arm.c 52.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = kvm_share_hyp(kvm, kvm + 1);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
178 179
	bitmap_free(kvm->arch.pmu_filter);

180 181
	kvm_vgic_destroy(kvm);

182
	kvm_destroy_vcpus(kvm);
183 184

	kvm_unshare_hyp(kvm, kvm + 1);
185 186
}

187
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 189 190
{
	int r;
	switch (ext) {
191
	case KVM_CAP_IRQCHIP:
192 193
		r = vgic_present;
		break;
194
	case KVM_CAP_IOEVENTFD:
195
	case KVM_CAP_DEVICE_CTRL:
196 197 198 199
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
200
	case KVM_CAP_ARM_PSCI:
201
	case KVM_CAP_ARM_PSCI_0_2:
202
	case KVM_CAP_READONLY_MEM:
203
	case KVM_CAP_MP_STATE:
204
	case KVM_CAP_IMMEDIATE_EXIT:
205
	case KVM_CAP_VCPU_EVENTS:
206
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207
	case KVM_CAP_ARM_NISV_TO_USER:
208
	case KVM_CAP_ARM_INJECT_EXT_DABT:
209 210
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
211
	case KVM_CAP_PTP_KVM:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
216 217
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
218
		break;
219
	case KVM_CAP_NR_VCPUS:
220 221 222 223 224 225 226 227
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
228 229
		break;
	case KVM_CAP_MAX_VCPUS:
230
	case KVM_CAP_MAX_VCPU_ID:
231 232 233 234
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
235
		break;
V
Vladimir Murzin 已提交
236 237 238 239 240 241
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
242 243 244 245 246 247 248
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
249 250 251
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
252 253 254
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
272
		break;
273 274 275 276 277 278 279 280 281
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
282
	}
283

284 285 286 287 288 289 290 291 292
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

293 294
struct kvm *kvm_arch_alloc_vm(void)
{
295 296
	size_t sz = sizeof(struct kvm);

297
	if (!has_vhe())
298
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
299

300
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
301 302
}

303 304 305 306 307 308 309 310 311 312 313
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

314
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315
{
316 317 318 319 320 321
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

322 323
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

324 325 326 327 328 329 330 331 332
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

333 334
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

335 336 337 338
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

339
	return kvm_share_hyp(vcpu, vcpu + 1);
340 341
}

342
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
343 344 345
{
}

346
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
347
{
348
	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
349 350
		static_branch_dec(&userspace_irqchip_in_use);

351
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
352
	kvm_timer_vcpu_terminate(vcpu);
353
	kvm_pmu_vcpu_destroy(vcpu);
354 355

	kvm_arm_vcpu_destroy(vcpu);
356 357 358 359
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
360
	return kvm_timer_is_pending(vcpu);
361 362
}

363 364
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
365

366 367 368 369
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
370

371 372
}

373 374
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
375
	struct kvm_s2_mmu *mmu;
376 377
	int *last_ran;

378 379
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
380 381

	/*
382 383 384 385 386
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
387 388 389 390
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
391
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
392 393 394
		*last_ran = vcpu->vcpu_id;
	}

395
	vcpu->cpu = cpu;
396

397
	kvm_vgic_load(vcpu);
398
	kvm_timer_vcpu_load(vcpu);
399 400
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
401
	kvm_arch_vcpu_load_fp(vcpu);
402
	kvm_vcpu_pmu_restore_guest(vcpu);
403 404
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
405 406

	if (single_task_running())
407
		vcpu_clear_wfx_traps(vcpu);
408
	else
409
		vcpu_set_wfx_traps(vcpu);
410

411
	if (vcpu_has_ptrauth(vcpu))
412
		vcpu_ptrauth_disable(vcpu);
413
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
414 415 416 417
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
418
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
419
	kvm_arch_vcpu_put_fp(vcpu);
420 421
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
422
	kvm_timer_vcpu_put(vcpu);
423
	kvm_vgic_put(vcpu);
424
	kvm_vcpu_pmu_restore_host(vcpu);
425

426
	vcpu->cpu = -1;
427 428
}

A
Andrew Jones 已提交
429 430 431
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
432
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
433 434 435
	kvm_vcpu_kick(vcpu);
}

