arm.c 37.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret, cpu;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115 116 117 118 119 120 121
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

122 123 124 125
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131

132
	/* Mark the initial VMID generation invalid */
133
	kvm->arch.vmid.vmid_gen = 0;
134

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147 148 149 150 151
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

152
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 154 155 156 157
{
	return VM_FAULT_SIGBUS;
}


158 159 160 161
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
162 163 164 165
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

166 167
	kvm_vgic_destroy(kvm);

168 169 170
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

171 172
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
173
			kvm_vcpu_destroy(kvm->vcpus[i]);
174 175 176
			kvm->vcpus[i] = NULL;
		}
	}
177
	atomic_set(&kvm->online_vcpus, 0);
178 179
}

180
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 182 183
{
	int r;
	switch (ext) {
184
	case KVM_CAP_IRQCHIP:
185 186
		r = vgic_present;
		break;
187
	case KVM_CAP_IOEVENTFD:
188
	case KVM_CAP_DEVICE_CTRL:
189 190 191 192
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
193
	case KVM_CAP_ARM_PSCI:
194
	case KVM_CAP_ARM_PSCI_0_2:
195
	case KVM_CAP_READONLY_MEM:
196
	case KVM_CAP_MP_STATE:
197
	case KVM_CAP_IMMEDIATE_EXIT:
198
	case KVM_CAP_VCPU_EVENTS:
199
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200
	case KVM_CAP_ARM_NISV_TO_USER:
201
	case KVM_CAP_ARM_INJECT_EXT_DABT:
202 203
		r = 1;
		break;
204 205
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
206
		break;
207 208 209 210
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
211
	case KVM_CAP_MAX_VCPU_ID:
212 213 214 215
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
216
		break;
V
Vladimir Murzin 已提交
217 218 219 220 221 222
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
223 224 225 226 227 228 229
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
230
	default:
231
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
232 233 234 235 236 237 238 239 240 241 242
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
258

259 260 261 262 263 264 265 266 267 268 269
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

270
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
271
{
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

291
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
292 293
}

294
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 296 297
{
}

298
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
299
{
300 301 302
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

303
	kvm_mmu_free_memory_caches(vcpu);
304
	kvm_timer_vcpu_terminate(vcpu);
305
	kvm_pmu_vcpu_destroy(vcpu);
306 307

	kvm_arm_vcpu_destroy(vcpu);
308 309 310 311
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
312
	return kvm_timer_is_pending(vcpu);
313 314
}

315 316
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
317 318 319
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
320
	 * so that we have the latest PMR and group enables. This ensures
321 322
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
323 324 325
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
326 327 328
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
329
	vgic_v4_put(vcpu, true);
330
	preempt_enable();
331 332 333 334
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
335 336 337
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
338 339
}

340 341 342 343 344 345
#define __ptrauth_save_key(regs, key)						\
({										\
	regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);	\
	regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);	\
})

346 347
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
348
	int *last_ran;
349
	kvm_host_data_t *cpu_data;
350 351

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
352
	cpu_data = this_cpu_ptr(&kvm_host_data);
353 354 355 356 357 358 359 360 361 362

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

363
	vcpu->cpu = cpu;
364
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
365

366
	kvm_vgic_load(vcpu);
367
	kvm_timer_vcpu_load(vcpu);
368
	kvm_vcpu_load_sysregs(vcpu);
369
	kvm_arch_vcpu_load_fp(vcpu);
370
	kvm_vcpu_pmu_restore_guest(vcpu);
371 372
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
373 374

	if (single_task_running())
375
		vcpu_clear_wfx_traps(vcpu);
376
	else
377
		vcpu_set_wfx_traps(vcpu);
378

379 380 381 382 383 384 385 386 387 388 389
	if (vcpu_has_ptrauth(vcpu)) {
		struct kvm_cpu_context *ctxt = vcpu->arch.host_cpu_context;

