arm.c 36.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
116
	if (ret)
117
		return ret;
118

119
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
120 121 122
	if (ret)
		goto out_free_stage2_pgd;

123
	kvm_vgic_early_init(kvm);
124

125
	/* The maximum number of VCPUs is limited by the host's GIC model */
126
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
127

128 129
	return ret;
out_free_stage2_pgd:
130
	kvm_free_stage2_pgd(&kvm->arch.mmu);
131
	return ret;
132 133
}

134
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
135 136 137 138 139
{
	return VM_FAULT_SIGBUS;
}


140 141 142 143
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
144 145 146 147
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

148 149
	kvm_vgic_destroy(kvm);

150 151
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
152
			kvm_vcpu_destroy(kvm->vcpus[i]);
153 154 155
			kvm->vcpus[i] = NULL;
		}
	}
156
	atomic_set(&kvm->online_vcpus, 0);
157 158
}

159
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
160 161 162
{
	int r;
	switch (ext) {
163
	case KVM_CAP_IRQCHIP:
164 165
		r = vgic_present;
		break;
166
	case KVM_CAP_IOEVENTFD:
167
	case KVM_CAP_DEVICE_CTRL:
168 169 170 171
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
172
	case KVM_CAP_ARM_PSCI:
173
	case KVM_CAP_ARM_PSCI_0_2:
174
	case KVM_CAP_READONLY_MEM:
175
	case KVM_CAP_MP_STATE:
176
	case KVM_CAP_IMMEDIATE_EXIT:
177
	case KVM_CAP_VCPU_EVENTS:
178
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
179
	case KVM_CAP_ARM_NISV_TO_USER:
180
	case KVM_CAP_ARM_INJECT_EXT_DABT:
181 182
		r = 1;
		break;
183 184
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
185
		break;
186 187 188 189
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
190
	case KVM_CAP_MAX_VCPU_ID:
191 192 193 194
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
195
		break;
V
Vladimir Murzin 已提交
196 197 198 199 200 201
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
202 203 204 205 206 207 208
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
209
	default:
210
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
211 212 213 214 215 216 217 218 219 220 221
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
237

238 239 240 241 242 243 244 245 246 247 248
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

249
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
250
{
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

266 267
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

268 269 270 271
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

272
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
273 274
}

275
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
276 277 278
{
}

279
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
280
{
281 282 283
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

284
	kvm_mmu_free_memory_caches(vcpu);
285
	kvm_timer_vcpu_terminate(vcpu);
286
	kvm_pmu_vcpu_destroy(vcpu);
287 288

	kvm_arm_vcpu_destroy(vcpu);
289 290 291 292
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
293
	return kvm_timer_is_pending(vcpu);
294 295
}

296 297
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
298 299 300
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
301
	 * so that we have the latest PMR and group enables. This ensures
302 303
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
304 305 306
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
307 308 309
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
310
	vgic_v4_put(vcpu, true);
311
	preempt_enable();
312 313 314 315
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
316 317 318
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
319 320
}

321 322
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
323
	struct kvm_s2_mmu *mmu;
324 325
	int *last_ran;

326 327
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
328 329 330 331 332 333

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
334
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
335 336 337
		*last_ran = vcpu->vcpu_id;
	}

338
	vcpu->cpu = cpu;
339

340
	kvm_vgic_load(vcpu);
341
	kvm_timer_vcpu_load(vcpu);
342 343
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
344
	kvm_arch_vcpu_load_fp(vcpu);
345
	kvm_vcpu_pmu_restore_guest(vcpu);
346 347
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
348 349

	if (single_task_running())
350
		vcpu_clear_wfx_traps(vcpu);
351
	else
352
		vcpu_set_wfx_traps(vcpu);
353

354
	if (vcpu_has_ptrauth(vcpu))
355
		vcpu_ptrauth_disable(vcpu);
356 357 358 359
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
360
	kvm_arch_vcpu_put_fp(vcpu);
361 362
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
363
	kvm_timer_vcpu_put(vcpu);
364
	kvm_vgic_put(vcpu);
365
	kvm_vcpu_pmu_restore_host(vcpu);
366

367
	vcpu->cpu = -1;
368 369
}

A
Andrew Jones 已提交
370 371 372
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
373
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
374 375 376
	kvm_vcpu_kick(vcpu);
}

377 378 379
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
380
	if (vcpu->arch.power_off)
381 382 383 384 385
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
386 387 388 389 390
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
391 392
	int ret = 0;

393 394
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
395
		vcpu->arch.power_off = false;
396 397
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
398
		vcpu_power_off(vcpu);
399 400
		break;
	default:
401
		ret = -EINVAL;
402 403
	}

404
	return ret;
405 406
}

407 408 409 410 411 412 413
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
414 415
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
416 417
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
418
		&& !v->arch.power_off && !v->arch.pause);
419 420
}

