arm.c 36.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
50
DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
51 52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

53 54
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55
static u32 kvm_next_vmid;
56
static DEFINE_SPINLOCK(kvm_vmid_lock);
57

58 59
static bool vgic_present;

60
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
61 62
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

63 64 65 66 67
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

68
int kvm_arch_hardware_setup(void *opaque)
69 70 71 72
{
	return 0;
}

73
int kvm_arch_check_processor_compat(void *opaque)
74
{
75
	return 0;
76 77
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
98

99 100 101 102 103
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

104 105 106 107
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
108 109
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
110
	int ret;
111

112
	ret = kvm_arm_setup_stage2(kvm, type);
113 114
	if (ret)
		return ret;
115

116
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
117
	if (ret)
118
		return ret;
119

120
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
121 122 123
	if (ret)
		goto out_free_stage2_pgd;

124
	kvm_vgic_early_init(kvm);
125

126
	/* The maximum number of VCPUs is limited by the host's GIC model */
127
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
128

129 130
	return ret;
out_free_stage2_pgd:
131
	kvm_free_stage2_pgd(&kvm->arch.mmu);
132
	return ret;
133 134
}

135
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
136 137 138 139 140
{
	return VM_FAULT_SIGBUS;
}


141 142 143 144
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
145 146 147 148
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

149 150
	kvm_vgic_destroy(kvm);

151 152
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
153
			kvm_vcpu_destroy(kvm->vcpus[i]);
154 155 156
			kvm->vcpus[i] = NULL;
		}
	}
157
	atomic_set(&kvm->online_vcpus, 0);
158 159
}

160
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
161 162 163
{
	int r;
	switch (ext) {
164
	case KVM_CAP_IRQCHIP:
165 166
		r = vgic_present;
		break;
167
	case KVM_CAP_IOEVENTFD:
168
	case KVM_CAP_DEVICE_CTRL:
169 170 171 172
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
173
	case KVM_CAP_ARM_PSCI:
174
	case KVM_CAP_ARM_PSCI_0_2:
175
	case KVM_CAP_READONLY_MEM:
176
	case KVM_CAP_MP_STATE:
177
	case KVM_CAP_IMMEDIATE_EXIT:
178
	case KVM_CAP_VCPU_EVENTS:
179
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
180
	case KVM_CAP_ARM_NISV_TO_USER:
181
	case KVM_CAP_ARM_INJECT_EXT_DABT:
182 183
		r = 1;
		break;
184 185
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
186
		break;
187 188 189 190
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
191
	case KVM_CAP_MAX_VCPU_ID:
192 193 194 195
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
196
		break;
V
Vladimir Murzin 已提交
197 198 199 200 201 202
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
203 204 205 206 207 208 209
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
210
	default:
211
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
212 213 214 215 216 217 218 219 220 221 222
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
238

239 240 241 242 243 244 245 246 247 248 249
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

250
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
251
{
252 253 254 255 256 257
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

258 259
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

260 261 262 263 264 265 266 267 268
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

269 270
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

271 272 273 274
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

275
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 277
}

278
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
279 280 281
{
}

282
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
283
{
284 285 286
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

287
	kvm_mmu_free_memory_caches(vcpu);
288
	kvm_timer_vcpu_terminate(vcpu);
289
	kvm_pmu_vcpu_destroy(vcpu);
290 291

	kvm_arm_vcpu_destroy(vcpu);
292 293 294 295
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
296
	return kvm_timer_is_pending(vcpu);
297 298
}

299 300
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
301 302 303
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
304
	 * so that we have the latest PMR and group enables. This ensures
305 306
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
307 308 309
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
310 311 312
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
313
	vgic_v4_put(vcpu, true);
314
	preempt_enable();
315 316 317 318
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
319 320 321
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
322 323
}

324 325
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
326
	struct kvm_s2_mmu *mmu;
327 328
	int *last_ran;

329 330
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
331 332 333 334 335 336

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
337
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
338 339 340
		*last_ran = vcpu->vcpu_id;
	}

