arm.c 51.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	bitmap_free(kvm->arch.pmu_filter);

182 183
	kvm_vgic_destroy(kvm);

184 185
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
186
			kvm_vcpu_destroy(kvm->vcpus[i]);
187 188 189
			kvm->vcpus[i] = NULL;
		}
	}
190
	atomic_set(&kvm->online_vcpus, 0);
191 192
}

193
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 195 196
{
	int r;
	switch (ext) {
197
	case KVM_CAP_IRQCHIP:
198 199
		r = vgic_present;
		break;
200
	case KVM_CAP_IOEVENTFD:
201
	case KVM_CAP_DEVICE_CTRL:
202 203 204 205
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
206
	case KVM_CAP_ARM_PSCI:
207
	case KVM_CAP_ARM_PSCI_0_2:
208
	case KVM_CAP_READONLY_MEM:
209
	case KVM_CAP_MP_STATE:
210
	case KVM_CAP_IMMEDIATE_EXIT:
211
	case KVM_CAP_VCPU_EVENTS:
212
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213
	case KVM_CAP_ARM_NISV_TO_USER:
214
	case KVM_CAP_ARM_INJECT_EXT_DABT:
215 216
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
217
	case KVM_CAP_PTP_KVM:
218 219
		r = 1;
		break;
220 221
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
222 223
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
224
		break;
225
	case KVM_CAP_NR_VCPUS:
226 227 228 229 230 231 232 233
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
234 235
		break;
	case KVM_CAP_MAX_VCPUS:
236
	case KVM_CAP_MAX_VCPU_ID:
237 238 239 240
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
241
		break;
V
Vladimir Murzin 已提交
242 243 244 245 246 247
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
248 249 250 251 252 253 254
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
255 256 257
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
258 259 260
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
278
		break;
279 280 281 282 283 284 285 286 287
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
288
	}
289

290 291 292 293 294 295 296 297 298
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

299 300
struct kvm *kvm_arch_alloc_vm(void)
{
301 302
	size_t sz = sizeof(struct kvm);

303
	if (!has_vhe())
304
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
305

306
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
307 308
}

309 310 311 312 313 314 315 316 317 318 319
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

320
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
321
{
322 323 324 325 326 327
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

328 329
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

330 331 332 333 334 335 336 337 338
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

339 340
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

341 342 343 344
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

345
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
346 347
}

348
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
349 350 351
{
}

352
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
353
{
354 355 356
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

357
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
358
	kvm_timer_vcpu_terminate(vcpu);
359
	kvm_pmu_vcpu_destroy(vcpu);
360 361

	kvm_arm_vcpu_destroy(vcpu);
362 363 364 365
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
366
	return kvm_timer_is_pending(vcpu);
367 368
}

369 370
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
371 372 373
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
374
	 * so that we have the latest PMR and group enables. This ensures
375 376
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
377 378 379
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
380 381 382
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
383
	vgic_v4_put(vcpu, true);
384
	preempt_enable();
385 386 387 388
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
389 390 391
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
392 393
}

394 395
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
396
	struct kvm_s2_mmu *mmu;
397 398
	int *last_ran;

399 400
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
401 402

	/*
403 404 405 406 407
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
408 409 410 411
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
412
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
413 414 415
		*last_ran = vcpu->vcpu_id;
	}

416
	vcpu->cpu = cpu;
417

418
	kvm_vgic_load(vcpu);
419
	kvm_timer_vcpu_load(vcpu);
420 421
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
422
	kvm_arch_vcpu_load_fp(vcpu);
423
	kvm_vcpu_pmu_restore_guest(vcpu);
424 425
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
426 427

	if (single_task_running())
428
		vcpu_clear_wfx_traps(vcpu);
429
	else
430
		vcpu_set_wfx_traps(vcpu);
431

