arm.c 41.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49 50
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;

51 52
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
55
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
56

57 58
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59
static u32 kvm_next_vmid;
60
static DEFINE_SPINLOCK(kvm_vmid_lock);
61

62 63
static bool vgic_present;

64
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
65 66
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

67 68
extern u64 kvm_nvhe_sym(__cpu_logical_map)[NR_CPUS];

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

74
int kvm_arch_hardware_setup(void *opaque)
75 76 77 78
{
	return 0;
}

79
int kvm_arch_check_processor_compat(void *opaque)
80
{
81
	return 0;
82 83
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
104

105 106 107 108 109
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

110 111 112 113
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
114 115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
116
	int ret;
117

118
	ret = kvm_arm_setup_stage2(kvm, type);
119 120
	if (ret)
		return ret;
121

122
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
123
	if (ret)
124
		return ret;
125

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131

132
	/* The maximum number of VCPUs is limited by the host's GIC model */
133
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
134

135 136
	return ret;
out_free_stage2_pgd:
137
	kvm_free_stage2_pgd(&kvm->arch.mmu);
138
	return ret;
139 140
}

141
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
142 143 144 145 146
{
	return VM_FAULT_SIGBUS;
}


147 148 149 150
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
151 152 153 154
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

155 156
	bitmap_free(kvm->arch.pmu_filter);

157 158
	kvm_vgic_destroy(kvm);

159 160
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
161
			kvm_vcpu_destroy(kvm->vcpus[i]);
162 163 164
			kvm->vcpus[i] = NULL;
		}
	}
165
	atomic_set(&kvm->online_vcpus, 0);
166 167
}

168
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 170 171
{
	int r;
	switch (ext) {
172
	case KVM_CAP_IRQCHIP:
173 174
		r = vgic_present;
		break;
175
	case KVM_CAP_IOEVENTFD:
176
	case KVM_CAP_DEVICE_CTRL:
177 178 179 180
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
181
	case KVM_CAP_ARM_PSCI:
182
	case KVM_CAP_ARM_PSCI_0_2:
183
	case KVM_CAP_READONLY_MEM:
184
	case KVM_CAP_MP_STATE:
185
	case KVM_CAP_IMMEDIATE_EXIT:
186
	case KVM_CAP_VCPU_EVENTS:
187
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
188
	case KVM_CAP_ARM_NISV_TO_USER:
189
	case KVM_CAP_ARM_INJECT_EXT_DABT:
190 191
		r = 1;
		break;
192 193
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
194
		break;
195 196 197 198
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
199
	case KVM_CAP_MAX_VCPU_ID:
200 201 202 203
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
204
		break;
V
Vladimir Murzin 已提交
205 206 207 208 209 210
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
211 212 213 214 215 216 217
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
218 219 220
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
221
	default:
222
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
223 224 225 226 227 228 229 230 231 232 233
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
249

250 251 252 253 254 255 256 257 258 259 260
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

261
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
262
{
263 264 265 266 267 268
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

269 270
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

271 272 273 274 275 276 277 278 279
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

280 281
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

282 283 284 285
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

286
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 288
}

289
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 291 292
{
}

293
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294
{
295 296 297
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

298
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
299
	kvm_timer_vcpu_terminate(vcpu);
300
	kvm_pmu_vcpu_destroy(vcpu);
301 302

	kvm_arm_vcpu_destroy(vcpu);
303 304 305 306
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
307
	return kvm_timer_is_pending(vcpu);
308 309
}

310 311
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
312 313 314
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
315
	 * so that we have the latest PMR and group enables. This ensures
316 317
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
318 319 320
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
321 322 323
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
324
	vgic_v4_put(vcpu, true);
325
	preempt_enable();
326 327 328 329
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
330 331 332
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
333 334
}

335 336
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
337
	struct kvm_s2_mmu *mmu;
338 339
	int *last_ran;

340 341
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
342 343 344 345 346 347

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
348
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
349 350 351
		*last_ran = vcpu->vcpu_id;
	}

