arm.c 49.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69 70 71 72
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

73
int kvm_arch_hardware_setup(void *opaque)
74 75 76 77
{
	return 0;
}

78
int kvm_arch_check_processor_compat(void *opaque)
79
{
80
	return 0;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
103

104 105 106 107 108
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

109
static void set_default_spectre(struct kvm *kvm)
110 111 112 113 114 115 116 117 118 119 120
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
121 122
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
123 124
}

125 126 127 128
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
129 130
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
131
	int ret;
132

133
	ret = kvm_arm_setup_stage2(kvm, type);
134 135
	if (ret)
		return ret;
136

137
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138
	if (ret)
139
		return ret;
140

141
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 143 144
	if (ret)
		goto out_free_stage2_pgd;

145
	kvm_vgic_early_init(kvm);
146

147
	/* The maximum number of VCPUs is limited by the host's GIC model */
148
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149

150
	set_default_spectre(kvm);
151

152 153
	return ret;
out_free_stage2_pgd:
154
	kvm_free_stage2_pgd(&kvm->arch.mmu);
155
	return ret;
156 157
}

158
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 160 161 162 163
{
	return VM_FAULT_SIGBUS;
}


164 165 166 167
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
168 169 170 171
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

172 173
	bitmap_free(kvm->arch.pmu_filter);

174 175
	kvm_vgic_destroy(kvm);

176 177
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
178
			kvm_vcpu_destroy(kvm->vcpus[i]);
179 180 181
			kvm->vcpus[i] = NULL;
		}
	}
182
	atomic_set(&kvm->online_vcpus, 0);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209
	case KVM_CAP_PTP_KVM:
210 211
		r = 1;
		break;
212 213
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
221
	case KVM_CAP_MAX_VCPU_ID:
222 223 224 225
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
226
		break;
V
Vladimir Murzin 已提交
227 228 229 230 231 232
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
233 234 235 236 237 238 239
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
240 241 242
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
260
		break;
261 262 263 264 265 266 267 268 269
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
270
	}
271

272 273 274 275 276 277 278 279 280
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
296

297 298 299 300 301 302 303 304 305 306 307
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

308
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
309
{
310 311 312 313 314 315
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

316 317
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

318 319 320 321 322 323 324 325 326
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

327 328
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

329 330 331 332
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

333
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
334 335
}

336
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
337 338 339
{
}

340
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
341
{
342 343 344
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

345
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
346
	kvm_timer_vcpu_terminate(vcpu);
347
	kvm_pmu_vcpu_destroy(vcpu);
348 349

	kvm_arm_vcpu_destroy(vcpu);
350 351 352 353
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
354
	return kvm_timer_is_pending(vcpu);
355 356
}

357 358
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
359 360 361
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
362
	 * so that we have the latest PMR and group enables. This ensures
363 364
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
365 366 367
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
368 369 370
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
371
	vgic_v4_put(vcpu, true);
372
	preempt_enable();
373 374 375 376
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
377 378 379
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
380 381
}

382 383
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
384
	struct kvm_s2_mmu *mmu;
385 386
	int *last_ran;

387 388
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
389 390

	/*
391 392 393 394 395
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
396 397 398 399
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
400
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
401 402 403
		*last_ran = vcpu->vcpu_id;
	}

404
	vcpu->cpu = cpu;
405

406
	kvm_vgic_load(vcpu);
407
	kvm_timer_vcpu_load(vcpu);
408 409
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
410
	kvm_arch_vcpu_load_fp(vcpu);
411
	kvm_vcpu_pmu_restore_guest(vcpu);
412 413
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
414 415

	if (single_task_running())
416
		vcpu_clear_wfx_traps(vcpu);
417
	else
418
		vcpu_set_wfx_traps(vcpu);
419

420
	if (vcpu_has_ptrauth(vcpu))
421
		vcpu_ptrauth_disable(vcpu);
422
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
423 424 425 426
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
427
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
428
	kvm_arch_vcpu_put_fp(vcpu);
429 430
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
431
	kvm_timer_vcpu_put(vcpu);
432
	kvm_vgic_put(vcpu);
433
	kvm_vcpu_pmu_restore_host(vcpu);
434

