arm.c 36.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret, cpu;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115 116 117 118 119 120 121
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

122 123 124 125
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131

132
	/* Mark the initial VMID generation invalid */
133
	kvm->arch.vmid.vmid_gen = 0;
134

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147 148 149 150 151
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

152
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 154 155 156 157
{
	return VM_FAULT_SIGBUS;
}


158 159 160 161
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
162 163 164 165
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

166 167
	kvm_vgic_destroy(kvm);

168 169 170
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

171 172
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
173
			kvm_vcpu_destroy(kvm->vcpus[i]);
174 175 176
			kvm->vcpus[i] = NULL;
		}
	}
177
	atomic_set(&kvm->online_vcpus, 0);
178 179
}

180
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 182 183
{
	int r;
	switch (ext) {
184
	case KVM_CAP_IRQCHIP:
185 186
		r = vgic_present;
		break;
187
	case KVM_CAP_IOEVENTFD:
188
	case KVM_CAP_DEVICE_CTRL:
189 190 191 192
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
193
	case KVM_CAP_ARM_PSCI:
194
	case KVM_CAP_ARM_PSCI_0_2:
195
	case KVM_CAP_READONLY_MEM:
196
	case KVM_CAP_MP_STATE:
197
	case KVM_CAP_IMMEDIATE_EXIT:
198
	case KVM_CAP_VCPU_EVENTS:
199
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200
	case KVM_CAP_ARM_NISV_TO_USER:
201
	case KVM_CAP_ARM_INJECT_EXT_DABT:
202 203
		r = 1;
		break;
204 205
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
206
		break;
207 208 209 210
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
211
	case KVM_CAP_MAX_VCPU_ID:
212 213 214 215
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
216
		break;
V
Vladimir Murzin 已提交
217 218 219 220 221 222
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
223 224 225 226 227 228 229
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
230
	default:
231
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
232 233 234 235 236 237 238 239 240 241 242
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
258

259 260 261 262 263 264 265 266 267 268 269
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

270
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
271
{
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

291
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
292 293
}

294
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 296 297
{
}

298
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
299
{
300 301 302
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

303
	kvm_mmu_free_memory_caches(vcpu);
304
	kvm_timer_vcpu_terminate(vcpu);
305
	kvm_pmu_vcpu_destroy(vcpu);
306 307

	kvm_arm_vcpu_destroy(vcpu);
308 309 310 311
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
312
	return kvm_timer_is_pending(vcpu);
313 314
}

315 316
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
317 318 319
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
320
	 * so that we have the latest PMR and group enables. This ensures
321 322
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
323 324 325
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
326 327 328
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
329
	vgic_v4_put(vcpu, true);
330
	preempt_enable();
331 332 333 334
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
335 336 337
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
338 339
}

340 341
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
342
	int *last_ran;
343
	kvm_host_data_t *cpu_data;
344 345

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
	cpu_data = this_cpu_ptr(&kvm_host_data);
347 348 349 350 351 352 353 354 355 356

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

357
	vcpu->cpu = cpu;
358
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
359

360
	kvm_vgic_load(vcpu);
361
	kvm_timer_vcpu_load(vcpu);
362
	kvm_vcpu_load_sysregs(vcpu);
363
	kvm_arch_vcpu_load_fp(vcpu);
364
	kvm_vcpu_pmu_restore_guest(vcpu);
365 366
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
367 368

	if (single_task_running())
369
		vcpu_clear_wfx_traps(vcpu);
370
	else
371
		vcpu_set_wfx_traps(vcpu);
372 373

	vcpu_ptrauth_setup_lazy(vcpu);
374 375 376 377
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
378
	kvm_arch_vcpu_put_fp(vcpu);
379
	kvm_vcpu_put_sysregs(vcpu);
380
	kvm_timer_vcpu_put(vcpu);
381
	kvm_vgic_put(vcpu);
382
	kvm_vcpu_pmu_restore_host(vcpu);
383

384
	vcpu->cpu = -1;
385 386
}

A
Andrew Jones 已提交
387 388 389
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
390
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
391 392 393
	kvm_vcpu_kick(vcpu);
}

394 395 396
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
397
	if (vcpu->arch.power_off)
398 399 400 401 402
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
403 404 405 406 407
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
408 409
	int ret = 0;

410 411
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
412
		vcpu->arch.power_off = false;
413 414
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
415
		vcpu_power_off(vcpu);
416 417
		break;
	default:
418
		ret = -EINVAL;
419 420
	}

421
	return ret;
422 423
}

424 425 426 427 428 429 430
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
431 432
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
433 434
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
435
		&& !v->arch.power_off && !v->arch.pause);
436 437
}

438 439
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
440
	return vcpu_mode_priv(vcpu);
441 442
}

