1444
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1445
		return 0;
1446

1447 1448 1449 1450 1451
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1452 1453
	}

1454 1455
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1456 1457 1458
	return 0;
}

1459
static void cpu_prepare_hyp_mode(int cpu)
1460
{
1461
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1462
	unsigned long tcr;
1463

1464 1465 1466 1467
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1468
	 * Also drop the KASAN tag which gets in the way...
1469
	 */
1470
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1471
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1494
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1495
	params->pgd_pa = kvm_mmu_get_httbr();
1496 1497 1498 1499 1500
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1501

1502 1503 1504 1505 1506
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1507 1508
}

1509
static void hyp_install_host_vector(void)
1510 1511 1512 1513 1514 1515
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1516

1517 1518 1519 1520 1521 1522 1523
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1524
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1525
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1526
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1527 1528 1529 1530 1531
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1532 1533 1534 1535 1536 1537

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1538
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1539
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1540
	}
1541 1542
}

1543 1544 1545 1546 1547 1548
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1549 1550 1551 1552 1553 1554 1555 1556
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1557
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1558 1559 1560
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1561
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1562 1563 1564
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1565
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1566 1567 1568 1569 1570
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1571
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1572
	void *vector = hyp_spectre_vector_selector[data->slot];
1573

1574 1575 1576 1577
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1578 1579
}

1580
static void cpu_hyp_init_context(void)
1581
{
1582
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1583

1584
	if (!is_kernel_in_hyp_mode())
1585
		cpu_init_hyp_mode();
1586
}
1587

1588 1589
static void cpu_hyp_init_features(void)
{
1590
	cpu_set_hyp_vector();
1591
	kvm_arm_init_debug();
1592

1593 1594 1595
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1596 1597
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1598 1599
}

1600 1601 1602 1603 1604 1605 1606
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1607 1608 1609
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1610
		cpu_hyp_reinit();
1611
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1612
	}
1613
}
1614

1615 1616 1617 1618
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1631 1632
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1633
}
1634

1635 1636 1637 1638 1639
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1655
		return NOTIFY_OK;
1656
	case CPU_PM_ENTER_FAILED:
1657 1658 1659 1660
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1661

1662 1663 1664 1665 1666
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1667 1668 1669 1670 1671 1672
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1673
static void hyp_cpu_pm_init(void)
1674
{
1675 1676
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1677
}
1678
static void hyp_cpu_pm_exit(void)
1679
{
1680 1681
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1682
}
1683 1684 1685 1686
#else
static inline void hyp_cpu_pm_init(void)
{
}
1687 1688 1689
static inline void hyp_cpu_pm_exit(void)
{
}
1690 1691
#endif

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1703
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1704 1705
}

1706 1707 1708
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1720 1721 1722 1723
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1724 1725 1726 1727
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1728
	}
1729 1730 1731
	return true;
}

1732 1733
static int init_subsystems(void)
{
1734
	int err = 0;
1735

1736
	/*
1737
	 * Enable hardware so that subsystem initialisation can access EL2.
1738
	 */
1739
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1740 1741 1742 1743 1744 1745

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1757
		err = 0;
1758 1759
		break;
	default:
1760
		goto out;
1761 1762 1763 1764 1765
	}

	/*
	 * Init HYP architected timer support
	 */
1766
	err = kvm_timer_hyp_init(vgic_present);
1767
	if (err)
1768
		goto out;
1769 1770

	kvm_perf_init();
M
Marc Zyngier 已提交
1771
	kvm_sys_reg_table_init();
1772

1773
out:
1774 1775
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1776 1777

	return err;
1778 1779 1780 1781 1782 1783 1784
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1785
	for_each_possible_cpu(cpu) {
1786
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1787 1788
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1789 1790
}

1791 1792 1793 1794 1795 1796
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1797
	cpu_hyp_init_context();
1798 1799 1800
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1801 1802 1803 1804 1805 1806 1807
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1818 1819 1820 1821
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1822 1823
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1824
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1839 1840 1841 1842 1843
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1844
	u32 hyp_va_bits;
1845
	int cpu;
1846 1847 1848 1849 1850 1851 1852 1853
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1854 1855 1856 1857

