arm.c 51.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	bitmap_free(kvm->arch.pmu_filter);

182 183
	kvm_vgic_destroy(kvm);

184 185
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
186
			kvm_vcpu_destroy(kvm->vcpus[i]);
187 188 189
			kvm->vcpus[i] = NULL;
		}
	}
190
	atomic_set(&kvm->online_vcpus, 0);
191 192
}

193
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 195 196
{
	int r;
	switch (ext) {
197
	case KVM_CAP_IRQCHIP:
198 199
		r = vgic_present;
		break;
200
	case KVM_CAP_IOEVENTFD:
201
	case KVM_CAP_DEVICE_CTRL:
202 203 204 205
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
206
	case KVM_CAP_ARM_PSCI:
207
	case KVM_CAP_ARM_PSCI_0_2:
208
	case KVM_CAP_READONLY_MEM:
209
	case KVM_CAP_MP_STATE:
210
	case KVM_CAP_IMMEDIATE_EXIT:
211
	case KVM_CAP_VCPU_EVENTS:
212
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213
	case KVM_CAP_ARM_NISV_TO_USER:
214
	case KVM_CAP_ARM_INJECT_EXT_DABT:
215 216
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
217
	case KVM_CAP_PTP_KVM:
218 219
		r = 1;
		break;
220 221
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
222 223
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
224
		break;
225
	case KVM_CAP_NR_VCPUS:
226 227 228 229 230 231 232 233
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
234 235
		break;
	case KVM_CAP_MAX_VCPUS:
236
	case KVM_CAP_MAX_VCPU_ID:
237 238 239 240
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
241
		break;
V
Vladimir Murzin 已提交
242 243 244 245 246 247
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
248 249 250 251 252 253 254
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
255 256 257
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
258 259 260
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
278
		break;
279 280 281 282 283 284 285 286 287
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
288
	}
289

290 291 292 293 294 295 296 297 298
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

299 300
struct kvm *kvm_arch_alloc_vm(void)
{
301 302
	size_t sz = sizeof(struct kvm);

303
	if (!has_vhe())
304
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
305

306
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
307 308
}

309 310 311 312 313 314 315 316 317 318 319
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

320
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
321
{
322 323 324 325 326 327
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

328 329
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

330 331 332 333 334 335 336 337 338
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

339 340
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

341 342 343 344
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

345
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
346 347
}

348
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
349 350 351
{
}

352
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
353
{
354 355 356
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

357
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
358
	kvm_timer_vcpu_terminate(vcpu);
359
	kvm_pmu_vcpu_destroy(vcpu);
360 361

	kvm_arm_vcpu_destroy(vcpu);
362 363 364 365
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
366
	return kvm_timer_is_pending(vcpu);
367 368
}

369 370
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
371 372 373
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
374
	 * so that we have the latest PMR and group enables. This ensures
375 376
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
377 378 379
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
380 381 382
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
383
	vgic_v4_put(vcpu, true);
384
	preempt_enable();
385 386 387 388
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
389 390 391
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
392 393
}

394 395
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
396
	struct kvm_s2_mmu *mmu;
397 398
	int *last_ran;

399 400
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
401 402

	/*
403 404 405 406 407
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
408 409 410 411
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
412
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
413 414 415
		*last_ran = vcpu->vcpu_id;
	}

416
	vcpu->cpu = cpu;
417

418
	kvm_vgic_load(vcpu);
419
	kvm_timer_vcpu_load(vcpu);
420 421
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
422
	kvm_arch_vcpu_load_fp(vcpu);
423
	kvm_vcpu_pmu_restore_guest(vcpu);
424 425
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
426 427

	if (single_task_running())
428
		vcpu_clear_wfx_traps(vcpu);
429
	else
430
		vcpu_set_wfx_traps(vcpu);
431

432
	if (vcpu_has_ptrauth(vcpu))
433
		vcpu_ptrauth_disable(vcpu);
434
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
435 436 437 438
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
439
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
440
	kvm_arch_vcpu_put_fp(vcpu);
441 442
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
443
	kvm_timer_vcpu_put(vcpu);
444
	kvm_vgic_put(vcpu);
445
	kvm_vcpu_pmu_restore_host(vcpu);
446