341
	vcpu->cpu = cpu;
342

343
	kvm_vgic_load(vcpu);
344
	kvm_timer_vcpu_load(vcpu);
345 346
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
347
	kvm_arch_vcpu_load_fp(vcpu);
348
	kvm_vcpu_pmu_restore_guest(vcpu);
349 350
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
351 352

	if (single_task_running())
353
		vcpu_clear_wfx_traps(vcpu);
354
	else
355
		vcpu_set_wfx_traps(vcpu);
356

357
	if (vcpu_has_ptrauth(vcpu))
358
		vcpu_ptrauth_disable(vcpu);
359 360 361 362
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
363
	kvm_arch_vcpu_put_fp(vcpu);
364 365
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
366
	kvm_timer_vcpu_put(vcpu);
367
	kvm_vgic_put(vcpu);
368
	kvm_vcpu_pmu_restore_host(vcpu);
369

370
	vcpu->cpu = -1;
371 372
}

A
Andrew Jones 已提交
373 374 375
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
376
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
377 378 379
	kvm_vcpu_kick(vcpu);
}

380 381 382
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
383
	if (vcpu->arch.power_off)
384 385 386 387 388
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
389 390 391 392 393
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
394 395
	int ret = 0;

396 397
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
398
		vcpu->arch.power_off = false;
399 400
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
401
		vcpu_power_off(vcpu);
402 403
		break;
	default:
404
		ret = -EINVAL;
405 406
	}

407
	return ret;
408 409
}

410 411 412 413 414 415 416
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
417 418
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
419 420
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
421
		&& !v->arch.power_off && !v->arch.pause);
422 423
}

424 425
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
426
	return vcpu_mode_priv(vcpu);
427 428
}

429 430 431 432 433 434 435
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
436
	preempt_disable();
437
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
438
	preempt_enable();
439 440 441 442
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
443
 * @vmid: The VMID to check
444 445 446
 *
 * return true if there is a new generation of VMIDs being used
 *
447 448
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
449 450 451
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
452
 */
453
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
454
{
455 456
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
457
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
458 459 460
}

/**
461 462
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
463
 */
464
static void update_vmid(struct kvm_vmid *vmid)
465
{
466
	if (!need_new_vmid_gen(vmid))
467 468
		return;

469
	spin_lock(&kvm_vmid_lock);
470 471 472 473 474 475

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
476
	if (!need_new_vmid_gen(vmid)) {
477
		spin_unlock(&kvm_vmid_lock);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

500
	vmid->vmid = kvm_next_vmid;
501
	kvm_next_vmid++;
502
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
503

504
	smp_wmb();
505
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
506 507

	spin_unlock(&kvm_vmid_lock);
508 509 510 511
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
512
	struct kvm *kvm = vcpu->kvm;
513
	int ret = 0;
514

515 516 517
	if (likely(vcpu->arch.has_run_once))
		return 0;

518 519 520
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

521
	vcpu->arch.has_run_once = true;
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
539 540
	}

541
	ret = kvm_timer_enable(vcpu);
542 543 544 545
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
546

547
	return ret;
548 549
}

550 551 552 553 554
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

555
void kvm_arm_halt_guest(struct kvm *kvm)
556 557 558 559 560 561
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
562
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
563 564
}

565
void kvm_arm_resume_guest(struct kvm *kvm)
566 567 568 569
{
	int i;
	struct kvm_vcpu *vcpu;

570 571
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
572
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
573
	}
574 575
}

576
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
577
{
578
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
579

580 581 582
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
583

A
Andrew Jones 已提交
584
	if (vcpu->arch.power_off || vcpu->arch.pause) {
585
		/* Awaken to handle a signal, request we sleep again later. */
586
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
587
	}
588 589 590 591 592 593 594

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
595 596
}

597 598 599 600 601
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

602 603 604
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
605 606
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
607

608 609 610
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

611 612 613 614 615
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
616 617 618

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
619 620 621 622 623 624 625 626

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
627 628 629
	}
}

630 631 632 633 634 635 636 637 638 639
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
640
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
641
{
642
	struct kvm_run *run = vcpu->run;
643 644
	int ret;

645
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
646 647 648 649
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
650
		return ret;
651

