arm.c 51.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	bitmap_free(kvm->arch.pmu_filter);

182 183
	kvm_vgic_destroy(kvm);

184 185
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
186
			kvm_vcpu_destroy(kvm->vcpus[i]);
187 188 189
			kvm->vcpus[i] = NULL;
		}
	}
190
	atomic_set(&kvm->online_vcpus, 0);
191 192
}

193
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 195 196
{
	int r;
	switch (ext) {
197
	case KVM_CAP_IRQCHIP:
198 199
		r = vgic_present;
		break;
200
	case KVM_CAP_IOEVENTFD:
201
	case KVM_CAP_DEVICE_CTRL:
202 203 204 205
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
206
	case KVM_CAP_ARM_PSCI:
207
	case KVM_CAP_ARM_PSCI_0_2:
208
	case KVM_CAP_READONLY_MEM:
209
	case KVM_CAP_MP_STATE:
210
	case KVM_CAP_IMMEDIATE_EXIT:
211
	case KVM_CAP_VCPU_EVENTS:
212
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213
	case KVM_CAP_ARM_NISV_TO_USER:
214
	case KVM_CAP_ARM_INJECT_EXT_DABT:
215 216
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
217
	case KVM_CAP_PTP_KVM:
218 219
		r = 1;
		break;
220 221
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
222 223
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
224
		break;
225 226 227 228
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
229
	case KVM_CAP_MAX_VCPU_ID:
230 231 232 233
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
234
		break;
V
Vladimir Murzin 已提交
235 236 237 238 239 240
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
241 242 243 244 245 246 247
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
248 249 250
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
251 252 253
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
271
		break;
272 273 274 275 276 277 278 279 280
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
281
	}
282

283 284 285 286 287 288 289 290 291
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

292 293
struct kvm *kvm_arch_alloc_vm(void)
{
294 295
	size_t sz = sizeof(struct kvm);

296
	if (!has_vhe())
297
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
298

299
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
300 301 302 303 304 305 306 307 308
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
309

310 311 312 313 314 315 316 317 318 319 320
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

321
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
322
{
323 324 325 326 327 328
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

329 330
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

331 332 333 334 335 336 337 338 339
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

340 341
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

342 343 344 345
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

346
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
347 348
}

349
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
350 351 352
{
}

353
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
354
{
355 356 357
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

358
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
359
	kvm_timer_vcpu_terminate(vcpu);
360
	kvm_pmu_vcpu_destroy(vcpu);
361 362

	kvm_arm_vcpu_destroy(vcpu);
363 364 365 366
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
367
	return kvm_timer_is_pending(vcpu);
368 369
}

370 371
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
372 373 374
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
375
	 * so that we have the latest PMR and group enables. This ensures
376 377
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
378 379 380
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
381 382 383
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
384
	vgic_v4_put(vcpu, true);
385
	preempt_enable();
386 387 388 389
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
390 391 392
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
393 394
}

395 396
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
397
	struct kvm_s2_mmu *mmu;
398 399
	int *last_ran;

400 401
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
402 403

	/*
404 405 406 407 408
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
409 410 411 412
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
413
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
414 415 416
		*last_ran = vcpu->vcpu_id;
	}

417
	vcpu->cpu = cpu;
418

419
	kvm_vgic_load(vcpu);
420
	kvm_timer_vcpu_load(vcpu);
421 422
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
423
	kvm_arch_vcpu_load_fp(vcpu);
424
	kvm_vcpu_pmu_restore_guest(vcpu);
425 426
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
427 428

	if (single_task_running())
429
		vcpu_clear_wfx_traps(vcpu);
430
	else
431
		vcpu_set_wfx_traps(vcpu);
432

433
	if (vcpu_has_ptrauth(vcpu))
434
		vcpu_ptrauth_disable(vcpu);
435
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
436 437 438 439
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
440
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
441
	kvm_arch_vcpu_put_fp(vcpu);
442 443
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
444
	kvm_timer_vcpu_put(vcpu);
445
	kvm_vgic_put(vcpu);
446
	kvm_vcpu_pmu_restore_host(vcpu);
447