447
	vcpu->cpu = -1;
448 449
}

A
Andrew Jones 已提交
450 451 452
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
453
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
454 455 456
	kvm_vcpu_kick(vcpu);
}

457 458 459
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
460
	if (vcpu->arch.power_off)
461 462 463 464 465
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
466 467 468 469 470
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
471 472
	int ret = 0;

473 474
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
475
		vcpu->arch.power_off = false;
476 477
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
478
		vcpu_power_off(vcpu);
479 480
		break;
	default:
481
		ret = -EINVAL;
482 483
	}

484
	return ret;
485 486
}

487 488 489 490 491 492 493
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
494 495
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
496 497
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
498
		&& !v->arch.power_off && !v->arch.pause);
499 500
}

501 502
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
503
	return vcpu_mode_priv(vcpu);
504 505
}

506 507 508 509 510 511 512
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
513
	preempt_disable();
514
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
515
	preempt_enable();
516 517 518 519
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
520
 * @vmid: The VMID to check
521 522 523
 *
 * return true if there is a new generation of VMIDs being used
 *
524 525
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
526 527 528
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
529
 */
530
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
531
{
532 533
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
534
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
535 536 537
}

/**
538 539
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
540
 */
541
static void update_vmid(struct kvm_vmid *vmid)
542
{
543
	if (!need_new_vmid_gen(vmid))
544 545
		return;

546
	spin_lock(&kvm_vmid_lock);
547 548 549 550 551 552

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
553
	if (!need_new_vmid_gen(vmid)) {
554
		spin_unlock(&kvm_vmid_lock);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

577
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
578
	kvm_next_vmid++;
579
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
580

581
	smp_wmb();
582
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
583 584

	spin_unlock(&kvm_vmid_lock);
585 586
}

587
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
588
{
589
	return vcpu->arch.target >= 0;
590 591
}

592 593 594 595 596 597
/*
 * Handle both the initialisation that is being done when the vcpu is
 * run for the first time, as well as the updates that must be
 * performed each time we get a new thread dealing with this vcpu.
 */
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
598
{
599
	struct kvm *kvm = vcpu->kvm;
600
	int ret;
601

602 603
	if (!kvm_vcpu_initialized(vcpu))
		return -ENOEXEC;
604

605 606 607
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

608 609 610 611 612 613 614
	ret = kvm_arch_vcpu_run_map_fp(vcpu);
	if (ret)
		return ret;

	if (likely(vcpu->arch.has_run_once))
		return 0;

615 616
	kvm_arm_vcpu_init_debug(vcpu);

617 618 619 620 621
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
622 623 624
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
625 626
	}

627
	ret = kvm_timer_enable(vcpu);
628 629 630 631
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
632 633 634 635 636 637 638 639 640 641 642 643
	if (ret)
		return ret;

	if (!irqchip_in_kernel(kvm)) {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
	}

	vcpu->arch.has_run_once = true;
644

645 646 647 648 649 650 651 652
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

653
	return ret;
654 655
}

656 657 658 659 660
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

661
void kvm_arm_halt_guest(struct kvm *kvm)
662 663 664 665 666 667
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
668
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
669 670
}

671
void kvm_arm_resume_guest(struct kvm *kvm)
672 673 674 675
{
	int i;
	struct kvm_vcpu *vcpu;

676 677
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
678
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
679
	}
680 681
}

682
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
683
{
684
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
685

686 687 688
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
689

A
Andrew Jones 已提交
690
	if (vcpu->arch.power_off || vcpu->arch.pause) {
691
		/* Awaken to handle a signal, request we sleep again later. */
692
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
693
	}
694 695 696 697 698 699 700

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
701 702
}

703 704 705
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
706 707
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
708

709 710 711
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

712 713 714 715 716
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
717 718 719

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
720 721 722 723 724 725 726 727

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
728 729 730 731

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
732 733 734
	}
}

735 736 737 738 739 740 741 742 743
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