421 422
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
423
	return vcpu_mode_priv(vcpu);
424 425
}

426 427 428 429 430 431 432
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
433
	preempt_disable();
434
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
435
	preempt_enable();
436 437 438 439
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
440
 * @vmid: The VMID to check
441 442 443
 *
 * return true if there is a new generation of VMIDs being used
 *
444 445
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
446 447 448
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
449
 */
450
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
451
{
452 453
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
454
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
455 456 457
}

/**
458 459 460
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
461
 */
462
static void update_vmid(struct kvm_vmid *vmid)
463
{
464
	if (!need_new_vmid_gen(vmid))
465 466
		return;

467
	spin_lock(&kvm_vmid_lock);
468 469 470 471 472 473

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
474
	if (!need_new_vmid_gen(vmid)) {
475
		spin_unlock(&kvm_vmid_lock);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

498
	vmid->vmid = kvm_next_vmid;
499
	kvm_next_vmid++;
500
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
501

502
	smp_wmb();
503
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
504 505

	spin_unlock(&kvm_vmid_lock);
506 507 508 509
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
510
	struct kvm *kvm = vcpu->kvm;
511
	int ret = 0;
512

513 514 515
	if (likely(vcpu->arch.has_run_once))
		return 0;

516 517 518
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

519
	vcpu->arch.has_run_once = true;
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
537 538
	}

539
	ret = kvm_timer_enable(vcpu);
540 541 542 543
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
544

545
	return ret;
546 547
}

548 549 550 551 552
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

553
void kvm_arm_halt_guest(struct kvm *kvm)
554 555 556 557 558 559
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
560
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
561 562
}

563
void kvm_arm_resume_guest(struct kvm *kvm)
564 565 566 567
{
	int i;
	struct kvm_vcpu *vcpu;

568 569
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
570
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
571
	}
572 573
}

574
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
575
{
576
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
577

578 579 580
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
581

A
Andrew Jones 已提交
582
	if (vcpu->arch.power_off || vcpu->arch.pause) {
583
		/* Awaken to handle a signal, request we sleep again later. */
584
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
585
	}
586 587 588 589 590 591 592

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
593 594
}

595 596 597 598 599
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

600 601 602
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
603 604
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
605

606 607 608
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

609 610 611 612 613
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
614 615 616

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
617 618 619 620 621 622 623 624

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
625 626 627
	}
}

628 629 630 631 632 633 634 635 636 637
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
638
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
639
{
640
	struct kvm_run *run = vcpu->run;
641 642
	int ret;

643
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
644 645 646 647
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
648
		return ret;
649

C
Christoffer Dall 已提交
650
	if (run->exit_reason == KVM_EXIT_MMIO) {
651
		ret = kvm_handle_mmio_return(vcpu, run);
C
Christoffer Dall 已提交
652
		if (ret)
653
			return ret;
C
Christoffer Dall 已提交
654 655
	}

656 657 658 659
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
660

661
	kvm_sigset_activate(vcpu);
662 663 664 665 666 667 668 669 670

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

671
		update_vmid(&vcpu->arch.hw_mmu->vmid);
672

673 674
		check_vcpu_requests(vcpu);

675 676 677 678 679
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
680
		preempt_disable();
681

682
		kvm_pmu_flush_hwstate(vcpu);
683

684 685
		local_irq_disable();

686 687
		kvm_vgic_flush_hwstate(vcpu);

688
		/*
689 690
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
691
		 */
692
		if (signal_pending(current)) {
693 694 695 696
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

712 713 714 715
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
716
		 * Documentation/virt/kvm/vcpu-requests.rst
717 718 719
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

720
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
721
		    kvm_request_pending(vcpu)) {
722
			vcpu->mode = OUTSIDE_GUEST_MODE;
723
			isb(); /* Ensure work in x_flush_hwstate is committed */
724
			kvm_pmu_sync_hwstate(vcpu);
725 726
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
727
			kvm_vgic_sync_hwstate(vcpu);
728
			local_irq_enable();
729
			preempt_enable();
730 731 732
			continue;
		}

733 734
		kvm_arm_setup_debug(vcpu);

735 736 737 738
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
739
		guest_enter_irqoff();
740

741
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
742

743
		vcpu->mode = OUTSIDE_GUEST_MODE;
744
		vcpu->stat.exits++;
745 746 747 748
		/*
		 * Back from guest
		 *************************************************************/

749 750
		kvm_arm_clear_debug(vcpu);

751
		/*
752
		 * We must sync the PMU state before the vgic state so
753 754 755 756 757
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

758 759 760 761 762
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
763 764
		kvm_vgic_sync_hwstate(vcpu);

765 766 767 768 769
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
770 771
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
772

773 774
		kvm_arch_vcpu_ctxsync_fp(vcpu);