432
	if (vcpu_has_ptrauth(vcpu))
433
		vcpu_ptrauth_disable(vcpu);
434
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
435 436 437 438
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
439
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
440
	kvm_arch_vcpu_put_fp(vcpu);
441 442
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
443
	kvm_timer_vcpu_put(vcpu);
444
	kvm_vgic_put(vcpu);
445
	kvm_vcpu_pmu_restore_host(vcpu);
446

447
	vcpu->cpu = -1;
448 449
}

A
Andrew Jones 已提交
450 451 452
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
453
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
454 455 456
	kvm_vcpu_kick(vcpu);
}

457 458 459
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
460
	if (vcpu->arch.power_off)
461 462 463 464 465
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
466 467 468 469 470
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
471 472
	int ret = 0;

473 474
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
475
		vcpu->arch.power_off = false;
476 477
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
478
		vcpu_power_off(vcpu);
479 480
		break;
	default:
481
		ret = -EINVAL;
482 483
	}

484
	return ret;
485 486
}

487 488 489 490 491 492 493
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
494 495
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
496 497
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
498
		&& !v->arch.power_off && !v->arch.pause);
499 500
}

501 502
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
503
	return vcpu_mode_priv(vcpu);
504 505
}

506 507 508 509 510 511 512
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
513
	preempt_disable();
514
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
515
	preempt_enable();
516 517 518 519
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
520
 * @vmid: The VMID to check
521 522 523
 *
 * return true if there is a new generation of VMIDs being used
 *
524 525
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
526 527 528
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
529
 */
530
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
531
{
532 533
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
534
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
535 536 537
}

/**
538 539
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
540
 */
541
static void update_vmid(struct kvm_vmid *vmid)
542
{
543
	if (!need_new_vmid_gen(vmid))
544 545
		return;

546
	spin_lock(&kvm_vmid_lock);
547 548 549 550 551 552

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
553
	if (!need_new_vmid_gen(vmid)) {
554
		spin_unlock(&kvm_vmid_lock);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

577
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
578
	kvm_next_vmid++;
579
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
580

581
	smp_wmb();
582
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
583 584

	spin_unlock(&kvm_vmid_lock);
585 586 587 588
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
589
	struct kvm *kvm = vcpu->kvm;
590
	int ret = 0;
591

592 593 594
	if (likely(vcpu->arch.has_run_once))
		return 0;

595 596 597
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

598
	vcpu->arch.has_run_once = true;
599

600 601
	kvm_arm_vcpu_init_debug(vcpu);

602 603 604 605 606
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
607 608 609
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
610 611 612 613 614 615
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
616 617
	}

618
	ret = kvm_timer_enable(vcpu);
619 620 621 622
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
623

624 625 626 627 628 629 630 631
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

632
	return ret;
633 634
}

635 636 637 638 639
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

640
void kvm_arm_halt_guest(struct kvm *kvm)
641 642 643 644 645 646
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
647
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
648 649
}

650
void kvm_arm_resume_guest(struct kvm *kvm)
651 652 653 654
{
	int i;
	struct kvm_vcpu *vcpu;

655 656
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
657
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
658
	}
659 660
}

661
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
662
{
663
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
664

665 666 667
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
668

A
Andrew Jones 已提交
669
	if (vcpu->arch.power_off || vcpu->arch.pause) {
670
		/* Awaken to handle a signal, request we sleep again later. */
671
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
672
	}
673 674 675 676 677 678 679

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
680 681
}

682 683 684 685 686
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

687 688 689
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
690 691
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
692

693 694 695
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

696 697 698 699 700
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
701 702 703

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
704 705 706 707 708 709 710 711

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
712 713 714 715

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
716 717 718
	}
}

719 720 721 722 723 724 725 726 727
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

767 768 769 770 771 772 773 774 775 776
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
777
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
778
{
779
	struct kvm_run *run = vcpu->run;
780 781
	int ret;

782
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
783 784 785 786
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
787
		return ret;
788

C
Christoffer Dall 已提交
789
	if (run->exit_reason == KVM_EXIT_MMIO) {
790
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
791
		if (ret)
792
			return ret;
C
Christoffer Dall 已提交
793 794
	}

