arm.c 50.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	bitmap_free(kvm->arch.pmu_filter);

182 183
	kvm_vgic_destroy(kvm);

184 185
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
186
			kvm_vcpu_destroy(kvm->vcpus[i]);
187 188 189
			kvm->vcpus[i] = NULL;
		}
	}
190
	atomic_set(&kvm->online_vcpus, 0);
191 192
}

193
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 195 196
{
	int r;
	switch (ext) {
197
	case KVM_CAP_IRQCHIP:
198 199
		r = vgic_present;
		break;
200
	case KVM_CAP_IOEVENTFD:
201
	case KVM_CAP_DEVICE_CTRL:
202 203 204 205
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
206
	case KVM_CAP_ARM_PSCI:
207
	case KVM_CAP_ARM_PSCI_0_2:
208
	case KVM_CAP_READONLY_MEM:
209
	case KVM_CAP_MP_STATE:
210
	case KVM_CAP_IMMEDIATE_EXIT:
211
	case KVM_CAP_VCPU_EVENTS:
212
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213
	case KVM_CAP_ARM_NISV_TO_USER:
214
	case KVM_CAP_ARM_INJECT_EXT_DABT:
215 216
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
217
	case KVM_CAP_PTP_KVM:
218 219
		r = 1;
		break;
220 221
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
222 223
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
224
		break;
225 226 227 228
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
229
	case KVM_CAP_MAX_VCPU_ID:
230 231 232 233
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
234
		break;
V
Vladimir Murzin 已提交
235 236 237 238 239 240
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
241 242 243 244 245 246 247
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
248 249 250
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
251 252 253
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
271
		break;
272 273 274 275 276 277 278 279 280
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
281
	}
282

283 284 285 286 287 288 289 290 291
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
307

308 309 310 311 312 313 314 315 316 317 318
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

319
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
320
{
321 322 323 324 325 326
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

327 328
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

329 330 331 332 333 334 335 336 337
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

338 339
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

340 341 342 343
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

344
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
345 346
}

347
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
348 349 350
{
}

351
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
352
{
353 354 355
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

356
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
357
	kvm_timer_vcpu_terminate(vcpu);
358
	kvm_pmu_vcpu_destroy(vcpu);
359 360

	kvm_arm_vcpu_destroy(vcpu);
361 362 363 364
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
365
	return kvm_timer_is_pending(vcpu);
366 367
}

368 369
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
370 371 372
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
373
	 * so that we have the latest PMR and group enables. This ensures
374 375
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
376 377 378
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
379 380 381
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
382
	vgic_v4_put(vcpu, true);
383
	preempt_enable();
384 385 386 387
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
388 389 390
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
391 392
}

393 394
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
395
	struct kvm_s2_mmu *mmu;
396 397
	int *last_ran;

398 399
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
400 401

	/*
402 403 404 405 406
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
407 408 409 410
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
411
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
412 413 414
		*last_ran = vcpu->vcpu_id;
	}

415
	vcpu->cpu = cpu;
416

417
	kvm_vgic_load(vcpu);
418
	kvm_timer_vcpu_load(vcpu);
419 420
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
421
	kvm_arch_vcpu_load_fp(vcpu);
422
	kvm_vcpu_pmu_restore_guest(vcpu);
423 424
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
425 426

	if (single_task_running())
427
		vcpu_clear_wfx_traps(vcpu);
428
	else
429
		vcpu_set_wfx_traps(vcpu);
430

431
	if (vcpu_has_ptrauth(vcpu))
432
		vcpu_ptrauth_disable(vcpu);
433
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
434 435 436 437
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
438
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
439
	kvm_arch_vcpu_put_fp(vcpu);
440 441
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
442
	kvm_timer_vcpu_put(vcpu);
443
	kvm_vgic_put(vcpu);
444
	kvm_vcpu_pmu_restore_host(vcpu);
445

446
	vcpu->cpu = -1;
447 448
}

A
Andrew Jones 已提交
449 450 451
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
452
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
453 454 455
	kvm_vcpu_kick(vcpu);
}

456 457 458
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
459
	if (vcpu->arch.power_off)
460 461 462 463 464
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
465 466 467 468 469
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
470 471
	int ret = 0;

472 473
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
474
		vcpu->arch.power_off = false;
475 476
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
477
		vcpu_power_off(vcpu);
478 479
		break;
	default:
480
		ret = -EINVAL;
481 482
	}

483
	return ret;
484 485
}

486 487 488 489 490 491 492
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
493 494
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
495 496
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
497
		&& !v->arch.power_off && !v->arch.pause);
498 499
}