		__ptrauth_save_key(ctxt->sys_regs, APIA);
		__ptrauth_save_key(ctxt->sys_regs, APIB);
		__ptrauth_save_key(ctxt->sys_regs, APDA);
		__ptrauth_save_key(ctxt->sys_regs, APDB);
		__ptrauth_save_key(ctxt->sys_regs, APGA);

		vcpu_ptrauth_disable(vcpu);
	}
390 391 392 393
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
394
	kvm_arch_vcpu_put_fp(vcpu);
395
	kvm_vcpu_put_sysregs(vcpu);
396
	kvm_timer_vcpu_put(vcpu);
397
	kvm_vgic_put(vcpu);
398
	kvm_vcpu_pmu_restore_host(vcpu);
399

400
	vcpu->cpu = -1;
401 402
}

A
Andrew Jones 已提交
403 404 405
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
406
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
407 408 409
	kvm_vcpu_kick(vcpu);
}

410 411 412
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
413
	if (vcpu->arch.power_off)
414 415 416 417 418
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
419 420 421 422 423
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
424 425
	int ret = 0;

426 427
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
428
		vcpu->arch.power_off = false;
429 430
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
431
		vcpu_power_off(vcpu);
432 433
		break;
	default:
434
		ret = -EINVAL;
435 436
	}

437
	return ret;
438 439
}

440 441 442 443 444 445 446
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
447 448
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
449 450
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
451
		&& !v->arch.power_off && !v->arch.pause);
452 453
}

454 455
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
456
	return vcpu_mode_priv(vcpu);
457 458
}

459 460 461 462 463 464 465
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
466
	preempt_disable();
467
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
468
	preempt_enable();
469 470 471 472
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
473
 * @vmid: The VMID to check
474 475 476
 *
 * return true if there is a new generation of VMIDs being used
 *
477 478
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
479 480 481
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
482
 */
483
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
484
{
485 486
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
487
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
488 489 490
}

/**
491 492 493
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
494
 */
495
static void update_vmid(struct kvm_vmid *vmid)
496
{
497
	if (!need_new_vmid_gen(vmid))
498 499
		return;

500
	spin_lock(&kvm_vmid_lock);
501 502 503 504 505 506

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
507
	if (!need_new_vmid_gen(vmid)) {
508
		spin_unlock(&kvm_vmid_lock);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

531
	vmid->vmid = kvm_next_vmid;
532
	kvm_next_vmid++;
533
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
534

535
	smp_wmb();
536
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
537 538

	spin_unlock(&kvm_vmid_lock);
539 540 541 542
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
543
	struct kvm *kvm = vcpu->kvm;
544
	int ret = 0;
545

546 547 548
	if (likely(vcpu->arch.has_run_once))
		return 0;

549 550 551
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

552
	vcpu->arch.has_run_once = true;
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
570 571
	}

572
	ret = kvm_timer_enable(vcpu);
573 574 575 576
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
577

578
	return ret;
579 580
}

581 582 583 584 585
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

586
void kvm_arm_halt_guest(struct kvm *kvm)
587 588 589 590 591 592
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
593
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
594 595
}

596
void kvm_arm_resume_guest(struct kvm *kvm)
597 598 599 600
{
	int i;
	struct kvm_vcpu *vcpu;

601 602
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
603
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
604
	}
605 606
}

607
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
608
{
609
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
610

611
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
612
				       (!vcpu->arch.pause)));
613

A
Andrew Jones 已提交
614
	if (vcpu->arch.power_off || vcpu->arch.pause) {
615
		/* Awaken to handle a signal, request we sleep again later. */
616
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
617
	}
618 619 620 621 622 623 624

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
625 626
}

627 628 629 630 631
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

632 633 634
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
635 636
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
637

638 639 640
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

641 642 643 644 645
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
646 647 648

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
649 650 651 652 653 654 655 656

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
657 658 659
	}
}

660 661 662 663 664 665 666 667 668 669 670
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
671 672
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
673 674
	int ret;

675
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
676 677 678 679
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
680
		return ret;
681

C
Christoffer Dall 已提交
682 683 684
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
685
			return ret;
C
Christoffer Dall 已提交
686 687
	}