443 444 445 446 447 448 449
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
450
	preempt_disable();
451
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
452
	preempt_enable();
453 454 455 456
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
457
 * @vmid: The VMID to check
458 459 460
 *
 * return true if there is a new generation of VMIDs being used
 *
461 462
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
463 464 465
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
466
 */
467
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
468
{
469 470
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
471
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
472 473 474
}

/**
475 476 477
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
478
 */
479
static void update_vmid(struct kvm_vmid *vmid)
480
{
481
	if (!need_new_vmid_gen(vmid))
482 483
		return;

484
	spin_lock(&kvm_vmid_lock);
485 486 487 488 489 490

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
491
	if (!need_new_vmid_gen(vmid)) {
492
		spin_unlock(&kvm_vmid_lock);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

515
	vmid->vmid = kvm_next_vmid;
516
	kvm_next_vmid++;
517
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
518

519
	smp_wmb();
520
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
521 522

	spin_unlock(&kvm_vmid_lock);
523 524 525 526
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
527
	struct kvm *kvm = vcpu->kvm;
528
	int ret = 0;
529

530 531 532
	if (likely(vcpu->arch.has_run_once))
		return 0;

533 534 535
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

536
	vcpu->arch.has_run_once = true;
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
554 555
	}

556
	ret = kvm_timer_enable(vcpu);
557 558 559 560
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
561

562
	return ret;
563 564
}

565 566 567 568 569
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

570
void kvm_arm_halt_guest(struct kvm *kvm)
571 572 573 574 575 576
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
577
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
578 579
}

580
void kvm_arm_resume_guest(struct kvm *kvm)
581 582 583 584
{
	int i;
	struct kvm_vcpu *vcpu;

585 586
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
587
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
588
	}
589 590
}

591
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
592
{
593
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
594

595
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
596
				       (!vcpu->arch.pause)));
597

A
Andrew Jones 已提交
598
	if (vcpu->arch.power_off || vcpu->arch.pause) {
599
		/* Awaken to handle a signal, request we sleep again later. */
600
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
601
	}
602 603 604 605 606 607 608

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
609 610
}

611 612 613 614 615
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

616 617 618
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
619 620
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
621

622 623 624
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

625 626 627 628 629
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
630 631 632

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
633 634 635 636 637 638 639 640

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
641 642 643
	}
}

644 645 646 647 648 649 650 651 652 653 654
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
655 656
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
657 658
	int ret;

659
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
660 661 662 663
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
664
		return ret;
665

C
Christoffer Dall 已提交
666 667 668
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
669
			return ret;
C
Christoffer Dall 已提交
670 671
	}

672 673 674 675
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
676

677
	kvm_sigset_activate(vcpu);
678 679 680 681 682 683 684 685 686

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

687
		update_vmid(&vcpu->kvm->arch.vmid);
688

689 690
		check_vcpu_requests(vcpu);

691 692 693 694 695
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
696
		preempt_disable();
697

698
		kvm_pmu_flush_hwstate(vcpu);
699

700 701
		local_irq_disable();

702 703
		kvm_vgic_flush_hwstate(vcpu);

704
		/*
705 706
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
707
		 */
708
		if (signal_pending(current)) {
709 710 711 712
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

728 729 730 731
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
732
		 * Documentation/virt/kvm/vcpu-requests.rst
733 734 735
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

736
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
737
		    kvm_request_pending(vcpu)) {
738
			vcpu->mode = OUTSIDE_GUEST_MODE;
739
			isb(); /* Ensure work in x_flush_hwstate is committed */
740
			kvm_pmu_sync_hwstate(vcpu);
741 742
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
743
			kvm_vgic_sync_hwstate(vcpu);
744
			local_irq_enable();
745
			preempt_enable();
746 747 748
			continue;
		}

749 750
		kvm_arm_setup_debug(vcpu);

751 752 753 754
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
755
		guest_enter_irqoff();
756

757 758 759
		if (has_vhe()) {
			ret = kvm_vcpu_run_vhe(vcpu);
		} else {
760
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
761 762
		}

763
		vcpu->mode = OUTSIDE_GUEST_MODE;
764
		vcpu->stat.exits++;
765 766 767 768
		/*
		 * Back from guest
		 *************************************************************/

769 770
		kvm_arm_clear_debug(vcpu);

771
		/*
772
		 * We must sync the PMU state before the vgic state so
773 774 775 776 777
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

778 779 780 781 782
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
783 784
		kvm_vgic_sync_hwstate(vcpu);

785 786 787 788 789
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
790 791
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
792

793 794
		kvm_arch_vcpu_ctxsync_fp(vcpu);

795 796 797 798 799 800 801 802 803 804 805 806 807
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
808
		 * We do local_irq_enable() before calling guest_exit() so
809 810
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
811
		 * preemption after calling guest_exit() so that if we get
812 813 814
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
815
		guest_exit();
816
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
817