435
	vcpu->cpu = -1;
436 437
}

A
Andrew Jones 已提交
438 439 440
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
441
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
442 443 444
	kvm_vcpu_kick(vcpu);
}

445 446 447
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
448
	if (vcpu->arch.power_off)
449 450 451 452 453
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
454 455 456 457 458
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
459 460
	int ret = 0;

461 462
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
463
		vcpu->arch.power_off = false;
464 465
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
466
		vcpu_power_off(vcpu);
467 468
		break;
	default:
469
		ret = -EINVAL;
470 471
	}

472
	return ret;
473 474
}

475 476 477 478 479 480 481
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
482 483
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
484 485
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
486
		&& !v->arch.power_off && !v->arch.pause);
487 488
}

489 490
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
491
	return vcpu_mode_priv(vcpu);
492 493
}

494 495 496 497 498 499 500
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
501
	preempt_disable();
502
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
503
	preempt_enable();
504 505 506 507
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
508
 * @vmid: The VMID to check
509 510 511
 *
 * return true if there is a new generation of VMIDs being used
 *
512 513
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
514 515 516
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
517
 */
518
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
519
{
520 521
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
522
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
523 524 525
}

/**
526 527
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
528
 */
529
static void update_vmid(struct kvm_vmid *vmid)
530
{
531
	if (!need_new_vmid_gen(vmid))
532 533
		return;

534
	spin_lock(&kvm_vmid_lock);
535 536 537 538 539 540

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
541
	if (!need_new_vmid_gen(vmid)) {
542
		spin_unlock(&kvm_vmid_lock);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

565
	vmid->vmid = kvm_next_vmid;
566
	kvm_next_vmid++;
567
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
568

569
	smp_wmb();
570
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
571 572

	spin_unlock(&kvm_vmid_lock);
573 574 575 576
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
577
	struct kvm *kvm = vcpu->kvm;
578
	int ret = 0;
579

580 581 582
	if (likely(vcpu->arch.has_run_once))
		return 0;

583 584 585
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

586
	vcpu->arch.has_run_once = true;
587

588 589
	kvm_arm_vcpu_init_debug(vcpu);

590 591 592 593 594
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
595 596 597
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
598 599 600 601 602 603
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
604 605
	}

606
	ret = kvm_timer_enable(vcpu);
607 608 609 610
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
611

612
	return ret;
613 614
}

615 616 617 618 619
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

620
void kvm_arm_halt_guest(struct kvm *kvm)
621 622 623 624 625 626
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
627
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
628 629
}

630
void kvm_arm_resume_guest(struct kvm *kvm)
631 632 633 634
{
	int i;
	struct kvm_vcpu *vcpu;

635 636
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
637
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
638
	}
639 640
}

641
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
642
{
643
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
644

645 646 647
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
648

A
Andrew Jones 已提交
649
	if (vcpu->arch.power_off || vcpu->arch.pause) {
650
		/* Awaken to handle a signal, request we sleep again later. */
651
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
652
	}
653 654 655 656 657 658 659

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
660 661
}

662 663 664 665 666
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

667 668 669
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
670 671
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
672

673 674 675
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

676 677 678 679 680
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
681 682 683

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
684 685 686 687 688 689 690 691

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
692 693 694
	}
}

695 696 697 698 699 700 701 702 703 704
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
705
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
706
{
707
	struct kvm_run *run = vcpu->run;
708 709
	int ret;

710
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
711 712 713 714
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
715
		return ret;
716

C
Christoffer Dall 已提交
717
	if (run->exit_reason == KVM_EXIT_MMIO) {
718
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
719
		if (ret)
720
			return ret;
C
Christoffer Dall 已提交
721 722
	}

723
	vcpu_load(vcpu);
724

725 726 727 728 729
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

730
	kvm_sigset_activate(vcpu);
731 732 733 734 735 736 737 738 739

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

740
		update_vmid(&vcpu->arch.hw_mmu->vmid);
741

742 743
		check_vcpu_requests(vcpu);