688 689 690 691
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
692

693
	kvm_sigset_activate(vcpu);
694 695 696 697 698 699 700 701 702

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

703
		update_vmid(&vcpu->kvm->arch.vmid);
704

705 706
		check_vcpu_requests(vcpu);

707 708 709 710 711
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
712
		preempt_disable();
713

714
		kvm_pmu_flush_hwstate(vcpu);
715

716 717
		local_irq_disable();

718 719
		kvm_vgic_flush_hwstate(vcpu);

720
		/*
721 722
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
723
		 */
724
		if (signal_pending(current)) {
725 726 727 728
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

744 745 746 747
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
748
		 * Documentation/virt/kvm/vcpu-requests.rst
749 750 751
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

752
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
753
		    kvm_request_pending(vcpu)) {
754
			vcpu->mode = OUTSIDE_GUEST_MODE;
755
			isb(); /* Ensure work in x_flush_hwstate is committed */
756
			kvm_pmu_sync_hwstate(vcpu);
757 758
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
759
			kvm_vgic_sync_hwstate(vcpu);
760
			local_irq_enable();
761
			preempt_enable();
762 763 764
			continue;
		}

765 766
		kvm_arm_setup_debug(vcpu);

767 768 769 770
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
771
		guest_enter_irqoff();
772

773 774 775
		if (has_vhe()) {
			ret = kvm_vcpu_run_vhe(vcpu);
		} else {
776
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
777 778
		}

779
		vcpu->mode = OUTSIDE_GUEST_MODE;
780
		vcpu->stat.exits++;
781 782 783 784
		/*
		 * Back from guest
		 *************************************************************/

785 786
		kvm_arm_clear_debug(vcpu);

787
		/*
788
		 * We must sync the PMU state before the vgic state so
789 790 791 792 793
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

794 795 796 797 798
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
799 800
		kvm_vgic_sync_hwstate(vcpu);

801 802 803 804 805
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
806 807
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
808

809 810
		kvm_arch_vcpu_ctxsync_fp(vcpu);

811 812 813 814 815 816 817 818 819 820 821 822 823
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
824
		 * We do local_irq_enable() before calling guest_exit() so
825 826
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
827
		 * preemption after calling guest_exit() so that if we get
828 829 830
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
831
		guest_exit();
832
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
833

834 835 836
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

837 838
		preempt_enable();

839 840 841
		ret = handle_exit(vcpu, run, ret);
	}

842
	/* Tell userspace about in-kernel device output levels */
843 844 845 846
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
847

848 849
	kvm_sigset_deactivate(vcpu);

850
	vcpu_put(vcpu);
851
	return ret;
852 853
}

854 855 856 857
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
858
	unsigned long *hcr;
859 860 861 862 863 864

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

865
	hcr = vcpu_hcr(vcpu);
866
	if (level)
867
		set = test_and_set_bit(bit_index, hcr);
868
	else
869
		set = test_and_clear_bit(bit_index, hcr);
870 871 872 873 874 875 876 877 878 879 880 881

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
882
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
883 884 885 886 887
	kvm_vcpu_kick(vcpu);

	return 0;
}

888 889
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
890 891 892 893 894 895 896 897 898
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
899
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
900 901 902 903
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

904 905 906 907
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
908

909 910
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
911

912 913 914
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
933

934
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
935 936 937 938
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

939
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
940 941
			return -EINVAL;

942
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
943 944 945
	}

	return -EINVAL;
946 947
}

948 949 950
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
951
	unsigned int i, ret;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
986 987 988 989 990
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
991

992 993
	return ret;
}
994

995 996 997 998 999 1000 1001 1002 1003
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1004 1005 1006
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1007
	 *
1008 1009 1010 1011
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1012
	 */
1013 1014 1015 1016 1017 1018
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1019

1020 1021
	vcpu_reset_hcr(vcpu);