818 819 820
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

821 822
		preempt_enable();

823 824 825
		ret = handle_exit(vcpu, run, ret);
	}

826
	/* Tell userspace about in-kernel device output levels */
827 828 829 830
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
831

832 833
	kvm_sigset_deactivate(vcpu);

834
	vcpu_put(vcpu);
835
	return ret;
836 837
}

838 839 840 841
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
842
	unsigned long *hcr;
843 844 845 846 847 848

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

849
	hcr = vcpu_hcr(vcpu);
850
	if (level)
851
		set = test_and_set_bit(bit_index, hcr);
852
	else
853
		set = test_and_clear_bit(bit_index, hcr);
854 855 856 857 858 859 860 861 862 863 864 865

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
866
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
867 868 869 870 871
	kvm_vcpu_kick(vcpu);

	return 0;
}

872 873
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
874 875 876 877 878 879 880 881 882
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
883
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
884 885 886 887
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

888 889 890 891
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
892

893 894
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
895

896 897 898
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
917

918
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
919 920 921 922
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

923
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
924 925
			return -EINVAL;

926
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
927 928 929
	}

	return -EINVAL;
930 931
}

932 933 934
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
935
	unsigned int i, ret;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
970 971 972 973 974
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
975

976 977
	return ret;
}
978

979 980 981 982 983 984 985 986 987
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

988 989 990
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
991 992 993
	 *
	 * S2FWB enforces all memory accesses to RAM being cacheable, we
	 * ensure that the cache is always coherent.
994
	 */
995
	if (vcpu->arch.has_run_once && !cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
996 997
		stage2_unmap_vm(vcpu->kvm);

998 999
	vcpu_reset_hcr(vcpu);

1000
	/*
1001
	 * Handle the "start in power-off" case.
1002
	 */
1003
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1004
		vcpu_power_off(vcpu);
1005
	else
1006
		vcpu->arch.power_off = false;
1007 1008 1009 1010

	return 0;
}

1011 1012 1013 1014 1015 1016 1017
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1018
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1032
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1046
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 1048 1049 1050 1051 1052
		break;
	}

	return ret;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1079 1080 1081 1082 1083
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1084
	struct kvm_device_attr attr;
1085 1086
	long r;

1087 1088 1089 1090
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1091
		r = -EFAULT;
1092
		if (copy_from_user(&init, argp, sizeof(init)))
1093
			break;
1094

1095 1096
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1097 1098 1099 1100
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1101

1102
		r = -ENOEXEC;
1103
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104
			break;
1105

1106
		r = -EFAULT;
1107
		if (copy_from_user(&reg, argp, sizeof(reg)))
1108 1109
			break;

1110
		if (ioctl == KVM_SET_ONE_REG)
1111
			r = kvm_arm_set_reg(vcpu, &reg);
1112
		else
1113 1114
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1115 1116 1117 1118 1119 1120
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1121
		r = -ENOEXEC;
1122
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123
			break;
1124

1125 1126 1127 1128
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1129
		r = -EFAULT;
1130
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1131
			break;
1132 1133 1134
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1135 1136
			break;
		r = -E2BIG;
1137
		if (n < reg_list.n)
1138 1139 1140
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1141
	}
1142
	case KVM_SET_DEVICE_ATTR: {
1143
		r = -EFAULT;
1144
		if (copy_from_user(&attr, argp, sizeof(attr)))
1145 1146 1147
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1148 1149
	}
	case KVM_GET_DEVICE_ATTR: {
1150
		r = -EFAULT;
1151
		if (copy_from_user(&attr, argp, sizeof(attr)))
1152 1153 1154
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1155 1156
	}
	case KVM_HAS_DEVICE_ATTR: {
1157
		r = -EFAULT;
1158
		if (copy_from_user(&attr, argp, sizeof(attr)))
1159 1160 1161
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1162
	}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1193
	default:
1194
		r = -EINVAL;
1195
	}
1196 1197

	return r;
1198 1199
}

1200
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1201
{
1202

1203 1204
}

1205 1206
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1207
{
1208
	kvm_flush_remote_tlbs(kvm);
1209 1210
}

1211 1212 1213
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1214 1215 1216 1217 1218 1219 1220 1221 1222
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1223 1224
		if (!vgic_present)
			return -ENXIO;
1225
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1226 1227 1228
	default:
		return -ENODEV;
	}
1229 1230
}

1231 1232 1233
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1234 1235 1236 1237
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1238
	case KVM_CREATE_IRQCHIP: {
1239
		int ret;
1240 1241
		if (!vgic_present)
			return -ENXIO;
1242 1243 1244 1245
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1246
	}
1247 1248 1249 1250 1251 1252 1253
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1267 1268 1269
	default:
		return -EINVAL;
	}
1270 1271
}