436 437 438
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
439
	if (vcpu->arch.power_off)
440 441 442 443 444
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
445 446 447 448 449
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
450 451
	int ret = 0;

452 453
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
454
		vcpu->arch.power_off = false;
455 456
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
457
		vcpu_power_off(vcpu);
458 459
		break;
	default:
460
		ret = -EINVAL;
461 462
	}

463
	return ret;
464 465
}

466 467 468 469 470 471 472
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
473 474
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
475 476
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
477
		&& !v->arch.power_off && !v->arch.pause);
478 479
}

480 481
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
482
	return vcpu_mode_priv(vcpu);
483 484
}

485 486 487 488 489 490 491
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
492
	preempt_disable();
493
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
494
	preempt_enable();
495 496 497 498
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
499
 * @vmid: The VMID to check
500 501 502
 *
 * return true if there is a new generation of VMIDs being used
 *
503 504
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
505 506 507
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
508
 */
509
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
510
{
511 512
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
513
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
514 515 516
}

/**
517 518
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
519
 */
520
static void update_vmid(struct kvm_vmid *vmid)
521
{
522
	if (!need_new_vmid_gen(vmid))
523 524
		return;

525
	spin_lock(&kvm_vmid_lock);
526 527 528 529 530 531

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
532
	if (!need_new_vmid_gen(vmid)) {
533
		spin_unlock(&kvm_vmid_lock);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

556
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
557
	kvm_next_vmid++;
558
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
559

560
	smp_wmb();
561
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
562 563

	spin_unlock(&kvm_vmid_lock);
564 565
}

566
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
567
{
568
	return vcpu->arch.target >= 0;
569 570
}

571 572 573 574 575 576
/*
 * Handle both the initialisation that is being done when the vcpu is
 * run for the first time, as well as the updates that must be
 * performed each time we get a new thread dealing with this vcpu.
 */
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
577
{
578
	struct kvm *kvm = vcpu->kvm;
579
	int ret;
580

581 582
	if (!kvm_vcpu_initialized(vcpu))
		return -ENOEXEC;
583

584 585 586
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

587 588 589 590
	ret = kvm_arch_vcpu_run_map_fp(vcpu);
	if (ret)
		return ret;

591
	if (likely(vcpu_has_run_once(vcpu)))
592
		return 0;
593

594 595
	kvm_arm_vcpu_init_debug(vcpu);

596 597 598 599 600
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
601 602 603
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
604 605
	}

606
	ret = kvm_timer_enable(vcpu);
607 608 609 610
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
611 612 613 614 615 616 617 618 619 620
	if (ret)
		return ret;

	if (!irqchip_in_kernel(kvm)) {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
	}
621

622 623 624 625 626 627 628 629
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

630
	return ret;
631 632
}

633 634 635 636 637
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

638
void kvm_arm_halt_guest(struct kvm *kvm)
639
{
640
	unsigned long i;
641 642 643 644
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
645
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
646 647
}

648
void kvm_arm_resume_guest(struct kvm *kvm)
649
{
650
	unsigned long i;
651 652
	struct kvm_vcpu *vcpu;

653 654
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
655
		__kvm_vcpu_wake_up(vcpu);
656
	}
657 658
}

659
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
660
{
661
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
662

663 664 665
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
666

A
Andrew Jones 已提交
667
	if (vcpu->arch.power_off || vcpu->arch.pause) {
668
		/* Awaken to handle a signal, request we sleep again later. */
669
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
670
	}
671 672 673 674 675 676 677

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
678 679
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/**
 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
 * @vcpu:	The VCPU pointer
 *
 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
 * on when a wake event arrives, e.g. there may already be a pending wake event.
 */
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
{
	/*
	 * Sync back the state of the GIC CPU interface so that we have
	 * the latest PMR and group enables. This ensures that
	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
	 * we have pending interrupts, e.g. when determining if the
	 * vCPU should block.
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	vgic_v4_put(vcpu, true);
	preempt_enable();

705
	kvm_vcpu_halt(vcpu);
706 707 708 709 710 711 712
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);

	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
}

713 714 715
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
716 717
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
718