744 745 746 747 748
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
749
		preempt_disable();
750

751
		kvm_pmu_flush_hwstate(vcpu);
752

753 754
		local_irq_disable();

755 756
		kvm_vgic_flush_hwstate(vcpu);

757
		/*
758 759
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
760
		 */
761
		if (signal_pending(current)) {
762 763 764 765
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

781 782 783 784
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
785
		 * Documentation/virt/kvm/vcpu-requests.rst
786 787 788
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

789
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
790
		    kvm_request_pending(vcpu)) {
791
			vcpu->mode = OUTSIDE_GUEST_MODE;
792
			isb(); /* Ensure work in x_flush_hwstate is committed */
793
			kvm_pmu_sync_hwstate(vcpu);
794
			if (static_branch_unlikely(&userspace_irqchip_in_use))
795
				kvm_timer_sync_user(vcpu);
796
			kvm_vgic_sync_hwstate(vcpu);
797
			local_irq_enable();
798
			preempt_enable();
799 800 801
			continue;
		}

802 803
		kvm_arm_setup_debug(vcpu);

804 805 806 807
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
808
		guest_enter_irqoff();
809

810
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
811

812
		vcpu->mode = OUTSIDE_GUEST_MODE;
813
		vcpu->stat.exits++;
814 815 816 817
		/*
		 * Back from guest
		 *************************************************************/

818 819
		kvm_arm_clear_debug(vcpu);

820
		/*
821
		 * We must sync the PMU state before the vgic state so
822 823 824 825 826
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

827 828 829 830 831
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
832 833
		kvm_vgic_sync_hwstate(vcpu);

834 835 836 837 838
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
839
		if (static_branch_unlikely(&userspace_irqchip_in_use))
840
			kvm_timer_sync_user(vcpu);
841

842 843
		kvm_arch_vcpu_ctxsync_fp(vcpu);

844 845 846 847 848 849 850 851 852 853 854 855 856
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
857
		 * We do local_irq_enable() before calling guest_exit() so
858 859
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
860
		 * preemption after calling guest_exit() so that if we get
861 862 863
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
864
		guest_exit();
865
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
866

867
		/* Exit types that need handling before we can be preempted */
868
		handle_exit_early(vcpu, ret);
869

870 871
		preempt_enable();

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

891
		ret = handle_exit(vcpu, ret);
892 893
	}

894
	/* Tell userspace about in-kernel device output levels */
895 896 897 898
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
899

900
	kvm_sigset_deactivate(vcpu);
901

902
out:
903 904 905 906 907 908 909 910 911 912
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
913

914
	vcpu_put(vcpu);
915
	return ret;
916 917
}

918 919 920 921
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
922
	unsigned long *hcr;
923 924 925 926 927 928

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

929
	hcr = vcpu_hcr(vcpu);
930
	if (level)
931
		set = test_and_set_bit(bit_index, hcr);
932
	else
933
		set = test_and_clear_bit(bit_index, hcr);
934 935 936 937 938 939 940 941 942 943 944 945

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
946
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
947 948 949 950 951
	kvm_vcpu_kick(vcpu);

	return 0;
}

952 953
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
954 955 956 957 958 959 960 961 962
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
963
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
964 965 966 967
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

968 969 970 971
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
972

973 974
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
975

976 977 978
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
997

998
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
999 1000 1001 1002
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1003
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1004 1005
			return -EINVAL;

1006
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1007 1008 1009
	}

	return -EINVAL;
1010 1011
}

1012 1013 1014
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1015
	unsigned int i, ret;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1050 1051 1052 1053 1054
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1055

1056 1057
	return ret;
}
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1068 1069 1070
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1071
	 *
1072 1073 1074 1075
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1076
	 */
1077 1078 1079 1080 1081 1082
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1083

1084 1085
	vcpu_reset_hcr(vcpu);