448
	vcpu->cpu = -1;
449 450
}

A
Andrew Jones 已提交
451 452 453
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
454
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
455 456 457
	kvm_vcpu_kick(vcpu);
}

458 459 460
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
461
	if (vcpu->arch.power_off)
462 463 464 465 466
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
467 468 469 470 471
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
472 473
	int ret = 0;

474 475
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
476
		vcpu->arch.power_off = false;
477 478
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
479
		vcpu_power_off(vcpu);
480 481
		break;
	default:
482
		ret = -EINVAL;
483 484
	}

485
	return ret;
486 487
}

488 489 490 491 492 493 494
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
495 496
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
497 498
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
499
		&& !v->arch.power_off && !v->arch.pause);
500 501
}

502 503
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
504
	return vcpu_mode_priv(vcpu);
505 506
}

507 508 509 510 511 512 513
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
514
	preempt_disable();
515
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
516
	preempt_enable();
517 518 519 520
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
521
 * @vmid: The VMID to check
522 523 524
 *
 * return true if there is a new generation of VMIDs being used
 *
525 526
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
527 528 529
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
530
 */
531
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
532
{
533 534
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
535
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
536 537 538
}

/**
539 540
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
541
 */
542
static void update_vmid(struct kvm_vmid *vmid)
543
{
544
	if (!need_new_vmid_gen(vmid))
545 546
		return;

547
	spin_lock(&kvm_vmid_lock);
548 549 550 551 552 553

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
554
	if (!need_new_vmid_gen(vmid)) {
555
		spin_unlock(&kvm_vmid_lock);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

578
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
579
	kvm_next_vmid++;
580
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
581

582
	smp_wmb();
583
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
584 585

	spin_unlock(&kvm_vmid_lock);
586 587 588 589
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
590
	struct kvm *kvm = vcpu->kvm;
591
	int ret = 0;
592

593 594 595
	if (likely(vcpu->arch.has_run_once))
		return 0;

596 597 598
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

599
	vcpu->arch.has_run_once = true;
600

601 602
	kvm_arm_vcpu_init_debug(vcpu);

603 604 605 606 607
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
608 609 610
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
611 612 613 614 615 616
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
617 618
	}

619
	ret = kvm_timer_enable(vcpu);
620 621 622 623
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
624

625 626 627 628 629 630 631 632
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

633
	return ret;
634 635
}

636 637 638 639 640
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

641
void kvm_arm_halt_guest(struct kvm *kvm)
642 643 644 645 646 647
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
648
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
649 650
}

651
void kvm_arm_resume_guest(struct kvm *kvm)
652 653 654 655
{
	int i;
	struct kvm_vcpu *vcpu;

656 657
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
658
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
659
	}
660 661
}

662
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
663
{
664
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
665

666 667 668
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
669

A
Andrew Jones 已提交
670
	if (vcpu->arch.power_off || vcpu->arch.pause) {
671
		/* Awaken to handle a signal, request we sleep again later. */
672
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
673
	}
674 675 676 677 678 679 680

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
681 682
}

683 684 685 686 687
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

688 689 690
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
691 692
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
693

694 695 696
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

697 698 699 700 701
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
702 703 704

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
705 706 707 708 709 710 711 712

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
713 714 715 716

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
717 718 719
	}
}

720 721 722 723 724 725 726 727 728
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

768 769 770 771 772 773 774 775 776 777
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
778
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
779
{
780
	struct kvm_run *run = vcpu->run;
781 782
	int ret;

783
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
784 785 786 787
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
788
		return ret;
789

C
Christoffer Dall 已提交
790
	if (run->exit_reason == KVM_EXIT_MMIO) {
791
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
792
		if (ret)
793
			return ret;
C
Christoffer Dall 已提交
794 795
	}