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1858
	err = kvm_mmu_init(&hyp_va_bits);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1871
			goto out_err;
1872 1873 1874 1875 1876
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1895 1896 1897
	/*
	 * Map the Hyp-code called directly from the host
	 */
1898
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1899
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1900 1901
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1902
		goto out_err;
1903 1904
	}

1905 1906
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1907
	if (err) {
1908
		kvm_err("Cannot map .hyp.rodata section\n");
1909 1910 1911
		goto out_err;
	}

1912
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1913
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1914 1915
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1916 1917 1918
		goto out_err;
	}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1932 1933 1934
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1935
		goto out_err;
1936 1937
	}

1938 1939 1940 1941 1942
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1943 1944
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1945 1946 1947

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1948
			goto out_err;
1949 1950 1951 1952
		}
	}

	for_each_possible_cpu(cpu) {
1953 1954
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1955

1956
		/* Map Hyp percpu pages */
1957
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1958
		if (err) {
1959
			kvm_err("Cannot map hyp percpu region\n");
1960 1961
			goto out_err;
		}
1962 1963 1964

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1965 1966
	}

1967
	if (is_protected_kvm_enabled()) {
1968 1969
		init_cpu_logical_map();

1970 1971
		if (!init_psci_relay()) {
			err = -ENODEV;
1972
			goto out_err;
1973
		}
1974 1975
	}

1976 1977 1978 1979
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1980
			goto out_err;
1981
		}
1982 1983
	}

1984
	return 0;
1985

1986
out_err:
1987
	teardown_hyp_mode();
1988 1989 1990 1991
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1992
static void _kvm_host_prot_finalize(void *arg)
1993
{
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2011 2012
}

2013 2014 2015 2016 2017
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2018 2019 2020 2021 2022 2023
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2024
	return pkvm_drop_host_privileges();
2025 2026
}

2027 2028 2029
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
2030
	unsigned long i;
2031 2032 2033 2034 2035 2036 2037 2038 2039

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2051 2052
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2053 2054 2055 2056 2057 2058 2059
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2060 2061
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2080 2081 2082
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2083 2084
int kvm_arch_init(void *opaque)
{
2085
	int err;
2086
	bool in_hyp_mode;
2087 2088

	if (!is_hyp_mode_available()) {
2089
		kvm_info("HYP mode not available\n");
2090 2091 2092
		return -ENODEV;
	}

2093 2094 2095 2096 2097
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2098 2099
	in_hyp_mode = is_kernel_in_hyp_mode();

2100 2101
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2102 2103 2104
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2105
	err = kvm_set_ipa_limit();
2106
	if (err)
2107
		return err;
2108

2109
	err = kvm_arm_init_sve();
2110 2111 2112
	if (err)
		return err;

2113
	if (!in_hyp_mode) {
2114
		err = init_hyp_mode();
2115 2116 2117
		if (err)
			goto out_err;
	}
2118

2119 2120 2121 2122 2123 2124
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2125 2126 2127
	err = init_subsystems();
	if (err)
		goto out_hyp;
2128

2129 2130 2131 2132 2133 2134 2135 2136
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2137
	if (is_protected_kvm_enabled()) {
2138
		kvm_info("Protected nVHE mode initialized successfully\n");
2139
	} else if (in_hyp_mode) {
2140
		kvm_info("VHE mode initialized successfully\n");
2141
	} else {
2142
		kvm_info("Hyp mode initialized successfully\n");
2143
	}
2144

2145
	return 0;
2146 2147

out_hyp:
2148
	hyp_cpu_pm_exit();
2149 2150
	if (!in_hyp_mode)
		teardown_hyp_mode();
2151 2152
out_err:
	return err;
2153 2154 2155 2156 2157
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2158
	kvm_perf_teardown();
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2171 2172
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2173
		return 0;
2174 2175 2176 2177
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2178
		return 0;
2179
	}
2180

2181 2182 2183 2184
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2185 2186 2187 2188 2189
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2190 2191 2192 2193 2194 2195 2196
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);