1086
	/*
1087
	 * Handle the "start in power-off" case.
1088
	 */
1089
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1090
		vcpu_power_off(vcpu);
1091
	else
1092
		vcpu->arch.power_off = false;
1093 1094 1095 1096

	return 0;
}

1097 1098 1099 1100 1101 1102 1103
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1104
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1118
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1132
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1133 1134 1135 1136 1137 1138
		break;
	}

	return ret;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1165 1166 1167 1168 1169
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1170
	struct kvm_device_attr attr;
1171 1172
	long r;

1173 1174 1175 1176
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1177
		r = -EFAULT;
1178
		if (copy_from_user(&init, argp, sizeof(init)))
1179
			break;
1180

1181 1182
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1183 1184 1185 1186
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1187

1188
		r = -ENOEXEC;
1189
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1190
			break;
1191

1192
		r = -EFAULT;
1193
		if (copy_from_user(&reg, argp, sizeof(reg)))
1194 1195
			break;

1196
		if (ioctl == KVM_SET_ONE_REG)
1197
			r = kvm_arm_set_reg(vcpu, &reg);
1198
		else
1199 1200
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1201 1202 1203 1204 1205 1206
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1207
		r = -ENOEXEC;
1208
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1209
			break;
1210

1211 1212 1213 1214
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1215
		r = -EFAULT;
1216
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1217
			break;
1218 1219 1220
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1221 1222
			break;
		r = -E2BIG;
1223
		if (n < reg_list.n)
1224 1225 1226
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1227
	}
1228
	case KVM_SET_DEVICE_ATTR: {
1229
		r = -EFAULT;
1230
		if (copy_from_user(&attr, argp, sizeof(attr)))
1231 1232 1233
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1234 1235
	}
	case KVM_GET_DEVICE_ATTR: {
1236
		r = -EFAULT;
1237
		if (copy_from_user(&attr, argp, sizeof(attr)))
1238 1239 1240
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1241 1242
	}
	case KVM_HAS_DEVICE_ATTR: {
1243
		r = -EFAULT;
1244
		if (copy_from_user(&attr, argp, sizeof(attr)))
1245 1246 1247
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1248
	}
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1279
	default:
1280
		r = -EINVAL;
1281
	}
1282 1283

	return r;
1284 1285
}

1286
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1287
{
1288

1289 1290
}

1291
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1292
					const struct kvm_memory_slot *memslot)
1293
{
1294
	kvm_flush_remote_tlbs(kvm);
1295 1296
}

1297 1298 1299
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1300 1301 1302 1303 1304 1305 1306 1307 1308
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1309 1310
		if (!vgic_present)
			return -ENXIO;
1311
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1312 1313 1314
	default:
		return -ENODEV;
	}
1315 1316
}

1317 1318 1319
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1320 1321 1322 1323
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1324
	case KVM_CREATE_IRQCHIP: {
1325
		int ret;
1326 1327
		if (!vgic_present)
			return -ENXIO;
1328 1329 1330 1331
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1332
	}
1333 1334 1335 1336 1337 1338 1339
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1353 1354 1355
	default:
		return -EINVAL;
	}
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1371 1372 1373 1374
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1375
{
1376
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1389

1390
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1391
		return 0;
1392

1393 1394 1395 1396 1397
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1398 1399
	}

1400 1401
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1402 1403 1404
	return 0;
}

1405
static void cpu_prepare_hyp_mode(int cpu)
1406
{
1407
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1408
	unsigned long tcr;
1409

1410 1411 1412 1413
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1414
	 * Also drop the KASAN tag which gets in the way...
1415
	 */
1416
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1417
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1440
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1441
	params->pgd_pa = kvm_mmu_get_httbr();
1442 1443 1444 1445 1446
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1447

1448 1449 1450 1451 1452
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1453 1454
}

1455
static void hyp_install_host_vector(void)
1456 1457 1458 1459 1460 1461
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1462

1463 1464 1465 1466 1467 1468 1469
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1470
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1471
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1472
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1473 1474 1475 1476 1477
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1478 1479 1480 1481 1482 1483