C
Christoffer Dall 已提交
652
	if (run->exit_reason == KVM_EXIT_MMIO) {
653
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
654
		if (ret)
655
			return ret;
C
Christoffer Dall 已提交
656 657
	}

658 659 660 661
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
662

663
	kvm_sigset_activate(vcpu);
664 665 666 667 668 669 670 671 672

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

673
		update_vmid(&vcpu->arch.hw_mmu->vmid);
674

675 676
		check_vcpu_requests(vcpu);

677 678 679 680 681
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
682
		preempt_disable();
683

684
		kvm_pmu_flush_hwstate(vcpu);
685

686 687
		local_irq_disable();

688 689
		kvm_vgic_flush_hwstate(vcpu);

690
		/*
691 692
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
693
		 */
694
		if (signal_pending(current)) {
695 696 697 698
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

714 715 716 717
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
718
		 * Documentation/virt/kvm/vcpu-requests.rst
719 720 721
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

722
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
723
		    kvm_request_pending(vcpu)) {
724
			vcpu->mode = OUTSIDE_GUEST_MODE;
725
			isb(); /* Ensure work in x_flush_hwstate is committed */
726
			kvm_pmu_sync_hwstate(vcpu);
727
			if (static_branch_unlikely(&userspace_irqchip_in_use))
728
				kvm_timer_sync_user(vcpu);
729
			kvm_vgic_sync_hwstate(vcpu);
730
			local_irq_enable();
731
			preempt_enable();
732 733 734
			continue;
		}

735 736
		kvm_arm_setup_debug(vcpu);

737 738 739 740
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
741
		guest_enter_irqoff();
742

743
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
744

745
		vcpu->mode = OUTSIDE_GUEST_MODE;
746
		vcpu->stat.exits++;
747 748 749 750
		/*
		 * Back from guest
		 *************************************************************/

751 752
		kvm_arm_clear_debug(vcpu);

753
		/*
754
		 * We must sync the PMU state before the vgic state so
755 756 757 758 759
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

760 761 762 763 764
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
765 766
		kvm_vgic_sync_hwstate(vcpu);

767 768 769 770 771
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
772
		if (static_branch_unlikely(&userspace_irqchip_in_use))
773
			kvm_timer_sync_user(vcpu);
774

775 776
		kvm_arch_vcpu_ctxsync_fp(vcpu);

777 778 779 780 781 782 783 784 785 786 787 788 789
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
790
		 * We do local_irq_enable() before calling guest_exit() so
791 792
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
793
		 * preemption after calling guest_exit() so that if we get
794 795 796
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
797
		guest_exit();
798
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
799

800
		/* Exit types that need handling before we can be preempted */
801
		handle_exit_early(vcpu, ret);
802

803 804
		preempt_enable();

805
		ret = handle_exit(vcpu, ret);
806 807
	}

808
	/* Tell userspace about in-kernel device output levels */
809 810 811 812
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
813

814 815
	kvm_sigset_deactivate(vcpu);

816
	vcpu_put(vcpu);
817
	return ret;
818 819
}

820 821 822 823
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
824
	unsigned long *hcr;
825 826 827 828 829 830

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

831
	hcr = vcpu_hcr(vcpu);
832
	if (level)
833
		set = test_and_set_bit(bit_index, hcr);
834
	else
835
		set = test_and_clear_bit(bit_index, hcr);
836 837 838 839 840 841 842 843 844 845 846 847

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
848
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
849 850 851 852 853
	kvm_vcpu_kick(vcpu);

	return 0;
}

854 855
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
856 857 858 859 860 861 862 863 864
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
865
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
866 867 868 869
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

870 871 872 873
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
874

875 876
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
877

878 879 880
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
899

900
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
901 902 903 904
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

905
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
906 907
			return -EINVAL;

908
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
909 910 911
	}

	return -EINVAL;
912 913
}

914 915 916
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
917
	unsigned int i, ret;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
952 953 954 955 956
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
957

958 959
	return ret;
}
960

961 962 963 964 965 966 967 968 969
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

970 971 972
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
973
	 *
974 975 976 977
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
978
	 */
979 980 981 982 983 984
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
985