783 784 785 786 787 788 789 790 791 792
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
793
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
794
{
795
	struct kvm_run *run = vcpu->run;
796 797
	int ret;

C
Christoffer Dall 已提交
798
	if (run->exit_reason == KVM_EXIT_MMIO) {
799
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
800
		if (ret)
801
			return ret;
C
Christoffer Dall 已提交
802 803
	}

804
	vcpu_load(vcpu);
805

806 807 808 809 810
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

811
	kvm_sigset_activate(vcpu);
812 813 814 815 816 817 818

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
819 820 821
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
822

823
		update_vmid(&vcpu->arch.hw_mmu->vmid);
824

825 826
		check_vcpu_requests(vcpu);

827 828 829 830 831
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
832
		preempt_disable();
833

834
		kvm_pmu_flush_hwstate(vcpu);
835

836 837
		local_irq_disable();

838 839
		kvm_vgic_flush_hwstate(vcpu);

840 841 842 843
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
844
		 * Documentation/virt/kvm/vcpu-requests.rst
845 846 847
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

848
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
849
			vcpu->mode = OUTSIDE_GUEST_MODE;
850
			isb(); /* Ensure work in x_flush_hwstate is committed */
851
			kvm_pmu_sync_hwstate(vcpu);
852
			if (static_branch_unlikely(&userspace_irqchip_in_use))
853
				kvm_timer_sync_user(vcpu);
854
			kvm_vgic_sync_hwstate(vcpu);
855
			local_irq_enable();
856
			preempt_enable();
857 858 859
			continue;
		}

860 861
		kvm_arm_setup_debug(vcpu);

862 863 864 865
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
866
		guest_enter_irqoff();
867

868
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
869

870
		vcpu->mode = OUTSIDE_GUEST_MODE;
871
		vcpu->stat.exits++;
872 873 874 875
		/*
		 * Back from guest
		 *************************************************************/

876 877
		kvm_arm_clear_debug(vcpu);

878
		/*
879
		 * We must sync the PMU state before the vgic state so
880 881 882 883 884
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

885 886 887 888 889
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
890 891
		kvm_vgic_sync_hwstate(vcpu);

892 893 894 895 896
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
897
		if (static_branch_unlikely(&userspace_irqchip_in_use))
898
			kvm_timer_sync_user(vcpu);
899

900 901
		kvm_arch_vcpu_ctxsync_fp(vcpu);

902 903 904 905 906 907 908 909 910 911 912 913 914
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
915
		 * We do local_irq_enable() before calling guest_exit() so
916 917
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
918
		 * preemption after calling guest_exit() so that if we get
919 920 921
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
922
		guest_exit();
923
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
924

925
		/* Exit types that need handling before we can be preempted */
926
		handle_exit_early(vcpu, ret);
927

928 929
		preempt_enable();

930 931 932 933 934 935 936 937
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
938
		if (vcpu_mode_is_bad_32bit(vcpu)) {
939 940 941 942 943 944 945 946 947 948
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

949
		ret = handle_exit(vcpu, ret);
950 951
	}

952
	/* Tell userspace about in-kernel device output levels */
953 954 955 956
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
957

958
	kvm_sigset_deactivate(vcpu);
959

960
out:
961 962 963 964 965 966 967 968 969 970
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
971

972
	vcpu_put(vcpu);
973
	return ret;
974 975
}

976 977 978 979
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
980
	unsigned long *hcr;
981 982 983 984 985 986

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

987
	hcr = vcpu_hcr(vcpu);
988
	if (level)
989
		set = test_and_set_bit(bit_index, hcr);
990
	else
991
		set = test_and_clear_bit(bit_index, hcr);
992 993 994 995 996 997 998 999 1000 1001 1002 1003

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
1004
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1005 1006 1007 1008 1009
	kvm_vcpu_kick(vcpu);

	return 0;
}

1010 1011
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1021
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1022 1023 1024 1025
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1026 1027 1028 1029
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1030