1272
static void cpu_init_hyp_mode(void)
1273
{
1274
	phys_addr_t pgd_ptr;
1275 1276 1277 1278 1279
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1280
	__hyp_set_vectors(kvm_get_idmap_vector());
1281

1282
	pgd_ptr = kvm_mmu_get_httbr();
1283
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1284
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1285
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1286

M
Marc Zyngier 已提交
1287
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1288
	__cpu_init_stage2();
1289 1290
}

1291 1292 1293 1294 1295 1296
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1297 1298
static void cpu_hyp_reinit(void)
{
1299 1300
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1301 1302
	cpu_hyp_reset();

1303
	if (is_kernel_in_hyp_mode())
1304
		kvm_timer_init_vhe();
1305
	else
1306
		cpu_init_hyp_mode();
1307

1308
	kvm_arm_init_debug();
1309 1310 1311

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1312 1313
}

1314 1315 1316
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1317
		cpu_hyp_reinit();
1318
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1319
	}
1320
}
1321

1322 1323 1324 1325
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1340

1341 1342 1343 1344 1345
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1361
		return NOTIFY_OK;
1362
	case CPU_PM_ENTER_FAILED:
1363 1364 1365 1366
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1367

1368 1369 1370 1371 1372
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1383 1384 1385 1386
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1387 1388 1389 1390
#else
static inline void hyp_cpu_pm_init(void)
{
}
1391 1392 1393
static inline void hyp_cpu_pm_exit(void)
{
}
1394 1395
#endif

1396 1397
static int init_common_resources(void)
{
1398 1399
	kvm_set_ipa_limit();

1400 1401 1402 1403 1404
	return 0;
}

static int init_subsystems(void)
{
1405
	int err = 0;
1406

1407
	/*
1408
	 * Enable hardware so that subsystem initialisation can access EL2.
1409
	 */
1410
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1411 1412 1413 1414 1415 1416

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1428
		err = 0;
1429 1430
		break;
	default:
1431
		goto out;
1432 1433 1434 1435 1436
	}

	/*
	 * Init HYP architected timer support
	 */
1437
	err = kvm_timer_hyp_init(vgic_present);
1438
	if (err)
1439
		goto out;
1440 1441 1442 1443

	kvm_perf_init();
	kvm_coproc_table_init();

1444 1445 1446 1447
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1483
			goto out_err;
1484 1485 1486 1487 1488 1489 1490 1491
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1492
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1493
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1494 1495
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1496
		goto out_err;
1497 1498
	}

1499
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1500
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1501 1502
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1503 1504 1505 1506 1507 1508 1509
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1510
		goto out_err;
1511 1512
	}

1513 1514 1515 1516 1517 1518
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1519 1520 1521 1522 1523
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1524 1525
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1526 1527 1528

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1529
			goto out_err;
1530 1531 1532 1533
		}
	}

	for_each_possible_cpu(cpu) {
1534
		kvm_host_data_t *cpu_data;
1535

1536 1537
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1538 1539

		if (err) {
1540
			kvm_err("Cannot map host CPU state: %d\n", err);
1541
			goto out_err;
1542 1543 1544
		}
	}

1545 1546
	err = hyp_map_aux_data();
	if (err)
1547
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1548

1549
	return 0;
1550

1551
out_err:
1552
	teardown_hyp_mode();
1553 1554 1555 1556
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1557 1558 1559 1560 1561
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1586 1587
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1588 1589 1590 1591 1592 1593 1594
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1595 1596
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1615 1616 1617
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1618 1619
int kvm_arch_init(void *opaque)
{
1620
	int err;
1621
	int ret, cpu;
1622
	bool in_hyp_mode;
1623 1624

	if (!is_hyp_mode_available()) {
1625
		kvm_info("HYP mode not available\n");
1626 1627 1628
		return -ENODEV;
	}

1629 1630 1631 1632
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1633 1634 1635
		return -ENODEV;
	}

1636 1637 1638 1639 1640 1641
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1642 1643
	}

1644
	err = init_common_resources();
1645
	if (err)
1646
		return err;
1647

1648
	err = kvm_arm_init_sve();
1649 1650 1651
	if (err)
		return err;

1652
	if (!in_hyp_mode) {
1653
		err = init_hyp_mode();
1654 1655 1656
		if (err)
			goto out_err;
	}
1657

1658 1659 1660
	err = init_subsystems();
	if (err)
		goto out_hyp;
1661

1662 1663 1664 1665 1666
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1667
	return 0;
1668 1669

out_hyp:
1670
	hyp_cpu_pm_exit();
1671 1672
	if (!in_hyp_mode)
		teardown_hyp_mode();
1673 1674
out_err:
	return err;
1675 1676 1677 1678 1679
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1680
	kvm_perf_teardown();
1681 1682 1683 1684 1685 1686 1687 1688 1689
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);