1022
	/*
1023
	 * Handle the "start in power-off" case.
1024
	 */
1025
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1026
		vcpu_power_off(vcpu);
1027
	else
1028
		vcpu->arch.power_off = false;
1029 1030 1031 1032

	return 0;
}

1033 1034 1035 1036 1037 1038 1039
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1040
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1054
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1068
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1069 1070 1071 1072 1073 1074
		break;
	}

	return ret;
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1101 1102 1103 1104 1105
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1106
	struct kvm_device_attr attr;
1107 1108
	long r;

1109 1110 1111 1112
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1113
		r = -EFAULT;
1114
		if (copy_from_user(&init, argp, sizeof(init)))
1115
			break;
1116

1117 1118
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1119 1120 1121 1122
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1123

1124
		r = -ENOEXEC;
1125
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1126
			break;
1127

1128
		r = -EFAULT;
1129
		if (copy_from_user(&reg, argp, sizeof(reg)))
1130 1131
			break;

1132
		if (ioctl == KVM_SET_ONE_REG)
1133
			r = kvm_arm_set_reg(vcpu, &reg);
1134
		else
1135 1136
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1137 1138 1139 1140 1141 1142
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1143
		r = -ENOEXEC;
1144
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1145
			break;
1146

1147 1148 1149 1150
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1151
		r = -EFAULT;
1152
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1153
			break;
1154 1155 1156
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1157 1158
			break;
		r = -E2BIG;
1159
		if (n < reg_list.n)
1160 1161 1162
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1163
	}
1164
	case KVM_SET_DEVICE_ATTR: {
1165
		r = -EFAULT;
1166
		if (copy_from_user(&attr, argp, sizeof(attr)))
1167 1168 1169
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1170 1171
	}
	case KVM_GET_DEVICE_ATTR: {
1172
		r = -EFAULT;
1173
		if (copy_from_user(&attr, argp, sizeof(attr)))
1174 1175 1176
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1177 1178
	}
	case KVM_HAS_DEVICE_ATTR: {
1179
		r = -EFAULT;
1180
		if (copy_from_user(&attr, argp, sizeof(attr)))
1181 1182 1183
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1184
	}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1215
	default:
1216
		r = -EINVAL;
1217
	}
1218 1219

	return r;
1220 1221
}

1222
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1223
{
1224

1225 1226
}

1227 1228
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1229
{
1230
	kvm_flush_remote_tlbs(kvm);
1231 1232
}

1233 1234 1235
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1236 1237 1238 1239 1240 1241 1242 1243 1244
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1245 1246
		if (!vgic_present)
			return -ENXIO;
1247
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1248 1249 1250
	default:
		return -ENODEV;
	}
1251 1252
}

1253 1254 1255
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1256 1257 1258 1259
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1260
	case KVM_CREATE_IRQCHIP: {
1261
		int ret;
1262 1263
		if (!vgic_present)
			return -ENXIO;
1264 1265 1266 1267
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1268
	}
1269 1270 1271 1272 1273 1274 1275
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1289 1290 1291
	default:
		return -EINVAL;
	}
1292 1293
}

1294
static void cpu_init_hyp_mode(void)
1295
{
1296
	phys_addr_t pgd_ptr;
1297 1298
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1299
	unsigned long tpidr_el2;
1300 1301

	/* Switch from the HYP stub to our own HYP init vector */
1302
	__hyp_set_vectors(kvm_get_idmap_vector());
1303

1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
		     (unsigned long)kvm_ksym_ref(kvm_host_data));

1312
	pgd_ptr = kvm_mmu_get_httbr();
1313
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1314
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		kvm_call_hyp(__kvm_enable_ssbs);
	}
1333 1334
}

1335 1336 1337 1338 1339 1340
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1341 1342
static void cpu_hyp_reinit(void)
{
1343 1344
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1345 1346
	cpu_hyp_reset();

1347
	if (is_kernel_in_hyp_mode())
1348
		kvm_timer_init_vhe();
1349
	else
1350
		cpu_init_hyp_mode();
1351