719 720 721
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

722 723 724 725 726
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
727 728 729

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
730 731 732 733 734 735 736 737

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
738 739 740 741

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
742 743 744
	}
}

745 746 747 748 749 750 751 752 753
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

793 794 795 796 797 798 799 800 801 802
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
803
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
804
{
805
	struct kvm_run *run = vcpu->run;
806 807
	int ret;

C
Christoffer Dall 已提交
808
	if (run->exit_reason == KVM_EXIT_MMIO) {
809
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
810
		if (ret)
811
			return ret;
C
Christoffer Dall 已提交
812 813
	}

814
	vcpu_load(vcpu);
815

816 817 818 819 820
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

821
	kvm_sigset_activate(vcpu);
822 823 824 825 826 827 828

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
829 830 831
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
832

833
		update_vmid(&vcpu->arch.hw_mmu->vmid);
834

835 836
		check_vcpu_requests(vcpu);

837 838 839 840 841
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
842
		preempt_disable();
843

844
		kvm_pmu_flush_hwstate(vcpu);
845

846 847
		local_irq_disable();

848 849
		kvm_vgic_flush_hwstate(vcpu);

850 851 852 853
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
854
		 * Documentation/virt/kvm/vcpu-requests.rst
855 856 857
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

858
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
859
			vcpu->mode = OUTSIDE_GUEST_MODE;
860
			isb(); /* Ensure work in x_flush_hwstate is committed */
861
			kvm_pmu_sync_hwstate(vcpu);
862
			if (static_branch_unlikely(&userspace_irqchip_in_use))
863
				kvm_timer_sync_user(vcpu);
864
			kvm_vgic_sync_hwstate(vcpu);
865
			local_irq_enable();
866
			preempt_enable();
867 868 869
			continue;
		}

870
		kvm_arm_setup_debug(vcpu);
871
		kvm_arch_vcpu_ctxflush_fp(vcpu);
872

873 874 875 876
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
877
		guest_enter_irqoff();
878

879
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
880

881
		vcpu->mode = OUTSIDE_GUEST_MODE;
882
		vcpu->stat.exits++;
883 884 885 886
		/*
		 * Back from guest
		 *************************************************************/

887 888
		kvm_arm_clear_debug(vcpu);

889
		/*
890
		 * We must sync the PMU state before the vgic state so
891 892 893 894 895
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

896 897 898 899 900
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
901 902
		kvm_vgic_sync_hwstate(vcpu);

903 904 905 906 907
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
908
		if (static_branch_unlikely(&userspace_irqchip_in_use))
909
			kvm_timer_sync_user(vcpu);
910

911 912
		kvm_arch_vcpu_ctxsync_fp(vcpu);

913 914 915 916 917 918 919 920 921 922 923 924 925
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
926
		 * We do local_irq_enable() before calling guest_exit() so
927 928
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
929
		 * preemption after calling guest_exit() so that if we get
930 931 932
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
933
		guest_exit();
934
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
935

936
		/* Exit types that need handling before we can be preempted */
937
		handle_exit_early(vcpu, ret);
938

939 940
		preempt_enable();

941 942 943 944 945 946 947 948
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
949
		if (vcpu_mode_is_bad_32bit(vcpu)) {
950 951 952 953 954 955 956 957 958 959
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

960
		ret = handle_exit(vcpu, ret);
961 962
	}

963
	/* Tell userspace about in-kernel device output levels */
964 965 966 967
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
968

969
	kvm_sigset_deactivate(vcpu);
970

971
out:
972 973 974 975 976 977 978 979 980 981
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
982

983
	vcpu_put(vcpu);
984
	return ret;
985 986
}

987 988 989 990
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
991
	unsigned long *hcr;
992 993 994 995 996 997

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

998
	hcr = vcpu_hcr(vcpu);
999
	if (level)
1000
		set = test_and_set_bit(bit_index, hcr);
1001
	else
1002
		set = test_and_clear_bit(bit_index, hcr);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
1015
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1016 1017 1018 1019 1020
	kvm_vcpu_kick(vcpu);

	return 0;
}

1021 1022
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1032
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1033 1034 1035 1036
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1037 1038 1039 1040
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1041