500 501
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
502
	return vcpu_mode_priv(vcpu);
503 504
}

505 506 507 508 509 510 511
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
512
	preempt_disable();
513
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
514
	preempt_enable();
515 516 517 518
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
519
 * @vmid: The VMID to check
520 521 522
 *
 * return true if there is a new generation of VMIDs being used
 *
523 524
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
525 526 527
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
528
 */
529
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
530
{
531 532
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
533
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
534 535 536
}

/**
537 538
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
539
 */
540
static void update_vmid(struct kvm_vmid *vmid)
541
{
542
	if (!need_new_vmid_gen(vmid))
543 544
		return;

545
	spin_lock(&kvm_vmid_lock);
546 547 548 549 550 551

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
552
	if (!need_new_vmid_gen(vmid)) {
553
		spin_unlock(&kvm_vmid_lock);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

576
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
577
	kvm_next_vmid++;
578
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
579

580
	smp_wmb();
581
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
582 583

	spin_unlock(&kvm_vmid_lock);
584 585 586 587
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
588
	struct kvm *kvm = vcpu->kvm;
589
	int ret = 0;
590

591 592 593
	if (likely(vcpu->arch.has_run_once))
		return 0;

594 595 596
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

597
	vcpu->arch.has_run_once = true;
598

599 600
	kvm_arm_vcpu_init_debug(vcpu);

601 602 603 604 605
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
606 607 608
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
609 610 611 612 613 614
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
615 616
	}

617
	ret = kvm_timer_enable(vcpu);
618 619 620 621
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
622

623
	return ret;
624 625
}

626 627 628 629 630
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

631
void kvm_arm_halt_guest(struct kvm *kvm)
632 633 634 635 636 637
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
638
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
639 640
}

641
void kvm_arm_resume_guest(struct kvm *kvm)
642 643 644 645
{
	int i;
	struct kvm_vcpu *vcpu;

646 647
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
648
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
649
	}
650 651
}

652
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
653
{
654
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
655

656 657 658
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
659

A
Andrew Jones 已提交
660
	if (vcpu->arch.power_off || vcpu->arch.pause) {
661
		/* Awaken to handle a signal, request we sleep again later. */
662
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
663
	}
664 665 666 667 668 669 670

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
671 672
}

673 674 675 676 677
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

678 679 680
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
681 682
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
683

684 685 686
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

687 688 689 690 691
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
692 693 694

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
695 696 697 698 699 700 701 702

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
703 704 705 706

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
707 708 709
	}
}

710 711 712 713 714 715 716 717 718
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

758 759 760 761 762 763 764 765 766 767
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
768
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
769
{
770
	struct kvm_run *run = vcpu->run;
771 772
	int ret;

773
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
774 775 776 777
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
778
		return ret;
779

C
Christoffer Dall 已提交
780
	if (run->exit_reason == KVM_EXIT_MMIO) {
781
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
782
		if (ret)
783
			return ret;
C
Christoffer Dall 已提交
784 785
	}

786
	vcpu_load(vcpu);
787

788 789 790 791 792
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

793
	kvm_sigset_activate(vcpu);
794 795 796 797 798 799 800

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
801 802 803
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
804

805
		update_vmid(&vcpu->arch.hw_mmu->vmid);
806

807 808
		check_vcpu_requests(vcpu);

809 810 811 812 813
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
814
		preempt_disable();
815

816
		kvm_pmu_flush_hwstate(vcpu);
817

818 819
		local_irq_disable();

820 821
		kvm_vgic_flush_hwstate(vcpu);

822 823 824 825
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
826
		 * Documentation/virt/kvm/vcpu-requests.rst
827 828 829
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

830
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
831
			vcpu->mode = OUTSIDE_GUEST_MODE;
832
			isb(); /* Ensure work in x_flush_hwstate is committed */
833
			kvm_pmu_sync_hwstate(vcpu);
834
			if (static_branch_unlikely(&userspace_irqchip_in_use))
835
				kvm_timer_sync_user(vcpu);
836
			kvm_vgic_sync_hwstate(vcpu);
837
			local_irq_enable();
838
			preempt_enable();
839 840 841
			continue;
		}

842 843
		kvm_arm_setup_debug(vcpu);

844 845 846 847
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
848
		guest_enter_irqoff();
849

850
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
851

852
		vcpu->mode = OUTSIDE_GUEST_MODE;
853
		vcpu->stat.exits++;
854 855 856 857
		/*
		 * Back from guest
		 *************************************************************/

858 859
		kvm_arm_clear_debug(vcpu);