775 776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
788
		 * We do local_irq_enable() before calling guest_exit() so
789 790
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
791
		 * preemption after calling guest_exit() so that if we get
792 793 794
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
795
		guest_exit();
796
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
797

798 799 800
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

801 802
		preempt_enable();

803 804 805
		ret = handle_exit(vcpu, run, ret);
	}

806
	/* Tell userspace about in-kernel device output levels */
807 808 809 810
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
811

812 813
	kvm_sigset_deactivate(vcpu);

814
	vcpu_put(vcpu);
815
	return ret;
816 817
}

818 819 820 821
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
822
	unsigned long *hcr;
823 824 825 826 827 828

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

829
	hcr = vcpu_hcr(vcpu);
830
	if (level)
831
		set = test_and_set_bit(bit_index, hcr);
832
	else
833
		set = test_and_clear_bit(bit_index, hcr);
834 835 836 837 838 839 840 841 842 843 844 845

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
846
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
847 848 849 850 851
	kvm_vcpu_kick(vcpu);

	return 0;
}

852 853
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
854 855 856 857 858 859 860 861 862
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
863
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
864 865 866 867
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

868 869 870 871
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
872

873 874
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
875

876 877 878
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
897

898
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
899 900 901 902
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

903
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
904 905
			return -EINVAL;

906
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
907 908 909
	}

	return -EINVAL;
910 911
}

912 913 914
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
915
	unsigned int i, ret;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
950 951 952 953 954
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
955

956 957
	return ret;
}
958

959 960 961 962 963 964 965 966 967
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

968 969 970
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
971
	 *
972 973 974 975
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
976
	 */
977 978 979 980 981 982
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
983

984 985
	vcpu_reset_hcr(vcpu);

986
	/*
987
	 * Handle the "start in power-off" case.
988
	 */
989
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
990
		vcpu_power_off(vcpu);
991
	else
992
		vcpu->arch.power_off = false;
993 994 995 996

	return 0;
}

997 998 999 1000 1001 1002 1003
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1004
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1018
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1032
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1033 1034 1035 1036 1037 1038
		break;
	}

	return ret;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1065 1066 1067 1068 1069
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1070
	struct kvm_device_attr attr;
1071 1072
	long r;

1073 1074 1075 1076
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1077
		r = -EFAULT;
1078
		if (copy_from_user(&init, argp, sizeof(init)))
1079
			break;
1080

1081 1082
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1083 1084 1085 1086
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1087

1088
		r = -ENOEXEC;
1089
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1090
			break;
1091

1092
		r = -EFAULT;
1093
		if (copy_from_user(&reg, argp, sizeof(reg)))
1094 1095
			break;

1096
		if (ioctl == KVM_SET_ONE_REG)
1097
			r = kvm_arm_set_reg(vcpu, &reg);
1098
		else
1099 1100
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1101 1102 1103 1104 1105 1106
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1107
		r = -ENOEXEC;
1108
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1109
			break;
1110

1111 1112 1113 1114
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1115
		r = -EFAULT;
1116
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1117
			break;
1118 1119 1120
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1121 1122
			break;
		r = -E2BIG;
1123
		if (n < reg_list.n)
1124 1125 1126
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1127
	}
1128
	case KVM_SET_DEVICE_ATTR: {
1129
		r = -EFAULT;
1130
		if (copy_from_user(&attr, argp, sizeof(attr)))
1131 1132 1133
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1134 1135
	}
	case KVM_GET_DEVICE_ATTR: {
1136
		r = -EFAULT;
1137
		if (copy_from_user(&attr, argp, sizeof(attr)))
1138 1139 1140
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1141 1142
	}
	case KVM_HAS_DEVICE_ATTR: {
1143
		r = -EFAULT;
1144
		if (copy_from_user(&attr, argp, sizeof(attr)))
1145 1146 1147
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1148
	}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1179
	default:
1180
		r = -EINVAL;
1181
	}
1182 1183

	return r;
1184 1185
}

1186
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1187
{
1188

1189 1190
}

1191 1192
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1193
{
1194
	kvm_flush_remote_tlbs(kvm);
1195 1196
}

1197 1198 1199
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1200 1201 1202 1203 1204 1205 1206 1207 1208
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1209 1210
		if (!vgic_present)
			return -ENXIO;
1211
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1212 1213 1214
	default:
		return -ENODEV;
	}
1215 1216
}

1217 1218 1219
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1220 1221 1222 1223
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1224
	case KVM_CREATE_IRQCHIP: {
1225
		int ret;
1226 1227
		if (!vgic_present)
			return -ENXIO;
1228 1229 1230 1231
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1232
	}
1233 1234 1235 1236 1237 1238 1239
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1253 1254 1255
	default:
		return -EINVAL;
	}
1256 1257
}