1042 1043
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1044

1045 1046 1047
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1066

1067
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1068 1069 1070 1071
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1072
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1073 1074
			return -EINVAL;

1075
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1076 1077 1078
	}

	return -EINVAL;
1079 1080
}

1081 1082 1083
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1084
	unsigned int i, ret;
1085
	u32 phys_target = kvm_target_cpu();
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1119 1120 1121 1122 1123
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1124

1125 1126
	return ret;
}
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1137 1138 1139
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1140
	 *
1141 1142 1143 1144
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1145
	 */
1146
	if (vcpu_has_run_once(vcpu)) {
1147 1148 1149
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1150
			icache_inval_all_pou();
1151
	}
1152

1153
	vcpu_reset_hcr(vcpu);
1154
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1155

1156
	/*
1157
	 * Handle the "start in power-off" case.
1158
	 */
1159
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1160
		vcpu_power_off(vcpu);
1161
	else
1162
		vcpu->arch.power_off = false;
1163 1164 1165 1166

	return 0;
}

1167 1168 1169 1170 1171 1172 1173
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1174
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1188
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1202
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1203 1204 1205 1206 1207 1208
		break;
	}

	return ret;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1235 1236 1237 1238 1239
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1240
	struct kvm_device_attr attr;
1241 1242
	long r;

1243 1244 1245 1246
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1247
		r = -EFAULT;
1248
		if (copy_from_user(&init, argp, sizeof(init)))
1249
			break;
1250

1251 1252
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1253 1254 1255 1256
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1257

1258
		r = -ENOEXEC;
1259
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1260
			break;
1261

1262
		r = -EFAULT;
1263
		if (copy_from_user(&reg, argp, sizeof(reg)))
1264 1265
			break;

1266 1267 1268 1269 1270 1271 1272 1273
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1274
		if (ioctl == KVM_SET_ONE_REG)
1275
			r = kvm_arm_set_reg(vcpu, &reg);
1276
		else
1277 1278
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1279 1280 1281 1282 1283 1284
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1285
		r = -ENOEXEC;
1286
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1287
			break;
1288

1289 1290 1291 1292
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1293
		r = -EFAULT;
1294
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1295
			break;
1296 1297 1298
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1299 1300
			break;
		r = -E2BIG;
1301
		if (n < reg_list.n)
1302 1303 1304
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1305
	}
1306
	case KVM_SET_DEVICE_ATTR: {
1307
		r = -EFAULT;
1308
		if (copy_from_user(&attr, argp, sizeof(attr)))
1309 1310 1311
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1312 1313
	}
	case KVM_GET_DEVICE_ATTR: {
1314
		r = -EFAULT;
1315
		if (copy_from_user(&attr, argp, sizeof(attr)))
1316 1317 1318
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1319 1320
	}
	case KVM_HAS_DEVICE_ATTR: {
1321
		r = -EFAULT;
1322
		if (copy_from_user(&attr, argp, sizeof(attr)))
1323 1324 1325
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1326
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1357
	default:
1358
		r = -EINVAL;
1359
	}
1360 1361

	return r;
1362 1363
}

1364
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1365
{
1366

1367 1368
}

1369
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1370
					const struct kvm_memory_slot *memslot)
1371
{
1372
	kvm_flush_remote_tlbs(kvm);
1373 1374
}

1375 1376 1377
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1378 1379 1380 1381 1382 1383 1384 1385 1386
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1387 1388
		if (!vgic_present)
			return -ENXIO;
1389
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1390 1391 1392
	default:
		return -ENODEV;
	}
1393 1394
}

1395 1396 1397
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1398 1399 1400 1401
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1402
	case KVM_CREATE_IRQCHIP: {
1403
		int ret;
1404 1405
		if (!vgic_present)
			return -ENXIO;
1406 1407 1408 1409
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1410
	}
1411 1412 1413 1414 1415 1416 1417
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1418 1419 1420
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1421
		kvm_vcpu_preferred_target(&init);
1422 1423 1424 1425 1426 1427