795
	vcpu_load(vcpu);
796

797 798 799 800 801
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

802
	kvm_sigset_activate(vcpu);
803 804 805 806 807 808 809

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
810 811 812
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
813

814
		update_vmid(&vcpu->arch.hw_mmu->vmid);
815

816 817
		check_vcpu_requests(vcpu);

818 819 820 821 822
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
823
		preempt_disable();
824

825
		kvm_pmu_flush_hwstate(vcpu);
826

827 828
		local_irq_disable();

829 830
		kvm_vgic_flush_hwstate(vcpu);

831 832 833 834
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
835
		 * Documentation/virt/kvm/vcpu-requests.rst
836 837 838
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

839
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
840
			vcpu->mode = OUTSIDE_GUEST_MODE;
841
			isb(); /* Ensure work in x_flush_hwstate is committed */
842
			kvm_pmu_sync_hwstate(vcpu);
843
			if (static_branch_unlikely(&userspace_irqchip_in_use))
844
				kvm_timer_sync_user(vcpu);
845
			kvm_vgic_sync_hwstate(vcpu);
846
			local_irq_enable();
847
			preempt_enable();
848 849 850
			continue;
		}

851 852
		kvm_arm_setup_debug(vcpu);

853 854 855 856
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
857
		guest_enter_irqoff();
858

859
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
860

861
		vcpu->mode = OUTSIDE_GUEST_MODE;
862
		vcpu->stat.exits++;
863 864 865 866
		/*
		 * Back from guest
		 *************************************************************/

867 868
		kvm_arm_clear_debug(vcpu);

869
		/*
870
		 * We must sync the PMU state before the vgic state so
871 872 873 874 875
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

876 877 878 879 880
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
881 882
		kvm_vgic_sync_hwstate(vcpu);

883 884 885 886 887
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
888
		if (static_branch_unlikely(&userspace_irqchip_in_use))
889
			kvm_timer_sync_user(vcpu);
890

891 892
		kvm_arch_vcpu_ctxsync_fp(vcpu);

893 894 895 896 897 898 899 900 901 902 903 904 905
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
906
		 * We do local_irq_enable() before calling guest_exit() so
907 908
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
909
		 * preemption after calling guest_exit() so that if we get
910 911 912
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
913
		guest_exit();
914
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
915

916
		/* Exit types that need handling before we can be preempted */
917
		handle_exit_early(vcpu, ret);
918

919 920
		preempt_enable();

921 922 923 924 925 926 927 928
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
929
		if (vcpu_mode_is_bad_32bit(vcpu)) {
930 931 932 933 934 935 936 937 938 939
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

940
		ret = handle_exit(vcpu, ret);
941 942
	}

943
	/* Tell userspace about in-kernel device output levels */
944 945 946 947
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
948

949
	kvm_sigset_deactivate(vcpu);
950

951
out:
952 953 954 955 956 957 958 959 960 961
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
962

963
	vcpu_put(vcpu);
964
	return ret;
965 966
}

967 968 969 970
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
971
	unsigned long *hcr;
972 973 974 975 976 977

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

978
	hcr = vcpu_hcr(vcpu);
979
	if (level)
980
		set = test_and_set_bit(bit_index, hcr);
981
	else
982
		set = test_and_clear_bit(bit_index, hcr);
983 984 985 986 987 988 989 990 991 992 993 994

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
995
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
996 997 998 999 1000
	kvm_vcpu_kick(vcpu);

	return 0;
}

1001 1002
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1012
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1013 1014 1015 1016
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1017 1018 1019 1020
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1021

1022 1023
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1024

1025 1026 1027
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1046

1047
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1048 1049 1050 1051
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1052
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1053 1054
			return -EINVAL;

1055
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1056 1057 1058
	}

	return -EINVAL;
1059 1060
}

1061 1062 1063
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1064
	unsigned int i, ret;
1065
	u32 phys_target = kvm_target_cpu();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1099 1100 1101 1102 1103
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1104