860
		/*
861
		 * We must sync the PMU state before the vgic state so
862 863 864 865 866
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

867 868 869 870 871
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
872 873
		kvm_vgic_sync_hwstate(vcpu);

874 875 876 877 878
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
879
		if (static_branch_unlikely(&userspace_irqchip_in_use))
880
			kvm_timer_sync_user(vcpu);
881

882 883
		kvm_arch_vcpu_ctxsync_fp(vcpu);

884 885 886 887 888 889 890 891 892 893 894 895 896
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
897
		 * We do local_irq_enable() before calling guest_exit() so
898 899
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
900
		 * preemption after calling guest_exit() so that if we get
901 902 903
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
904
		guest_exit();
905
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
906

907
		/* Exit types that need handling before we can be preempted */
908
		handle_exit_early(vcpu, ret);
909

910 911
		preempt_enable();

912 913 914 915 916 917 918 919
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
920
		if (vcpu_mode_is_bad_32bit(vcpu)) {
921 922 923 924 925 926 927 928 929 930
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

931
		ret = handle_exit(vcpu, ret);
932 933
	}

934
	/* Tell userspace about in-kernel device output levels */
935 936 937 938
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
939

940
	kvm_sigset_deactivate(vcpu);
941

942
out:
943 944 945 946 947 948 949 950 951 952
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
953

954
	vcpu_put(vcpu);
955
	return ret;
956 957
}

958 959 960 961
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
962
	unsigned long *hcr;
963 964 965 966 967 968

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

969
	hcr = vcpu_hcr(vcpu);
970
	if (level)
971
		set = test_and_set_bit(bit_index, hcr);
972
	else
973
		set = test_and_clear_bit(bit_index, hcr);
974 975 976 977 978 979 980 981 982 983 984 985

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
986
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
987 988 989 990 991
	kvm_vcpu_kick(vcpu);

	return 0;
}

992 993
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
994 995 996 997 998 999 1000 1001 1002
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1003
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1004 1005 1006 1007
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1008 1009 1010 1011
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1012

1013 1014
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1015

1016 1017 1018
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1037

1038
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1039 1040 1041 1042
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1043
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1044 1045
			return -EINVAL;

1046
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1047 1048 1049
	}

	return -EINVAL;
1050 1051
}

1052 1053 1054
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1055
	unsigned int i, ret;
1056
	u32 phys_target = kvm_target_cpu();
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1090 1091 1092 1093 1094
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1095

1096 1097
	return ret;
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1108 1109 1110
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1111
	 *
1112 1113 1114 1115
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1116
	 */
1117 1118 1119 1120
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1121
			icache_inval_all_pou();
1122
	}
1123

1124
	vcpu_reset_hcr(vcpu);
1125
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1126

1127
	/*
1128
	 * Handle the "start in power-off" case.
1129
	 */
1130
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1131
		vcpu_power_off(vcpu);
1132
	else
1133
		vcpu->arch.power_off = false;
1134 1135 1136 1137

	return 0;
}

1138 1139 1140 1141 1142 1143 1144
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1145
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1159
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1173
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1174 1175 1176 1177 1178 1179
		break;
	}

	return ret;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1206 1207 1208 1209 1210
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1211
	struct kvm_device_attr attr;
1212 1213
	long r;

1214 1215 1216 1217
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1218
		r = -EFAULT;
1219
		if (copy_from_user(&init, argp, sizeof(init)))
1220
			break;
1221

1222 1223
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1224 1225 1226 1227
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1228

1229
		r = -ENOEXEC;
1230
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231
			break;
1232

1233
		r = -EFAULT;
1234
		if (copy_from_user(&reg, argp, sizeof(reg)))
1235 1236
			break;

1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1245
		if (ioctl == KVM_SET_ONE_REG)
1246
			r = kvm_arm_set_reg(vcpu, &reg);
1247
		else
1248 1249
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1250 1251 1252 1253 1254 1255
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1256
		r = -ENOEXEC;
1257
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1258
			break;
1259

1260 1261 1262 1263
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1264
		r = -EFAULT;
1265
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1266
			break;
1267 1268 1269
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1270 1271
			break;
		r = -E2BIG;
1272
		if (n < reg_list.n)
1273 1274 1275
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1276
	}
1277
	case KVM_SET_DEVICE_ATTR: {
1278
		r = -EFAULT;
1279
		if (copy_from_user(&attr, argp, sizeof(attr)))
1280 1281 1282
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1283 1284
	}
	case KVM_GET_DEVICE_ATTR: {
1285
		r = -EFAULT;
1286
		if (copy_from_user(&attr, argp, sizeof(attr)))
1287 1288 1289
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1290 1291
	}
	case KVM_HAS_DEVICE_ATTR: {
1292
		r = -EFAULT;
1293
		if (copy_from_user(&attr, argp, sizeof(attr)))
1294 1295 1296
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1297
	}
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1328
	default:
1329
		r = -EINVAL;
1330
	}
1331 1332

	return r;
1333 1334
}

1335
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1336
{
1337

1338 1339
}

1340
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1341
					const struct kvm_memory_slot *memslot)
1342
{
1343
	kvm_flush_remote_tlbs(kvm);
1344 1345
}