1352
	kvm_arm_init_debug();
1353 1354 1355

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1356 1357
}

1358 1359 1360
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1361
		cpu_hyp_reinit();
1362
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1363
	}
1364
}
1365

1366 1367 1368 1369
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1384

1385 1386 1387 1388 1389
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1405
		return NOTIFY_OK;
1406
	case CPU_PM_ENTER_FAILED:
1407 1408 1409 1410
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1411

1412 1413 1414 1415 1416
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1427 1428 1429 1430
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1431 1432 1433 1434
#else
static inline void hyp_cpu_pm_init(void)
{
}
1435 1436 1437
static inline void hyp_cpu_pm_exit(void)
{
}
1438 1439
#endif

1440 1441
static int init_common_resources(void)
{
1442 1443
	kvm_set_ipa_limit();

1444 1445 1446 1447 1448
	return 0;
}

static int init_subsystems(void)
{
1449
	int err = 0;
1450

1451
	/*
1452
	 * Enable hardware so that subsystem initialisation can access EL2.
1453
	 */
1454
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1455 1456 1457 1458 1459 1460

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1472
		err = 0;
1473 1474
		break;
	default:
1475
		goto out;
1476 1477 1478 1479 1480
	}

	/*
	 * Init HYP architected timer support
	 */
1481
	err = kvm_timer_hyp_init(vgic_present);
1482
	if (err)
1483
		goto out;
1484 1485 1486 1487

	kvm_perf_init();
	kvm_coproc_table_init();

1488 1489 1490 1491
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1527
			goto out_err;
1528 1529 1530 1531 1532 1533 1534 1535
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1536
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1537
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1538 1539
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1540
		goto out_err;
1541 1542
	}

1543
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1544
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1545 1546
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1547 1548 1549 1550 1551 1552 1553
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1554
		goto out_err;
1555 1556
	}

1557 1558 1559 1560 1561 1562
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1563 1564 1565 1566 1567
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1568 1569
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1570 1571 1572

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1573
			goto out_err;
1574 1575 1576 1577
		}
	}

	for_each_possible_cpu(cpu) {
1578
		kvm_host_data_t *cpu_data;
1579

1580 1581
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1582 1583

		if (err) {
1584
			kvm_err("Cannot map host CPU state: %d\n", err);
1585
			goto out_err;
1586 1587 1588
		}
	}

1589 1590
	err = hyp_map_aux_data();
	if (err)
1591
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1592

1593
	return 0;
1594

1595
out_err:
1596
	teardown_hyp_mode();
1597 1598 1599 1600
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1601 1602 1603 1604 1605
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1630 1631
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1632 1633 1634 1635 1636 1637 1638
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1639 1640
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1659 1660 1661
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1662 1663
int kvm_arch_init(void *opaque)
{
1664
	int err;
1665
	int ret, cpu;
1666
	bool in_hyp_mode;
1667 1668

	if (!is_hyp_mode_available()) {
1669
		kvm_info("HYP mode not available\n");
1670 1671 1672
		return -ENODEV;
	}

1673 1674 1675 1676
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1677 1678 1679
		return -ENODEV;
	}

1680 1681 1682 1683 1684 1685
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1686 1687
	}

1688
	err = init_common_resources();
1689
	if (err)
1690
		return err;
1691

1692
	err = kvm_arm_init_sve();
1693 1694 1695
	if (err)
		return err;

1696
	if (!in_hyp_mode) {
1697
		err = init_hyp_mode();
1698 1699 1700
		if (err)
			goto out_err;
	}
1701

1702 1703 1704
	err = init_subsystems();
	if (err)
		goto out_hyp;
1705

1706 1707 1708 1709 1710
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1711
	return 0;
1712 1713

out_hyp:
1714
	hyp_cpu_pm_exit();
1715 1716
	if (!in_hyp_mode)
		teardown_hyp_mode();
1717 1718
out_err:
	return err;
1719 1720 1721 1722 1723
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1724
	kvm_perf_teardown();
1725 1726 1727 1728 1729 1730 1731 1732 1733
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);