1105 1106
	return ret;
}
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1117 1118 1119
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1120
	 *
1121 1122 1123 1124
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1125
	 */
1126 1127 1128 1129
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1130
			icache_inval_all_pou();
1131
	}
1132

1133
	vcpu_reset_hcr(vcpu);
1134
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1135

1136
	/*
1137
	 * Handle the "start in power-off" case.
1138
	 */
1139
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1140
		vcpu_power_off(vcpu);
1141
	else
1142
		vcpu->arch.power_off = false;
1143 1144 1145 1146

	return 0;
}

1147 1148 1149 1150 1151 1152 1153
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1154
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1168
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1182
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1183 1184 1185 1186 1187 1188
		break;
	}

	return ret;
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1215 1216 1217 1218 1219
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1220
	struct kvm_device_attr attr;
1221 1222
	long r;

1223 1224 1225 1226
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1227
		r = -EFAULT;
1228
		if (copy_from_user(&init, argp, sizeof(init)))
1229
			break;
1230

1231 1232
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1233 1234 1235 1236
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1237

1238
		r = -ENOEXEC;
1239
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1240
			break;
1241

1242
		r = -EFAULT;
1243
		if (copy_from_user(&reg, argp, sizeof(reg)))
1244 1245
			break;

1246 1247 1248 1249 1250 1251 1252 1253
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1254
		if (ioctl == KVM_SET_ONE_REG)
1255
			r = kvm_arm_set_reg(vcpu, &reg);
1256
		else
1257 1258
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1259 1260 1261 1262 1263 1264
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1265
		r = -ENOEXEC;
1266
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1267
			break;
1268

1269 1270 1271 1272
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1273
		r = -EFAULT;
1274
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1275
			break;
1276 1277 1278
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1279 1280
			break;
		r = -E2BIG;
1281
		if (n < reg_list.n)
1282 1283 1284
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1285
	}
1286
	case KVM_SET_DEVICE_ATTR: {
1287
		r = -EFAULT;
1288
		if (copy_from_user(&attr, argp, sizeof(attr)))
1289 1290 1291
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1292 1293
	}
	case KVM_GET_DEVICE_ATTR: {
1294
		r = -EFAULT;
1295
		if (copy_from_user(&attr, argp, sizeof(attr)))
1296 1297 1298
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1299 1300
	}
	case KVM_HAS_DEVICE_ATTR: {
1301
		r = -EFAULT;
1302
		if (copy_from_user(&attr, argp, sizeof(attr)))
1303 1304 1305
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1306
	}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1337
	default:
1338
		r = -EINVAL;
1339
	}
1340 1341

	return r;
1342 1343
}

1344
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1345
{
1346

1347 1348
}

1349
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1350
					const struct kvm_memory_slot *memslot)
1351
{
1352
	kvm_flush_remote_tlbs(kvm);
1353 1354
}

1355 1356 1357
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1358 1359 1360 1361 1362 1363 1364 1365 1366
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1367 1368
		if (!vgic_present)
			return -ENXIO;
1369
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1370 1371 1372
	default:
		return -ENODEV;
	}
1373 1374
}

1375 1376 1377
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1378 1379 1380 1381
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1382
	case KVM_CREATE_IRQCHIP: {
1383
		int ret;
1384 1385
		if (!vgic_present)
			return -ENXIO;
1386 1387 1388 1389
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1390
	}
1391 1392 1393 1394 1395 1396 1397
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1398 1399 1400
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1401
		kvm_vcpu_preferred_target(&init);
1402 1403 1404 1405 1406 1407

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1408 1409 1410 1411 1412 1413 1414
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1415 1416 1417
	default:
		return -EINVAL;
	}
1418 1419
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1433 1434 1435 1436
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1437
{
1438
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1451

1452
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1453
		return 0;
1454

1455 1456 1457 1458 1459
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1460 1461
	}

1462 1463
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1464 1465 1466
	return 0;
}