796
	vcpu_load(vcpu);
797

798 799 800 801 802
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

803
	kvm_sigset_activate(vcpu);
804 805 806 807 808 809 810

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
811 812 813
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
814

815
		update_vmid(&vcpu->arch.hw_mmu->vmid);
816

817 818
		check_vcpu_requests(vcpu);

819 820 821 822 823
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
824
		preempt_disable();
825

826
		kvm_pmu_flush_hwstate(vcpu);
827

828 829
		local_irq_disable();

830 831
		kvm_vgic_flush_hwstate(vcpu);

832 833 834 835
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
836
		 * Documentation/virt/kvm/vcpu-requests.rst
837 838 839
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

840
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
841
			vcpu->mode = OUTSIDE_GUEST_MODE;
842
			isb(); /* Ensure work in x_flush_hwstate is committed */
843
			kvm_pmu_sync_hwstate(vcpu);
844
			if (static_branch_unlikely(&userspace_irqchip_in_use))
845
				kvm_timer_sync_user(vcpu);
846
			kvm_vgic_sync_hwstate(vcpu);
847
			local_irq_enable();
848
			preempt_enable();
849 850 851
			continue;
		}

852 853
		kvm_arm_setup_debug(vcpu);

854 855 856 857
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
858
		guest_enter_irqoff();
859

860
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
861

862
		vcpu->mode = OUTSIDE_GUEST_MODE;
863
		vcpu->stat.exits++;
864 865 866 867
		/*
		 * Back from guest
		 *************************************************************/

868 869
		kvm_arm_clear_debug(vcpu);

870
		/*
871
		 * We must sync the PMU state before the vgic state so
872 873 874 875 876
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

877 878 879 880 881
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
882 883
		kvm_vgic_sync_hwstate(vcpu);

884 885 886 887 888
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
889
		if (static_branch_unlikely(&userspace_irqchip_in_use))
890
			kvm_timer_sync_user(vcpu);
891

892 893
		kvm_arch_vcpu_ctxsync_fp(vcpu);

894 895 896 897 898 899 900 901 902 903 904 905 906
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
907
		 * We do local_irq_enable() before calling guest_exit() so
908 909
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
910
		 * preemption after calling guest_exit() so that if we get
911 912 913
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
914
		guest_exit();
915
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
916

917
		/* Exit types that need handling before we can be preempted */
918
		handle_exit_early(vcpu, ret);
919

920 921
		preempt_enable();

922 923 924 925 926 927 928 929
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
930
		if (vcpu_mode_is_bad_32bit(vcpu)) {
931 932 933 934 935 936 937 938 939 940
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

941
		ret = handle_exit(vcpu, ret);
942 943
	}

944
	/* Tell userspace about in-kernel device output levels */
945 946 947 948
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
949

950
	kvm_sigset_deactivate(vcpu);
951

952
out:
953 954 955 956 957 958 959 960 961 962
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
963

964
	vcpu_put(vcpu);
965
	return ret;
966 967
}

968 969 970 971
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
972
	unsigned long *hcr;
973 974 975 976 977 978

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

979
	hcr = vcpu_hcr(vcpu);
980
	if (level)
981
		set = test_and_set_bit(bit_index, hcr);
982
	else
983
		set = test_and_clear_bit(bit_index, hcr);
984 985 986 987 988 989 990 991 992 993 994 995

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
996
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
997 998 999 1000 1001
	kvm_vcpu_kick(vcpu);

	return 0;
}

1002 1003
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1004 1005 1006 1007 1008 1009 1010 1011 1012
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1013
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1014 1015 1016 1017
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1018 1019 1020 1021
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1022

1023 1024
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1025

1026 1027 1028
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1047

1048
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1049 1050 1051 1052
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1053
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1054 1055
			return -EINVAL;

1056
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1057 1058 1059
	}

	return -EINVAL;
1060 1061
}

1062 1063 1064
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1065
	unsigned int i, ret;
1066
	u32 phys_target = kvm_target_cpu();
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1100 1101 1102 1103 1104
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1105