1031 1032
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1033

1034 1035 1036
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1055

1056
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1057 1058 1059 1060
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1061
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1062 1063
			return -EINVAL;

1064
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1065 1066 1067
	}

	return -EINVAL;
1068 1069
}

1070 1071 1072
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1073
	unsigned int i, ret;
1074
	u32 phys_target = kvm_target_cpu();
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1108 1109 1110 1111 1112
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1113

1114 1115
	return ret;
}
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1126 1127 1128
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1129
	 *
1130 1131 1132 1133
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1134
	 */
1135 1136 1137 1138
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1139
			icache_inval_all_pou();
1140
	}
1141

1142
	vcpu_reset_hcr(vcpu);
1143
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1144

1145
	/*
1146
	 * Handle the "start in power-off" case.
1147
	 */
1148
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1149
		vcpu_power_off(vcpu);
1150
	else
1151
		vcpu->arch.power_off = false;
1152 1153 1154 1155

	return 0;
}

1156 1157 1158 1159 1160 1161 1162
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1163
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1177
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1191
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1192 1193 1194 1195 1196 1197
		break;
	}

	return ret;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1224 1225 1226 1227 1228
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1229
	struct kvm_device_attr attr;
1230 1231
	long r;

1232 1233 1234 1235
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1236
		r = -EFAULT;
1237
		if (copy_from_user(&init, argp, sizeof(init)))
1238
			break;
1239

1240 1241
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1242 1243 1244 1245
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1246

1247
		r = -ENOEXEC;
1248
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1249
			break;
1250

1251
		r = -EFAULT;
1252
		if (copy_from_user(&reg, argp, sizeof(reg)))
1253 1254
			break;

1255 1256 1257 1258 1259 1260 1261 1262
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1263
		if (ioctl == KVM_SET_ONE_REG)
1264
			r = kvm_arm_set_reg(vcpu, &reg);
1265
		else
1266 1267
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1268 1269 1270 1271 1272 1273
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1274
		r = -ENOEXEC;
1275
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1276
			break;
1277

1278 1279 1280 1281
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1282
		r = -EFAULT;
1283
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1284
			break;
1285 1286 1287
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1288 1289
			break;
		r = -E2BIG;
1290
		if (n < reg_list.n)
1291 1292 1293
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1294
	}
1295
	case KVM_SET_DEVICE_ATTR: {
1296
		r = -EFAULT;
1297
		if (copy_from_user(&attr, argp, sizeof(attr)))
1298 1299 1300
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1301 1302
	}
	case KVM_GET_DEVICE_ATTR: {
1303
		r = -EFAULT;
1304
		if (copy_from_user(&attr, argp, sizeof(attr)))
1305 1306 1307
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1308 1309
	}
	case KVM_HAS_DEVICE_ATTR: {
1310
		r = -EFAULT;
1311
		if (copy_from_user(&attr, argp, sizeof(attr)))
1312 1313 1314
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1315
	}
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1346
	default:
1347
		r = -EINVAL;
1348
	}
1349 1350

	return r;
1351 1352
}

1353
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1354
{
1355

1356 1357
}

1358
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1359
					const struct kvm_memory_slot *memslot)
1360
{
1361
	kvm_flush_remote_tlbs(kvm);
1362 1363
}

1364 1365 1366
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1367 1368 1369 1370 1371 1372 1373 1374 1375
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1376 1377
		if (!vgic_present)
			return -ENXIO;
1378
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1379 1380 1381
	default:
		return -ENODEV;
	}
1382 1383
}

1384 1385 1386
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1387 1388 1389 1390
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1391
	case KVM_CREATE_IRQCHIP: {
1392
		int ret;
1393 1394
		if (!vgic_present)
			return -ENXIO;
1395 1396 1397 1398
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1399
	}
1400 1401 1402 1403 1404 1405 1406
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1407 1408 1409
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1410
		kvm_vcpu_preferred_target(&init);
1411 1412 1413 1414 1415 1416

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1417 1418 1419 1420 1421 1422 1423
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1424 1425 1426
	default:
		return -EINVAL;
	}
1427 1428
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1442 1443 1444 1445
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1446
{
1447
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1460