986 987
	vcpu_reset_hcr(vcpu);

988
	/*
989
	 * Handle the "start in power-off" case.
990
	 */
991
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
992
		vcpu_power_off(vcpu);
993
	else
994
		vcpu->arch.power_off = false;
995 996 997 998

	return 0;
}

999 1000 1001 1002 1003 1004 1005
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1006
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1020
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1034
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1035 1036 1037 1038 1039 1040
		break;
	}

	return ret;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1067 1068 1069 1070 1071
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1072
	struct kvm_device_attr attr;
1073 1074
	long r;

1075 1076 1077 1078
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1079
		r = -EFAULT;
1080
		if (copy_from_user(&init, argp, sizeof(init)))
1081
			break;
1082

1083 1084
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1085 1086 1087 1088
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1089

1090
		r = -ENOEXEC;
1091
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1092
			break;
1093

1094
		r = -EFAULT;
1095
		if (copy_from_user(&reg, argp, sizeof(reg)))
1096 1097
			break;

1098
		if (ioctl == KVM_SET_ONE_REG)
1099
			r = kvm_arm_set_reg(vcpu, &reg);
1100
		else
1101 1102
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1103 1104 1105 1106 1107 1108
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1109
		r = -ENOEXEC;
1110
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1111
			break;
1112

1113 1114 1115 1116
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1117
		r = -EFAULT;
1118
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1119
			break;
1120 1121 1122
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1123 1124
			break;
		r = -E2BIG;
1125
		if (n < reg_list.n)
1126 1127 1128
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1129
	}
1130
	case KVM_SET_DEVICE_ATTR: {
1131
		r = -EFAULT;
1132
		if (copy_from_user(&attr, argp, sizeof(attr)))
1133 1134 1135
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1136 1137
	}
	case KVM_GET_DEVICE_ATTR: {
1138
		r = -EFAULT;
1139
		if (copy_from_user(&attr, argp, sizeof(attr)))
1140 1141 1142
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1143 1144
	}
	case KVM_HAS_DEVICE_ATTR: {
1145
		r = -EFAULT;
1146
		if (copy_from_user(&attr, argp, sizeof(attr)))
1147 1148 1149
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1150
	}
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1181
	default:
1182
		r = -EINVAL;
1183
	}
1184 1185

	return r;
1186 1187
}

1188
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1189
{
1190

1191 1192
}

1193 1194
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1195
{
1196
	kvm_flush_remote_tlbs(kvm);
1197 1198
}

1199 1200 1201
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1202 1203 1204 1205 1206 1207 1208 1209 1210
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1211 1212
		if (!vgic_present)
			return -ENXIO;
1213
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1214 1215 1216
	default:
		return -ENODEV;
	}
1217 1218
}

1219 1220 1221
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1222 1223 1224 1225
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1226
	case KVM_CREATE_IRQCHIP: {
1227
		int ret;
1228 1229
		if (!vgic_present)
			return -ENXIO;
1230 1231 1232 1233
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1234
	}
1235 1236 1237 1238 1239 1240 1241
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1255 1256 1257
	default:
		return -EINVAL;
	}
1258 1259
}

1260
static void cpu_init_hyp_mode(void)
1261
{
1262
	phys_addr_t pgd_ptr;
1263 1264
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1265
	unsigned long tpidr_el2;
1266 1267

	/* Switch from the HYP stub to our own HYP init vector */
1268
	__hyp_set_vectors(kvm_get_idmap_vector());
1269

1270 1271 1272 1273 1274 1275
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1276
		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1277

1278
	pgd_ptr = kvm_mmu_get_httbr();
1279
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1280
	vector_ptr = __this_cpu_read(kvm_hyp_vector);
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1297
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1298
	}
1299 1300
}

1301 1302 1303 1304 1305 1306
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1307 1308
static void cpu_hyp_reinit(void)
{
1309 1310
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1311 1312
	cpu_hyp_reset();

1313 1314
	__this_cpu_write(kvm_hyp_vector, (unsigned long)kvm_get_hyp_vector());

1315
	if (is_kernel_in_hyp_mode())
1316
		kvm_timer_init_vhe();
1317
	else
1318
		cpu_init_hyp_mode();
1319