1106 1107
	return ret;
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1118 1119 1120
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1121
	 *
1122 1123 1124 1125
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1126
	 */
1127 1128 1129 1130
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1131
			icache_inval_all_pou();
1132
	}
1133

1134
	vcpu_reset_hcr(vcpu);
1135
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1136

1137
	/*
1138
	 * Handle the "start in power-off" case.
1139
	 */
1140
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1141
		vcpu_power_off(vcpu);
1142
	else
1143
		vcpu->arch.power_off = false;
1144 1145 1146 1147

	return 0;
}

1148 1149 1150 1151 1152 1153 1154
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1155
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1169
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1183
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1184 1185 1186 1187 1188 1189
		break;
	}

	return ret;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1216 1217 1218 1219 1220
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1221
	struct kvm_device_attr attr;
1222 1223
	long r;

1224 1225 1226 1227
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1228
		r = -EFAULT;
1229
		if (copy_from_user(&init, argp, sizeof(init)))
1230
			break;
1231

1232 1233
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1234 1235 1236 1237
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1238

1239
		r = -ENOEXEC;
1240
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1241
			break;
1242

1243
		r = -EFAULT;
1244
		if (copy_from_user(&reg, argp, sizeof(reg)))
1245 1246
			break;

1247 1248 1249 1250 1251 1252 1253 1254
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1255
		if (ioctl == KVM_SET_ONE_REG)
1256
			r = kvm_arm_set_reg(vcpu, &reg);
1257
		else
1258 1259
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1260 1261 1262 1263 1264 1265
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1266
		r = -ENOEXEC;
1267
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1268
			break;
1269

1270 1271 1272 1273
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1274
		r = -EFAULT;
1275
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1276
			break;
1277 1278 1279
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1280 1281
			break;
		r = -E2BIG;
1282
		if (n < reg_list.n)
1283 1284 1285
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1286
	}
1287
	case KVM_SET_DEVICE_ATTR: {
1288
		r = -EFAULT;
1289
		if (copy_from_user(&attr, argp, sizeof(attr)))
1290 1291 1292
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1293 1294
	}
	case KVM_GET_DEVICE_ATTR: {
1295
		r = -EFAULT;
1296
		if (copy_from_user(&attr, argp, sizeof(attr)))
1297 1298 1299
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1300 1301
	}
	case KVM_HAS_DEVICE_ATTR: {
1302
		r = -EFAULT;
1303
		if (copy_from_user(&attr, argp, sizeof(attr)))
1304 1305 1306
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1307
	}
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1338
	default:
1339
		r = -EINVAL;
1340
	}
1341 1342

	return r;
1343 1344
}

1345
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1346
{
1347

1348 1349
}

1350
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1351
					const struct kvm_memory_slot *memslot)
1352
{
1353
	kvm_flush_remote_tlbs(kvm);
1354 1355
}

1356 1357 1358
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1359 1360 1361 1362 1363 1364 1365 1366 1367
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1368 1369
		if (!vgic_present)
			return -ENXIO;
1370
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1371 1372 1373
	default:
		return -ENODEV;
	}
1374 1375
}

1376 1377 1378
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1379 1380 1381 1382
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1383
	case KVM_CREATE_IRQCHIP: {
1384
		int ret;
1385 1386
		if (!vgic_present)
			return -ENXIO;
1387 1388 1389 1390
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1391
	}
1392 1393 1394 1395 1396 1397 1398
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1412 1413 1414 1415 1416 1417 1418
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1419 1420 1421
	default:
		return -EINVAL;
	}
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1437 1438 1439 1440
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1441
{
1442
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1455

1456
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1457
		return 0;
1458

1459 1460 1461 1462 1463
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1464 1465
	}

1466 1467
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1468 1469 1470
	return 0;
}