1461
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1462
		return 0;
1463

1464 1465 1466 1467 1468
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1469 1470
	}

1471 1472
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1473 1474 1475
	return 0;
}

1476
static void cpu_prepare_hyp_mode(int cpu)
1477
{
1478
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1479
	unsigned long tcr;
1480

1481 1482 1483 1484
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1485
	 * Also drop the KASAN tag which gets in the way...
1486
	 */
1487
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1488
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1511
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1512
	params->pgd_pa = kvm_mmu_get_httbr();
1513 1514 1515 1516 1517
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1518

1519 1520 1521 1522 1523
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1524 1525
}

1526
static void hyp_install_host_vector(void)
1527 1528 1529 1530 1531 1532
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1533

1534 1535 1536 1537 1538 1539 1540
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1541
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1542
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1543
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1544 1545 1546 1547 1548
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1549 1550 1551 1552 1553 1554

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1555
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1556
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1557
	}
1558 1559
}

1560 1561 1562 1563 1564 1565
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1566 1567 1568 1569 1570 1571 1572 1573
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1574
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1575 1576 1577
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1578
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1579 1580 1581
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1582
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1583 1584 1585 1586 1587
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1588
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1589
	void *vector = hyp_spectre_vector_selector[data->slot];
1590

1591 1592 1593 1594
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1595 1596
}

1597
static void cpu_hyp_init_context(void)
1598
{
1599
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1600

1601
	if (!is_kernel_in_hyp_mode())
1602
		cpu_init_hyp_mode();
1603
}
1604

1605 1606
static void cpu_hyp_init_features(void)
{
1607
	cpu_set_hyp_vector();
1608
	kvm_arm_init_debug();
1609

1610 1611 1612
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1613 1614
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1615 1616
}

1617 1618 1619 1620 1621 1622 1623
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1624 1625 1626
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1627
		cpu_hyp_reinit();
1628
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1629
	}
1630
}
1631

1632 1633 1634 1635
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1648 1649
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1650
}
1651

1652 1653 1654 1655 1656
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1672
		return NOTIFY_OK;
1673
	case CPU_PM_ENTER_FAILED:
1674 1675 1676 1677
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1678

1679 1680 1681 1682 1683
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1684 1685 1686 1687 1688 1689
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1690
static void hyp_cpu_pm_init(void)
1691
{
1692 1693
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1694
}
1695
static void hyp_cpu_pm_exit(void)
1696
{
1697 1698
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1699
}
1700 1701 1702 1703
#else
static inline void hyp_cpu_pm_init(void)
{
}
1704 1705 1706
static inline void hyp_cpu_pm_exit(void)
{
}
1707 1708
#endif

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1720
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1721 1722
}

1723 1724 1725
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1737 1738 1739 1740
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1741 1742 1743 1744
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1745
	}
1746 1747 1748
	return true;
}

1749 1750
static int init_subsystems(void)
{
1751
	int err = 0;
1752

1753
	/*
1754
	 * Enable hardware so that subsystem initialisation can access EL2.
1755
	 */
1756
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1757 1758 1759 1760 1761 1762

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1774
		err = 0;
1775 1776
		break;
	default:
1777
		goto out;
1778 1779 1780 1781 1782
	}

	/*
	 * Init HYP architected timer support
	 */
1783
	err = kvm_timer_hyp_init(vgic_present);
1784
	if (err)
1785
		goto out;
1786 1787

	kvm_perf_init();
M
Marc Zyngier 已提交
1788
	kvm_sys_reg_table_init();
1789

1790
out:
1791 1792
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1793 1794

	return err;
1795 1796 1797 1798 1799 1800 1801
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1802
	for_each_possible_cpu(cpu) {
1803
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1804 1805
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1806 1807
}

1808 1809 1810 1811 1812 1813
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1814
	cpu_hyp_init_context();
1815 1816 1817
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1818 1819 1820 1821 1822 1823 1824
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1835 1836 1837 1838
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1839 1840
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1841
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1856 1857 1858 1859 1860
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1861
	u32 hyp_va_bits;
1862
	int cpu;
1863 1864 1865 1866 1867 1868 1869 1870
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1871 1872 1873 1874