1258
static void cpu_init_hyp_mode(void)
1259
{
1260
	phys_addr_t pgd_ptr;
1261 1262
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1263
	unsigned long tpidr_el2;
1264 1265

	/* Switch from the HYP stub to our own HYP init vector */
1266
	__hyp_set_vectors(kvm_get_idmap_vector());
1267

1268 1269 1270 1271 1272 1273
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1274
		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1275

1276
	pgd_ptr = kvm_mmu_get_httbr();
1277
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1278
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1295
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1296
	}
1297 1298
}

1299 1300 1301 1302 1303 1304
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1305 1306
static void cpu_hyp_reinit(void)
{
1307 1308
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1309 1310
	cpu_hyp_reset();

1311
	if (is_kernel_in_hyp_mode())
1312
		kvm_timer_init_vhe();
1313
	else
1314
		cpu_init_hyp_mode();
1315

1316
	kvm_arm_init_debug();
1317 1318 1319

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1320 1321
}

1322 1323 1324
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1325
		cpu_hyp_reinit();
1326
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1327
	}
1328
}
1329

1330 1331 1332 1333
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1348

1349 1350 1351 1352 1353
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1369
		return NOTIFY_OK;
1370
	case CPU_PM_ENTER_FAILED:
1371 1372 1373 1374
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1375

1376 1377 1378 1379 1380
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1391 1392 1393 1394
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1395 1396 1397 1398
#else
static inline void hyp_cpu_pm_init(void)
{
}
1399 1400 1401
static inline void hyp_cpu_pm_exit(void)
{
}
1402 1403
#endif

1404 1405
static int init_common_resources(void)
{
1406
	return kvm_set_ipa_limit();
1407 1408 1409 1410
}

static int init_subsystems(void)
{
1411
	int err = 0;
1412

1413
	/*
1414
	 * Enable hardware so that subsystem initialisation can access EL2.
1415
	 */
1416
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1417 1418 1419 1420 1421 1422

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1434
		err = 0;
1435 1436
		break;
	default:
1437
		goto out;
1438 1439 1440 1441 1442
	}

	/*
	 * Init HYP architected timer support
	 */
1443
	err = kvm_timer_hyp_init(vgic_present);
1444
	if (err)
1445
		goto out;
1446 1447 1448 1449

	kvm_perf_init();
	kvm_coproc_table_init();

1450 1451 1452 1453
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1489
			goto out_err;
1490 1491 1492 1493 1494 1495 1496 1497
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1498
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1499
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1500 1501
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1502
		goto out_err;
1503 1504
	}

1505
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1506
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1507 1508
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1509 1510 1511 1512 1513 1514 1515
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1516
		goto out_err;
1517 1518
	}

1519 1520 1521 1522 1523 1524
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1525 1526 1527 1528 1529
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1530 1531
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1532 1533 1534

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1535
			goto out_err;
1536 1537 1538 1539
		}
	}

	for_each_possible_cpu(cpu) {
1540
		kvm_host_data_t *cpu_data;
1541

1542 1543
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1544 1545

		if (err) {
1546
			kvm_err("Cannot map host CPU state: %d\n", err);
1547
			goto out_err;
1548 1549 1550
		}
	}

1551 1552
	err = hyp_map_aux_data();
	if (err)
1553
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1554

1555
	return 0;
1556

1557
out_err:
1558
	teardown_hyp_mode();
1559 1560 1561 1562
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1563 1564 1565 1566 1567
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1592 1593
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1594 1595 1596 1597 1598 1599 1600
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1601 1602
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1621 1622 1623
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1624 1625
int kvm_arch_init(void *opaque)
{
1626
	int err;
1627
	int ret, cpu;
1628
	bool in_hyp_mode;
1629 1630

	if (!is_hyp_mode_available()) {
1631
		kvm_info("HYP mode not available\n");
1632 1633 1634
		return -ENODEV;
	}

1635 1636 1637 1638
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1639 1640 1641
		return -ENODEV;
	}

1642 1643 1644 1645 1646 1647
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1648 1649
	}

1650
	err = init_common_resources();
1651
	if (err)
1652
		return err;
1653

1654
	err = kvm_arm_init_sve();
1655 1656 1657
	if (err)
		return err;

1658
	if (!in_hyp_mode) {
1659
		err = init_hyp_mode();
1660 1661 1662
		if (err)
			goto out_err;
	}
1663

1664 1665 1666
	err = init_subsystems();
	if (err)
		goto out_hyp;
1667

1668 1669 1670 1671 1672
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1673
	return 0;
1674 1675

out_hyp:
1676
	hyp_cpu_pm_exit();
1677 1678
	if (!in_hyp_mode)
		teardown_hyp_mode();
1679 1680
out_err:
	return err;
1681 1682 1683 1684 1685
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1686
	kvm_perf_teardown();
1687 1688 1689 1690 1691 1692 1693 1694 1695
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);