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1428 1429 1430 1431 1432 1433 1434
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1435 1436 1437
	default:
		return -EINVAL;
	}
1438 1439
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1453 1454 1455 1456
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1457
{
1458
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1471

1472
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1473
		return 0;
1474

1475 1476 1477 1478 1479
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1480 1481
	}

1482 1483
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1484 1485 1486
	return 0;
}

1487
static void cpu_prepare_hyp_mode(int cpu)
1488
{
1489
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1490
	unsigned long tcr;
1491

1492 1493 1494 1495
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1496
	 * Also drop the KASAN tag which gets in the way...
1497
	 */
1498
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1499
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1522
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1523
	params->pgd_pa = kvm_mmu_get_httbr();
1524 1525 1526 1527 1528
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1529

1530 1531 1532 1533 1534
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1535 1536
}

1537
static void hyp_install_host_vector(void)
1538 1539 1540 1541 1542 1543
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1544

1545 1546 1547 1548 1549 1550 1551
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1552
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1553
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1554
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1555 1556 1557 1558 1559
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1560 1561 1562 1563 1564 1565

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1566
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1567
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1568
	}
1569 1570
}

1571 1572 1573 1574 1575 1576
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1577 1578 1579 1580 1581 1582 1583 1584
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1585
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1586 1587 1588
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1589
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1590 1591 1592
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1593
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1594 1595 1596 1597 1598
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1599
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1600
	void *vector = hyp_spectre_vector_selector[data->slot];
1601

1602 1603 1604 1605
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1606 1607
}

1608
static void cpu_hyp_init_context(void)
1609
{
1610
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1611

1612
	if (!is_kernel_in_hyp_mode())
1613
		cpu_init_hyp_mode();
1614
}
1615

1616 1617
static void cpu_hyp_init_features(void)
{
1618
	cpu_set_hyp_vector();
1619
	kvm_arm_init_debug();
1620

1621 1622 1623
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1624 1625
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1626 1627
}

1628 1629 1630 1631 1632 1633 1634
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1635 1636 1637
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1638
		cpu_hyp_reinit();
1639
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1640
	}
1641
}
1642

1643 1644 1645 1646
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1659 1660
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1661
}
1662

1663 1664 1665 1666 1667
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1683
		return NOTIFY_OK;
1684
	case CPU_PM_ENTER_FAILED:
1685 1686 1687 1688
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1689

1690 1691 1692 1693 1694
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1695 1696 1697 1698 1699 1700
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1701
static void hyp_cpu_pm_init(void)
1702
{
1703 1704
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1705
}
1706
static void hyp_cpu_pm_exit(void)
1707
{
1708 1709
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1710
}
1711 1712 1713 1714
#else
static inline void hyp_cpu_pm_init(void)
{
}
1715 1716 1717
static inline void hyp_cpu_pm_exit(void)
{
}
1718 1719
#endif

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1731
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1732 1733
}

1734 1735 1736
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1748 1749 1750 1751
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1752 1753 1754 1755
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1756
	}
1757 1758 1759
	return true;
}

1760 1761
static int init_subsystems(void)
{
1762
	int err = 0;
1763

1764
	/*
1765
	 * Enable hardware so that subsystem initialisation can access EL2.
1766
	 */
1767
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1768 1769 1770 1771 1772 1773

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1785
		err = 0;
1786 1787
		break;
	default:
1788
		goto out;
1789 1790 1791 1792 1793
	}

	/*
	 * Init HYP architected timer support
	 */
1794
	err = kvm_timer_hyp_init(vgic_present);
1795
	if (err)
1796
		goto out;
1797 1798

	kvm_perf_init();
M
Marc Zyngier 已提交
1799
	kvm_sys_reg_table_init();
1800

1801
out:
1802 1803
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1804 1805

	return err;
1806 1807 1808 1809 1810 1811 1812
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1813
	for_each_possible_cpu(cpu) {
1814
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1815 1816
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1817 1818
}

1819 1820 1821 1822 1823 1824
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1825
	cpu_hyp_init_context();
1826 1827 1828
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1829 1830 1831 1832 1833 1834 1835
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1846 1847 1848 1849
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1850 1851
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1852
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1867 1868 1869 1870 1871
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1872
	u32 hyp_va_bits;
1873
	int cpu;
1874 1875 1876 1877 1878 1879 1880 1881
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1882 1883 1884 1885