1467
static void cpu_prepare_hyp_mode(int cpu)
1468
{
1469
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1470
	unsigned long tcr;
1471

1472 1473 1474 1475
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1476
	 * Also drop the KASAN tag which gets in the way...
1477
	 */
1478
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1479
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1502
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1503
	params->pgd_pa = kvm_mmu_get_httbr();
1504 1505 1506 1507 1508
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1509

1510 1511 1512 1513 1514
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1515 1516
}

1517
static void hyp_install_host_vector(void)
1518 1519 1520 1521 1522 1523
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1524

1525 1526 1527 1528 1529 1530 1531
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1532
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1533
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1534
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1535 1536 1537 1538 1539
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1540 1541 1542 1543 1544 1545

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1546
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1547
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1548
	}
1549 1550
}

1551 1552 1553 1554 1555 1556
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1557 1558 1559 1560 1561 1562 1563 1564
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1565
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1566 1567 1568
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1569
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1570 1571 1572
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1573
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1574 1575 1576 1577 1578
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1579
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1580
	void *vector = hyp_spectre_vector_selector[data->slot];
1581

1582 1583 1584 1585
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1586 1587
}

1588
static void cpu_hyp_init_context(void)
1589
{
1590
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1591

1592
	if (!is_kernel_in_hyp_mode())
1593
		cpu_init_hyp_mode();
1594
}
1595

1596 1597
static void cpu_hyp_init_features(void)
{
1598
	cpu_set_hyp_vector();
1599
	kvm_arm_init_debug();
1600

1601 1602 1603
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1604 1605
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1606 1607
}

1608 1609 1610 1611 1612 1613 1614
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1615 1616 1617
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1618
		cpu_hyp_reinit();
1619
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1620
	}
1621
}
1622

1623 1624 1625 1626
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1627 1628
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1639 1640
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1641
}
1642

1643 1644 1645 1646 1647
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1663
		return NOTIFY_OK;
1664
	case CPU_PM_ENTER_FAILED:
1665 1666 1667 1668
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1669

1670 1671 1672 1673 1674
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1675 1676 1677 1678 1679 1680
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1681
static void hyp_cpu_pm_init(void)
1682
{
1683 1684
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1685
}
1686
static void hyp_cpu_pm_exit(void)
1687
{
1688 1689
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1690
}
1691 1692 1693 1694
#else
static inline void hyp_cpu_pm_init(void)
{
}
1695 1696 1697
static inline void hyp_cpu_pm_exit(void)
{
}
1698 1699
#endif

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1711
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1712 1713
}

1714 1715 1716
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1728 1729 1730 1731
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1732 1733 1734 1735
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1736
	}
1737 1738 1739
	return true;
}

1740 1741
static int init_subsystems(void)
{
1742
	int err = 0;
1743

1744
	/*
1745
	 * Enable hardware so that subsystem initialisation can access EL2.
1746
	 */
1747
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1748 1749 1750 1751 1752 1753

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1765
		err = 0;
1766 1767
		break;
	default:
1768
		goto out;
1769 1770 1771 1772 1773
	}

	/*
	 * Init HYP architected timer support
	 */
1774
	err = kvm_timer_hyp_init(vgic_present);
1775
	if (err)
1776
		goto out;
1777 1778

	kvm_perf_init();
M
Marc Zyngier 已提交
1779
	kvm_sys_reg_table_init();
1780

1781
out:
1782 1783
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1784 1785

	return err;
1786 1787 1788 1789 1790 1791 1792
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1793
	for_each_possible_cpu(cpu) {
1794
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1795 1796
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1797 1798
}

1799 1800 1801 1802 1803 1804
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1805
	cpu_hyp_init_context();
1806 1807 1808
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1809 1810 1811 1812 1813 1814 1815
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1826 1827 1828 1829
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1830 1831
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1832
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1847 1848 1849 1850 1851
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1852
	u32 hyp_va_bits;
1853
	int cpu;
1854 1855 1856 1857 1858 1859 1860 1861
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1862 1863 1864 1865