1471
static void cpu_prepare_hyp_mode(int cpu)
1472
{
1473
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1474
	unsigned long tcr;
1475

1476 1477 1478 1479
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1480
	 * Also drop the KASAN tag which gets in the way...
1481
	 */
1482
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1483
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1506
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1507
	params->pgd_pa = kvm_mmu_get_httbr();
1508 1509 1510 1511 1512
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1513

1514 1515 1516 1517 1518
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1519 1520
}

1521
static void hyp_install_host_vector(void)
1522 1523 1524 1525 1526 1527
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1528

1529 1530 1531 1532 1533 1534 1535
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1536
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1537
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1538
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1539 1540 1541 1542 1543
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1544 1545 1546 1547 1548 1549

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1550
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1551
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1552
	}
1553 1554
}

1555 1556 1557 1558 1559 1560
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1561 1562 1563 1564 1565 1566 1567 1568
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1569
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1570 1571 1572
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1573
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1574 1575 1576
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1577
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1578 1579 1580 1581 1582
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1583
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1584
	void *vector = hyp_spectre_vector_selector[data->slot];
1585

1586 1587 1588 1589
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1590 1591
}

1592
static void cpu_hyp_init_context(void)
1593
{
1594
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1595

1596
	if (!is_kernel_in_hyp_mode())
1597
		cpu_init_hyp_mode();
1598
}
1599

1600 1601
static void cpu_hyp_init_features(void)
{
1602
	cpu_set_hyp_vector();
1603
	kvm_arm_init_debug();
1604

1605 1606 1607
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1608 1609
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1610 1611
}

1612 1613 1614 1615 1616 1617 1618
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1619 1620 1621
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1622
		cpu_hyp_reinit();
1623
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1624
	}
1625
}
1626

1627 1628 1629 1630
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1643 1644
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1645
}
1646

1647 1648 1649 1650 1651
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1667
		return NOTIFY_OK;
1668
	case CPU_PM_ENTER_FAILED:
1669 1670 1671 1672
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1673

1674 1675 1676 1677 1678
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1679 1680 1681 1682 1683 1684
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1685
static void hyp_cpu_pm_init(void)
1686
{
1687 1688
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1689
}
1690
static void hyp_cpu_pm_exit(void)
1691
{
1692 1693
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1694
}
1695 1696 1697 1698
#else
static inline void hyp_cpu_pm_init(void)
{
}
1699 1700 1701
static inline void hyp_cpu_pm_exit(void)
{
}
1702 1703
#endif

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1715
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1716 1717
}

1718 1719 1720
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1732 1733 1734 1735
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1736 1737 1738 1739
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1740
	}
1741 1742 1743
	return true;
}

1744 1745
static int init_subsystems(void)
{
1746
	int err = 0;
1747

1748
	/*
1749
	 * Enable hardware so that subsystem initialisation can access EL2.
1750
	 */
1751
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1752 1753 1754 1755 1756 1757

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1769
		err = 0;
1770 1771
		break;
	default:
1772
		goto out;
1773 1774 1775 1776 1777
	}

	/*
	 * Init HYP architected timer support
	 */
1778
	err = kvm_timer_hyp_init(vgic_present);
1779
	if (err)
1780
		goto out;
1781 1782

	kvm_perf_init();
M
Marc Zyngier 已提交
1783
	kvm_sys_reg_table_init();
1784

1785
out:
1786 1787
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1788 1789

	return err;
1790 1791 1792 1793 1794 1795 1796
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1797
	for_each_possible_cpu(cpu) {
1798
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1799 1800
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1801 1802
}

1803 1804 1805 1806 1807 1808
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1809
	cpu_hyp_init_context();
1810 1811 1812
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1813 1814 1815 1816 1817 1818 1819
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1830 1831 1832 1833
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1834 1835
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1836
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1851 1852 1853 1854 1855
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1856
	u32 hyp_va_bits;
1857
	int cpu;
1858 1859 1860 1861 1862 1863 1864 1865
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1866 1867 1868 1869