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1875
	err = kvm_mmu_init(&hyp_va_bits);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1888
			goto out_err;
1889 1890 1891 1892 1893
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1912 1913 1914
	/*
	 * Map the Hyp-code called directly from the host
	 */
1915
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1916
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1917 1918
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1919
		goto out_err;
1920 1921
	}

1922 1923
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1924
	if (err) {
1925
		kvm_err("Cannot map .hyp.rodata section\n");
1926 1927 1928
		goto out_err;
	}

1929
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1930
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1931 1932
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1933 1934 1935
		goto out_err;
	}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1949 1950 1951
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1952
		goto out_err;
1953 1954
	}

1955 1956 1957 1958 1959
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1960 1961
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1962 1963 1964

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1965
			goto out_err;
1966 1967 1968 1969
		}
	}

	for_each_possible_cpu(cpu) {
1970 1971
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1972

1973
		/* Map Hyp percpu pages */
1974
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1975
		if (err) {
1976
			kvm_err("Cannot map hyp percpu region\n");
1977 1978
			goto out_err;
		}
1979 1980 1981

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1982 1983
	}

1984
	if (is_protected_kvm_enabled()) {
1985 1986
		init_cpu_logical_map();

1987 1988
		if (!init_psci_relay()) {
			err = -ENODEV;
1989
			goto out_err;
1990
		}
1991 1992
	}

1993 1994 1995 1996
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1997
			goto out_err;
1998
		}
1999 2000
	}

2001
	return 0;
2002

2003
out_err:
2004
	teardown_hyp_mode();
2005 2006 2007 2008
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2009
static void _kvm_host_prot_finalize(void *arg)
2010
{
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2028 2029
}

2030 2031 2032 2033 2034
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2035 2036 2037 2038 2039 2040
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2041
	return pkvm_drop_host_privileges();
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2068 2069
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2070 2071 2072 2073 2074 2075 2076
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2077 2078
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2097 2098 2099
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2100 2101
int kvm_arch_init(void *opaque)
{
2102
	int err;
2103
	bool in_hyp_mode;
2104 2105

	if (!is_hyp_mode_available()) {
2106
		kvm_info("HYP mode not available\n");
2107 2108 2109
		return -ENODEV;
	}

2110 2111 2112 2113 2114
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2115 2116
	in_hyp_mode = is_kernel_in_hyp_mode();

2117 2118
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2119 2120 2121
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2122
	err = kvm_set_ipa_limit();
2123
	if (err)
2124
		return err;
2125

2126
	err = kvm_arm_init_sve();
2127 2128 2129
	if (err)
		return err;

2130
	if (!in_hyp_mode) {
2131
		err = init_hyp_mode();
2132 2133 2134
		if (err)
			goto out_err;
	}
2135

2136 2137 2138 2139 2140 2141
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2142 2143 2144
	err = init_subsystems();
	if (err)
		goto out_hyp;
2145

2146 2147 2148 2149 2150 2151 2152 2153
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2154
	if (is_protected_kvm_enabled()) {
2155
		kvm_info("Protected nVHE mode initialized successfully\n");
2156
	} else if (in_hyp_mode) {
2157
		kvm_info("VHE mode initialized successfully\n");
2158
	} else {
2159
		kvm_info("Hyp mode initialized successfully\n");
2160
	}
2161

2162
	return 0;
2163 2164

out_hyp:
2165
	hyp_cpu_pm_exit();
2166 2167
	if (!in_hyp_mode)
		teardown_hyp_mode();
2168 2169
out_err:
	return err;
2170 2171 2172 2173 2174
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2175
	kvm_perf_teardown();
2176 2177
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2188 2189
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2190
		return 0;
2191 2192 2193 2194
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2195
		return 0;
2196
	}
2197

2198 2199 2200 2201
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2202 2203 2204 2205 2206
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2207 2208 2209 2210 2211 2212 2213
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);