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1886
	err = kvm_mmu_init(&hyp_va_bits);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1899
			goto out_err;
1900 1901 1902 1903 1904
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1923 1924 1925
	/*
	 * Map the Hyp-code called directly from the host
	 */
1926
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1927
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1928 1929
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1930
		goto out_err;
1931 1932
	}

1933 1934
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1935
	if (err) {
1936
		kvm_err("Cannot map .hyp.rodata section\n");
1937 1938 1939
		goto out_err;
	}

1940
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1941
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1942 1943
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1944 1945 1946
		goto out_err;
	}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1960 1961 1962
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1963
		goto out_err;
1964 1965
	}

1966 1967 1968 1969 1970
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1971 1972
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1973 1974 1975

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1976
			goto out_err;
1977 1978 1979 1980
		}
	}

	for_each_possible_cpu(cpu) {
1981 1982
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1983

1984
		/* Map Hyp percpu pages */
1985
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1986
		if (err) {
1987
			kvm_err("Cannot map hyp percpu region\n");
1988 1989
			goto out_err;
		}
1990 1991 1992

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1993 1994
	}

1995
	if (is_protected_kvm_enabled()) {
1996 1997
		init_cpu_logical_map();

1998 1999
		if (!init_psci_relay()) {
			err = -ENODEV;
2000
			goto out_err;
2001
		}
2002 2003
	}

2004 2005 2006 2007
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
2008
			goto out_err;
2009
		}
2010 2011
	}

2012
	return 0;
2013

2014
out_err:
2015
	teardown_hyp_mode();
2016 2017 2018 2019
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2020
static void _kvm_host_prot_finalize(void *arg)
2021
{
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2039 2040
}

2041 2042 2043 2044 2045
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2046 2047 2048 2049 2050 2051
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2052
	return pkvm_drop_host_privileges();
2053 2054
}

2055 2056 2057
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
2058
	unsigned long i;
2059 2060 2061 2062 2063 2064 2065 2066 2067

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2079 2080
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2081 2082 2083 2084 2085 2086 2087
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2088 2089
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2108 2109 2110
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2111 2112
int kvm_arch_init(void *opaque)
{
2113
	int err;
2114
	bool in_hyp_mode;
2115 2116

	if (!is_hyp_mode_available()) {
2117
		kvm_info("HYP mode not available\n");
2118 2119 2120
		return -ENODEV;
	}

2121 2122 2123 2124 2125
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2126 2127
	in_hyp_mode = is_kernel_in_hyp_mode();

2128 2129
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2130 2131 2132
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2133
	err = kvm_set_ipa_limit();
2134
	if (err)
2135
		return err;
2136

2137
	err = kvm_arm_init_sve();
2138 2139 2140
	if (err)
		return err;

2141
	if (!in_hyp_mode) {
2142
		err = init_hyp_mode();
2143 2144 2145
		if (err)
			goto out_err;
	}
2146

2147 2148 2149 2150 2151 2152
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2153 2154 2155
	err = init_subsystems();
	if (err)
		goto out_hyp;
2156

2157 2158 2159 2160 2161 2162 2163 2164
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2165
	if (is_protected_kvm_enabled()) {
2166
		kvm_info("Protected nVHE mode initialized successfully\n");
2167
	} else if (in_hyp_mode) {
2168
		kvm_info("VHE mode initialized successfully\n");
2169
	} else {
2170
		kvm_info("Hyp mode initialized successfully\n");
2171
	}
2172

2173
	return 0;
2174 2175

out_hyp:
2176
	hyp_cpu_pm_exit();
2177 2178
	if (!in_hyp_mode)
		teardown_hyp_mode();
2179 2180
out_err:
	return err;
2181 2182 2183 2184 2185
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2186
	kvm_perf_teardown();
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2199 2200
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2201
		return 0;
2202 2203 2204 2205
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2206
		return 0;
2207
	}
2208

2209 2210 2211 2212
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2213 2214 2215 2216 2217
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2218 2219 2220 2221 2222 2223 2224
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);