1346 1347 1348
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1349 1350 1351 1352 1353 1354 1355 1356 1357
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1358 1359
		if (!vgic_present)
			return -ENXIO;
1360
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1361 1362 1363
	default:
		return -ENODEV;
	}
1364 1365
}

1366 1367 1368
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1369 1370 1371 1372
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1373
	case KVM_CREATE_IRQCHIP: {
1374
		int ret;
1375 1376
		if (!vgic_present)
			return -ENXIO;
1377 1378 1379 1380
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1381
	}
1382 1383 1384 1385 1386 1387 1388
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1402 1403 1404 1405 1406 1407 1408
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1409 1410 1411
	default:
		return -EINVAL;
	}
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1427 1428 1429 1430
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1431
{
1432
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1445

1446
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1447
		return 0;
1448

1449 1450 1451 1452 1453
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1454 1455
	}

1456 1457
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1458 1459 1460
	return 0;
}

1461
static void cpu_prepare_hyp_mode(int cpu)
1462
{
1463
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1464
	unsigned long tcr;
1465

1466 1467 1468 1469
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1470
	 * Also drop the KASAN tag which gets in the way...
1471
	 */
1472
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1473
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1496
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1497
	params->pgd_pa = kvm_mmu_get_httbr();
1498 1499 1500 1501 1502
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1503

1504 1505 1506 1507 1508
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1509 1510
}

1511
static void hyp_install_host_vector(void)
1512 1513 1514 1515 1516 1517
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1518

1519 1520 1521 1522 1523 1524 1525
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1526
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1527
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1528
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1529 1530 1531 1532 1533
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1534 1535 1536 1537 1538 1539

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1540
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1541
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1542
	}
1543 1544
}

1545 1546 1547 1548 1549 1550
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1551 1552 1553 1554 1555 1556 1557 1558
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1559
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1560 1561 1562
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1563
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1564 1565 1566
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1567
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1568 1569 1570 1571 1572
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1573
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1574
	void *vector = hyp_spectre_vector_selector[data->slot];
1575

1576 1577 1578 1579
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1580 1581
}

1582 1583
static void cpu_hyp_reinit(void)
{
1584
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1585

1586
	cpu_hyp_reset();
1587

1588
	if (is_kernel_in_hyp_mode())
1589
		kvm_timer_init_vhe();
1590
	else
1591
		cpu_init_hyp_mode();
1592

1593 1594
	cpu_set_hyp_vector();

1595
	kvm_arm_init_debug();
1596 1597 1598

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1599 1600
}

1601 1602 1603
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1604
		cpu_hyp_reinit();
1605
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1606
	}
1607
}
1608

1609 1610 1611 1612
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1613 1614
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1625 1626
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1627
}
1628

1629 1630 1631 1632 1633
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1649
		return NOTIFY_OK;
1650
	case CPU_PM_ENTER_FAILED:
1651 1652 1653 1654
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1655

1656 1657 1658 1659 1660
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1661 1662 1663 1664 1665 1666
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1667
static void hyp_cpu_pm_init(void)
1668
{
1669 1670
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1671
}
1672
static void hyp_cpu_pm_exit(void)
1673
{
1674 1675
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1676
}
1677 1678 1679 1680
#else
static inline void hyp_cpu_pm_init(void)
{
}
1681 1682 1683
static inline void hyp_cpu_pm_exit(void)
{
}
1684 1685
#endif

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1697
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1698 1699
}

1700 1701 1702
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1714 1715 1716 1717
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1718 1719 1720 1721
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1722
	}
1723 1724 1725
	return true;
}

1726 1727
static int init_subsystems(void)
{
1728
	int err = 0;
1729

1730
	/*
1731
	 * Enable hardware so that subsystem initialisation can access EL2.
1732
	 */
1733
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1734 1735 1736 1737 1738 1739

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1751
		err = 0;
1752 1753
		break;
	default:
1754
		goto out;
1755 1756 1757 1758 1759
	}