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1484
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1485
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1486
	}
1487 1488
}

1489 1490 1491 1492 1493 1494
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1495 1496 1497 1498 1499 1500 1501 1502
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1503
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1504 1505 1506
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1507
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1508 1509 1510
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1511
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1512 1513 1514 1515 1516
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1517
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1518
	void *vector = hyp_spectre_vector_selector[data->slot];
1519

1520 1521 1522 1523
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1524 1525
}

1526 1527
static void cpu_hyp_reinit(void)
{
1528
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1529

1530
	cpu_hyp_reset();
1531

1532
	if (is_kernel_in_hyp_mode())
1533
		kvm_timer_init_vhe();
1534
	else
1535
		cpu_init_hyp_mode();
1536

1537 1538
	cpu_set_hyp_vector();

1539
	kvm_arm_init_debug();
1540 1541 1542

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1543 1544
}

1545 1546 1547
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1548
		cpu_hyp_reinit();
1549
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1550
	}
1551
}
1552

1553 1554 1555 1556
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1569 1570
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1571
}
1572

1573 1574 1575 1576 1577
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1593
		return NOTIFY_OK;
1594
	case CPU_PM_ENTER_FAILED:
1595 1596 1597 1598
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1599

1600 1601 1602 1603 1604
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1605 1606 1607 1608 1609 1610
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1611
static void hyp_cpu_pm_init(void)
1612
{
1613 1614
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1615
}
1616
static void hyp_cpu_pm_exit(void)
1617
{
1618 1619
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1620
}
1621 1622 1623 1624
#else
static inline void hyp_cpu_pm_init(void)
{
}
1625 1626 1627
static inline void hyp_cpu_pm_exit(void)
{
}
1628 1629
#endif

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1641
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1642 1643
}

1644 1645 1646
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1658 1659 1660 1661
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1662 1663 1664 1665
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1666
	}
1667 1668 1669
	return true;
}

1670 1671
static int init_common_resources(void)
{
1672
	return kvm_set_ipa_limit();
1673 1674 1675 1676
}

static int init_subsystems(void)
{
1677
	int err = 0;
1678

1679
	/*
1680
	 * Enable hardware so that subsystem initialisation can access EL2.
1681
	 */
1682
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1683 1684 1685 1686 1687 1688

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1700
		err = 0;
1701 1702
		break;
	default:
1703
		goto out;
1704 1705 1706 1707 1708
	}

	/*
	 * Init HYP architected timer support
	 */
1709
	err = kvm_timer_hyp_init(vgic_present);
1710
	if (err)
1711
		goto out;
1712 1713

	kvm_perf_init();
M
Marc Zyngier 已提交
1714
	kvm_sys_reg_table_init();
1715

1716
out:
1717 1718
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1719 1720

	return err;
1721 1722 1723 1724 1725 1726 1727
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1728
	for_each_possible_cpu(cpu) {
1729
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1730 1731
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
	hyp_install_host_vector();
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1754 1755 1756
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1770 1771 1772 1773 1774
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1775
	u32 hyp_va_bits;
1776
	int cpu;
1777 1778 1779 1780 1781 1782 1783 1784
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1785 1786 1787 1788

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1789
	err = kvm_mmu_init(&hyp_va_bits);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1802
			goto out_err;
1803 1804 1805 1806 1807
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1826 1827 1828
	/*
	 * Map the Hyp-code called directly from the host
	 */
1829
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1830
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1831 1832
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1833
		goto out_err;
1834 1835
	}

1836 1837
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1838
	if (err) {
1839
		kvm_err("Cannot map .hyp.rodata section\n");
1840 1841 1842
		goto out_err;
	}

1843
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1844
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1845 1846
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1847 1848 1849
		goto out_err;
	}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1863 1864 1865
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1866
		goto out_err;
1867 1868
	}

1869 1870 1871 1872 1873
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1874 1875
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1876 1877 1878

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1879
			goto out_err;
1880 1881 1882 1883
		}
	}

	for_each_possible_cpu(cpu) {
1884 1885
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1886