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1866
	err = kvm_mmu_init(&hyp_va_bits);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1879
			goto out_err;
1880 1881 1882 1883 1884
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1903 1904 1905
	/*
	 * Map the Hyp-code called directly from the host
	 */
1906
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1907
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1908 1909
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1910
		goto out_err;
1911 1912
	}

1913 1914
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1915
	if (err) {
1916
		kvm_err("Cannot map .hyp.rodata section\n");
1917 1918 1919
		goto out_err;
	}

1920
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1921
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1922 1923
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1924 1925 1926
		goto out_err;
	}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1940 1941 1942
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1943
		goto out_err;
1944 1945
	}

1946 1947 1948 1949 1950
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1951 1952
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1953 1954 1955

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1956
			goto out_err;
1957 1958 1959 1960
		}
	}

	for_each_possible_cpu(cpu) {
1961 1962
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1963

1964
		/* Map Hyp percpu pages */
1965
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1966
		if (err) {
1967
			kvm_err("Cannot map hyp percpu region\n");
1968 1969
			goto out_err;
		}
1970 1971 1972

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1973 1974
	}

1975
	if (is_protected_kvm_enabled()) {
1976 1977
		init_cpu_logical_map();

1978 1979
		if (!init_psci_relay()) {
			err = -ENODEV;
1980
			goto out_err;
1981
		}
1982 1983
	}

1984 1985 1986 1987
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1988
			goto out_err;
1989
		}
1990 1991
	}

1992
	return 0;
1993

1994
out_err:
1995
	teardown_hyp_mode();
1996 1997 1998 1999
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2000
static void _kvm_host_prot_finalize(void *arg)
2001
{
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2019 2020
}

2021 2022 2023 2024 2025
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2026 2027 2028 2029 2030 2031
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2032
	return pkvm_drop_host_privileges();
2033 2034
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2059 2060
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2061 2062 2063 2064 2065 2066 2067
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2068 2069
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2088 2089 2090
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2091 2092
int kvm_arch_init(void *opaque)
{
2093
	int err;
2094
	bool in_hyp_mode;
2095 2096

	if (!is_hyp_mode_available()) {
2097
		kvm_info("HYP mode not available\n");
2098 2099 2100
		return -ENODEV;
	}

2101 2102 2103 2104 2105
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2106 2107
	in_hyp_mode = is_kernel_in_hyp_mode();

2108 2109
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2110 2111 2112
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2113
	err = kvm_set_ipa_limit();
2114
	if (err)
2115
		return err;
2116

2117
	err = kvm_arm_init_sve();
2118 2119 2120
	if (err)
		return err;

2121
	if (!in_hyp_mode) {
2122
		err = init_hyp_mode();
2123 2124 2125
		if (err)
			goto out_err;
	}
2126

2127 2128 2129 2130 2131 2132
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2133 2134 2135
	err = init_subsystems();
	if (err)
		goto out_hyp;
2136

2137 2138 2139 2140 2141 2142 2143 2144
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2145
	if (is_protected_kvm_enabled()) {
2146
		kvm_info("Protected nVHE mode initialized successfully\n");
2147
	} else if (in_hyp_mode) {
2148
		kvm_info("VHE mode initialized successfully\n");
2149
	} else {
2150
		kvm_info("Hyp mode initialized successfully\n");
2151
	}
2152

2153
	return 0;
2154 2155

out_hyp:
2156
	hyp_cpu_pm_exit();
2157 2158
	if (!in_hyp_mode)
		teardown_hyp_mode();
2159 2160
out_err:
	return err;
2161 2162 2163 2164 2165
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2166
	kvm_perf_teardown();
2167 2168
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2179 2180
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2181
		return 0;
2182 2183 2184 2185
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2186
		return 0;
2187
	}
2188

2189 2190 2191 2192
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2193 2194 2195 2196 2197
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2198 2199 2200 2201 2202 2203 2204
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);