	/*
	 * Init HYP architected timer support
	 */
1760
	err = kvm_timer_hyp_init(vgic_present);
1761
	if (err)
1762
		goto out;
1763 1764

	kvm_perf_init();
M
Marc Zyngier 已提交
1765
	kvm_sys_reg_table_init();
1766

1767
out:
1768 1769
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1770 1771

	return err;
1772 1773 1774 1775 1776 1777 1778
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1779
	for_each_possible_cpu(cpu) {
1780
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1781 1782
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1783 1784
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
	hyp_install_host_vector();
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1805 1806 1807
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1821 1822 1823 1824 1825
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1826
	u32 hyp_va_bits;
1827
	int cpu;
1828 1829 1830 1831 1832 1833 1834 1835
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1836 1837 1838 1839

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1840
	err = kvm_mmu_init(&hyp_va_bits);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1853
			goto out_err;
1854 1855 1856 1857 1858
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1877 1878 1879
	/*
	 * Map the Hyp-code called directly from the host
	 */
1880
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1881
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1882 1883
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1884
		goto out_err;
1885 1886
	}

1887 1888
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1889
	if (err) {
1890
		kvm_err("Cannot map .hyp.rodata section\n");
1891 1892 1893
		goto out_err;
	}

1894
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1895
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1896 1897
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1898 1899 1900
		goto out_err;
	}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1914 1915 1916
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1917
		goto out_err;
1918 1919
	}

1920 1921 1922 1923 1924
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1925 1926
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1927 1928 1929

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1930
			goto out_err;
1931 1932 1933 1934
		}
	}

	for_each_possible_cpu(cpu) {
1935 1936
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1937

1938
		/* Map Hyp percpu pages */
1939
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1940
		if (err) {
1941
			kvm_err("Cannot map hyp percpu region\n");
1942 1943
			goto out_err;
		}
1944 1945 1946

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1947 1948
	}

1949
	if (is_protected_kvm_enabled()) {
1950 1951
		init_cpu_logical_map();

1952 1953
		if (!init_psci_relay()) {
			err = -ENODEV;
1954
			goto out_err;
1955
		}
1956 1957
	}

1958 1959 1960 1961
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1962
			goto out_err;
1963
		}
1964 1965
	}

1966
	return 0;
1967

1968
out_err:
1969
	teardown_hyp_mode();
1970 1971 1972 1973
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1974
static void _kvm_host_prot_finalize(void *discard)
1975 1976 1977 1978
{
	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
}

1979 1980 1981 1982 1983
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

1984 1985 1986 1987 1988 1989
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
1990

1991 1992 1993 1994
	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
1995
	static_branch_enable(&kvm_protected_mode_initialized);
1996
	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1997 1998 1999 2000

	return 0;
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2025 2026
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2027 2028 2029 2030 2031 2032 2033
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2034 2035
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2054 2055 2056
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2057 2058
int kvm_arch_init(void *opaque)
{
2059
	int err;
2060
	bool in_hyp_mode;
2061 2062

	if (!is_hyp_mode_available()) {
2063
		kvm_info("HYP mode not available\n");
2064 2065 2066
		return -ENODEV;
	}

2067 2068
	in_hyp_mode = is_kernel_in_hyp_mode();

2069 2070
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2071 2072 2073
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2074
	err = kvm_set_ipa_limit();
2075
	if (err)
2076
		return err;
2077

2078
	err = kvm_arm_init_sve();
2079 2080 2081
	if (err)
		return err;

2082
	if (!in_hyp_mode) {
2083
		err = init_hyp_mode();
2084 2085 2086
		if (err)
			goto out_err;
	}
2087

2088 2089 2090 2091 2092 2093
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2094 2095 2096
	err = init_subsystems();
	if (err)
		goto out_hyp;
2097

2098 2099 2100 2101 2102 2103 2104 2105
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2106
	if (is_protected_kvm_enabled()) {
2107
		kvm_info("Protected nVHE mode initialized successfully\n");
2108
	} else if (in_hyp_mode) {
2109
		kvm_info("VHE mode initialized successfully\n");
2110
	} else {
2111
		kvm_info("Hyp mode initialized successfully\n");
2112
	}
2113

2114
	return 0;
2115 2116

out_hyp:
2117
	hyp_cpu_pm_exit();
2118 2119
	if (!in_hyp_mode)
		teardown_hyp_mode();
2120 2121
out_err:
	return err;
2122 2123 2124 2125 2126
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2127
	kvm_perf_teardown();
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2140 2141 2142
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
		return 0;

2143 2144 2145 2146
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2147 2148 2149 2150 2151
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2152 2153 2154 2155 2156 2157 2158
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);