1887
		/* Map Hyp percpu pages */
1888
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1889
		if (err) {
1890
			kvm_err("Cannot map hyp percpu region\n");
1891 1892
			goto out_err;
		}
1893 1894 1895

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1896 1897
	}

1898
	if (is_protected_kvm_enabled()) {
1899 1900
		init_cpu_logical_map();

1901 1902
		if (!init_psci_relay()) {
			err = -ENODEV;
1903
			goto out_err;
1904
		}
1905 1906
	}

1907 1908 1909 1910
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1911
			goto out_err;
1912
		}
1913 1914
	}

1915
	return 0;
1916

1917
out_err:
1918
	teardown_hyp_mode();
1919 1920 1921 1922
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1923
static void _kvm_host_prot_finalize(void *discard)
1924 1925 1926 1927
{
	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
}

1928 1929 1930 1931 1932 1933 1934 1935 1936
static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
{
	return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
}

#define pkvm_mark_hyp_section(__section)		\
	pkvm_mark_hyp(__pa_symbol(__section##_start),	\
			__pa_symbol(__section##_end))

1937 1938
static int finalize_hyp_mode(void)
{
1939 1940
	int cpu, ret;

1941 1942 1943
	if (!is_protected_kvm_enabled())
		return 0;

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	ret = pkvm_mark_hyp_section(__hyp_idmap_text);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_text);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_rodata);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp_section(__hyp_bss);
	if (ret)
		return ret;

	ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
	if (ret)
		return ret;

	for_each_possible_cpu(cpu) {
		phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
		phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());

		ret = pkvm_mark_hyp(start, end);
		if (ret)
			return ret;

		start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
		end = start + PAGE_SIZE;
		ret = pkvm_mark_hyp(start, end);
		if (ret)
			return ret;
	}

1979 1980 1981 1982
	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
1983
	static_branch_enable(&kvm_protected_mode_initialized);
1984
	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1985 1986 1987 1988

	return 0;
}

1989 1990 1991 1992 1993
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2018 2019
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2020 2021 2022 2023 2024 2025 2026
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2027 2028
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2047 2048 2049
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2050 2051
int kvm_arch_init(void *opaque)
{
2052
	int err;
2053
	int ret, cpu;
2054
	bool in_hyp_mode;
2055 2056

	if (!is_hyp_mode_available()) {
2057
		kvm_info("HYP mode not available\n");
2058 2059 2060
		return -ENODEV;
	}

2061 2062
	in_hyp_mode = is_kernel_in_hyp_mode();

2063 2064
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2065 2066 2067
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2068 2069 2070 2071 2072 2073
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
2074 2075
	}

2076
	err = init_common_resources();
2077
	if (err)
2078
		return err;
2079

2080
	err = kvm_arm_init_sve();
2081 2082 2083
	if (err)
		return err;

2084
	if (!in_hyp_mode) {
2085
		err = init_hyp_mode();
2086 2087 2088
		if (err)
			goto out_err;
	}
2089

2090 2091 2092 2093 2094 2095
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2096 2097 2098
	err = init_subsystems();
	if (err)
		goto out_hyp;
2099

2100 2101 2102 2103 2104 2105 2106 2107
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2108
	if (is_protected_kvm_enabled()) {
2109
		kvm_info("Protected nVHE mode initialized successfully\n");
2110
	} else if (in_hyp_mode) {
2111
		kvm_info("VHE mode initialized successfully\n");
2112
	} else {
2113
		kvm_info("Hyp mode initialized successfully\n");
2114
	}
2115

2116
	return 0;
2117 2118

out_hyp:
2119
	hyp_cpu_pm_exit();
2120 2121
	if (!in_hyp_mode)
		teardown_hyp_mode();
2122 2123
out_err:
	return err;
2124 2125 2126 2127 2128
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2129
	kvm_perf_teardown();
2130 2131
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2142 2143 2144
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
		return 0;

2145 2146 2147 2148
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2149 2150 2151 2152 2153
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2154 2155 2156 2157 2158 2159 2160
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);