1320
	kvm_arm_init_debug();
1321 1322 1323

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1324 1325
}

1326 1327 1328
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1329
		cpu_hyp_reinit();
1330
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1331
	}
1332
}
1333

1334 1335 1336 1337
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1352

1353 1354 1355 1356 1357
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1373
		return NOTIFY_OK;
1374
	case CPU_PM_ENTER_FAILED:
1375 1376 1377 1378
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1379

1380 1381 1382 1383 1384
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1395 1396 1397 1398
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1399 1400 1401 1402
#else
static inline void hyp_cpu_pm_init(void)
{
}
1403 1404 1405
static inline void hyp_cpu_pm_exit(void)
{
}
1406 1407
#endif

1408 1409
static int init_common_resources(void)
{
1410
	return kvm_set_ipa_limit();
1411 1412 1413 1414
}

static int init_subsystems(void)
{
1415
	int err = 0;
1416

1417
	/*
1418
	 * Enable hardware so that subsystem initialisation can access EL2.
1419
	 */
1420
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1421 1422 1423 1424 1425 1426

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1438
		err = 0;
1439 1440
		break;
	default:
1441
		goto out;
1442 1443 1444 1445 1446
	}

	/*
	 * Init HYP architected timer support
	 */
1447
	err = kvm_timer_hyp_init(vgic_present);
1448
	if (err)
1449
		goto out;
1450 1451 1452 1453

	kvm_perf_init();
	kvm_coproc_table_init();

1454 1455 1456 1457
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1493
			goto out_err;
1494 1495 1496 1497 1498 1499 1500 1501
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1502
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1503
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1504 1505
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1506
		goto out_err;
1507 1508
	}

1509
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1510
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1511 1512
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1513 1514 1515 1516 1517 1518 1519
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1520
		goto out_err;
1521 1522
	}

1523 1524 1525 1526 1527 1528
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1529 1530 1531 1532 1533
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1534 1535
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1536 1537 1538

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1539
			goto out_err;
1540 1541 1542 1543
		}
	}

	for_each_possible_cpu(cpu) {
1544
		struct kvm_host_data *cpu_data;
1545

1546 1547
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1548 1549

		if (err) {
1550
			kvm_err("Cannot map host CPU state: %d\n", err);
1551
			goto out_err;
1552 1553 1554
		}
	}

1555 1556
	err = hyp_map_aux_data();
	if (err)
1557
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1558

1559
	return 0;
1560

1561
out_err:
1562
	teardown_hyp_mode();
1563 1564 1565 1566
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1567 1568 1569 1570 1571
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1596 1597
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1598 1599 1600 1601 1602 1603 1604
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1605 1606
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1625 1626 1627
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1628 1629
int kvm_arch_init(void *opaque)
{
1630
	int err;
1631
	int ret, cpu;
1632
	bool in_hyp_mode;
1633 1634

	if (!is_hyp_mode_available()) {
1635
		kvm_info("HYP mode not available\n");
1636 1637 1638
		return -ENODEV;
	}

1639 1640 1641 1642
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1643 1644 1645
		return -ENODEV;
	}

1646 1647 1648 1649
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1650 1651 1652 1653 1654 1655
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1656 1657
	}

1658
	err = init_common_resources();
1659
	if (err)
1660
		return err;
1661

1662
	err = kvm_arm_init_sve();
1663 1664 1665
	if (err)
		return err;

1666
	if (!in_hyp_mode) {
1667
		err = init_hyp_mode();
1668 1669 1670
		if (err)
			goto out_err;
	}
1671

1672 1673 1674
	err = init_subsystems();
	if (err)
		goto out_hyp;
1675

1676 1677 1678 1679 1680
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1681
	return 0;
1682 1683

out_hyp:
1684
	hyp_cpu_pm_exit();
1685 1686
	if (!in_hyp_mode)
		teardown_hyp_mode();
1687 1688
out_err:
	return err;
1689 1690 1691 1692 1693
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1694
	kvm_perf_teardown();
1695 1696 1697 1698 1699 1700 1701 1702 1703
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);