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1870
	err = kvm_mmu_init(&hyp_va_bits);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1883
			goto out_err;
1884 1885 1886 1887 1888
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1907 1908 1909
	/*
	 * Map the Hyp-code called directly from the host
	 */
1910
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1911
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1912 1913
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1914
		goto out_err;
1915 1916
	}

1917 1918
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1919
	if (err) {
1920
		kvm_err("Cannot map .hyp.rodata section\n");
1921 1922 1923
		goto out_err;
	}

1924
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1925
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1926 1927
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1928 1929 1930
		goto out_err;
	}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1944 1945 1946
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1947
		goto out_err;
1948 1949
	}

1950 1951 1952 1953 1954
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1955 1956
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1957 1958 1959

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1960
			goto out_err;
1961 1962 1963 1964
		}
	}

	for_each_possible_cpu(cpu) {
1965 1966
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1967

1968
		/* Map Hyp percpu pages */
1969
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1970
		if (err) {
1971
			kvm_err("Cannot map hyp percpu region\n");
1972 1973
			goto out_err;
		}
1974 1975 1976

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1977 1978
	}

1979
	if (is_protected_kvm_enabled()) {
1980 1981
		init_cpu_logical_map();

1982 1983
		if (!init_psci_relay()) {
			err = -ENODEV;
1984
			goto out_err;
1985
		}
1986 1987
	}

1988 1989 1990 1991
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1992
			goto out_err;
1993
		}
1994 1995
	}

1996
	return 0;
1997

1998
out_err:
1999
	teardown_hyp_mode();
2000 2001 2002 2003
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2004
static void _kvm_host_prot_finalize(void *arg)
2005
{
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2023 2024
}

2025 2026 2027 2028 2029
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2030 2031 2032 2033 2034 2035
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2036
	return pkvm_drop_host_privileges();
2037 2038
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2063 2064
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2065 2066 2067 2068 2069 2070 2071
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2072 2073
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2092 2093 2094
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2095 2096
int kvm_arch_init(void *opaque)
{
2097
	int err;
2098
	bool in_hyp_mode;
2099 2100

	if (!is_hyp_mode_available()) {
2101
		kvm_info("HYP mode not available\n");
2102 2103 2104
		return -ENODEV;
	}

2105 2106 2107 2108 2109
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2110 2111
	in_hyp_mode = is_kernel_in_hyp_mode();

2112 2113
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2114 2115 2116
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2117
	err = kvm_set_ipa_limit();
2118
	if (err)
2119
		return err;
2120

2121
	err = kvm_arm_init_sve();
2122 2123 2124
	if (err)
		return err;

2125
	if (!in_hyp_mode) {
2126
		err = init_hyp_mode();
2127 2128 2129
		if (err)
			goto out_err;
	}
2130

2131 2132 2133 2134 2135 2136
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2137 2138 2139
	err = init_subsystems();
	if (err)
		goto out_hyp;
2140

2141 2142 2143 2144 2145 2146 2147 2148
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2149
	if (is_protected_kvm_enabled()) {
2150
		kvm_info("Protected nVHE mode initialized successfully\n");
2151
	} else if (in_hyp_mode) {
2152
		kvm_info("VHE mode initialized successfully\n");
2153
	} else {
2154
		kvm_info("Hyp mode initialized successfully\n");
2155
	}
2156

2157
	return 0;
2158 2159

out_hyp:
2160
	hyp_cpu_pm_exit();
2161 2162
	if (!in_hyp_mode)
		teardown_hyp_mode();
2163 2164
out_err:
	return err;
2165 2166 2167 2168 2169
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2170
	kvm_perf_teardown();
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2183 2184
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2185
		return 0;
2186 2187 2188 2189 2190 2191
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
		return 0;
	}
2192

2193 2194 2195 2196
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2197 2198 2199 2200 2201
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2202 2203 2204 2205 2206 2207 2208
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);