352
	vcpu->cpu = cpu;
353

354
	kvm_vgic_load(vcpu);
355
	kvm_timer_vcpu_load(vcpu);
356 357
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
358
	kvm_arch_vcpu_load_fp(vcpu);
359
	kvm_vcpu_pmu_restore_guest(vcpu);
360 361
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
362 363

	if (single_task_running())
364
		vcpu_clear_wfx_traps(vcpu);
365
	else
366
		vcpu_set_wfx_traps(vcpu);
367

368
	if (vcpu_has_ptrauth(vcpu))
369
		vcpu_ptrauth_disable(vcpu);
370 371 372 373
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
374
	kvm_arch_vcpu_put_fp(vcpu);
375 376
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
377
	kvm_timer_vcpu_put(vcpu);
378
	kvm_vgic_put(vcpu);
379
	kvm_vcpu_pmu_restore_host(vcpu);
380

381
	vcpu->cpu = -1;
382 383
}

A
Andrew Jones 已提交
384 385 386
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
387
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
388 389 390
	kvm_vcpu_kick(vcpu);
}

391 392 393
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
394
	if (vcpu->arch.power_off)
395 396 397 398 399
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
400 401 402 403 404
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
405 406
	int ret = 0;

407 408
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
409
		vcpu->arch.power_off = false;
410 411
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
412
		vcpu_power_off(vcpu);
413 414
		break;
	default:
415
		ret = -EINVAL;
416 417
	}

418
	return ret;
419 420
}

421 422 423 424 425 426 427
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
428 429
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
430 431
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
432
		&& !v->arch.power_off && !v->arch.pause);
433 434
}

435 436
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
437
	return vcpu_mode_priv(vcpu);
438 439
}

440 441 442 443 444 445 446
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
447
	preempt_disable();
448
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
449
	preempt_enable();
450 451 452 453
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
454
 * @vmid: The VMID to check
455 456 457
 *
 * return true if there is a new generation of VMIDs being used
 *
458 459
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
460 461 462
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
463
 */
464
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
465
{
466 467
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
468
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
469 470 471
}

/**
472 473
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
474
 */
475
static void update_vmid(struct kvm_vmid *vmid)
476
{
477
	if (!need_new_vmid_gen(vmid))
478 479
		return;

480
	spin_lock(&kvm_vmid_lock);
481 482 483 484 485 486

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
487
	if (!need_new_vmid_gen(vmid)) {
488
		spin_unlock(&kvm_vmid_lock);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

511
	vmid->vmid = kvm_next_vmid;
512
	kvm_next_vmid++;
513
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
514

515
	smp_wmb();
516
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
517 518

	spin_unlock(&kvm_vmid_lock);
519 520 521 522
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
523
	struct kvm *kvm = vcpu->kvm;
524
	int ret = 0;
525

526 527 528
	if (likely(vcpu->arch.has_run_once))
		return 0;

529 530 531
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

532
	vcpu->arch.has_run_once = true;
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
550 551
	}

552
	ret = kvm_timer_enable(vcpu);
553 554 555 556
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
557

558
	return ret;
559 560
}

561 562 563 564 565
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

566
void kvm_arm_halt_guest(struct kvm *kvm)
567 568 569 570 571 572
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
573
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
574 575
}

576
void kvm_arm_resume_guest(struct kvm *kvm)
577 578 579 580
{
	int i;
	struct kvm_vcpu *vcpu;

581 582
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
583
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
584
	}
585 586
}

587
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
588
{
589
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
590

591 592 593
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
594

A
Andrew Jones 已提交
595
	if (vcpu->arch.power_off || vcpu->arch.pause) {
596
		/* Awaken to handle a signal, request we sleep again later. */
597
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
598
	}
599 600 601 602 603 604 605

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
606 607
}

608 609 610 611 612
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

613 614 615
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
616 617
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
618

619 620 621
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

622 623 624 625 626
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
627 628 629

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
630 631 632 633 634 635 636 637

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
638 639 640
	}
}

641 642 643 644 645 646 647 648 649 650
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
651
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
652
{
653
	struct kvm_run *run = vcpu->run;
654 655
	int ret;

656
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
657 658 659 660
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
661
		return ret;
662

C
Christoffer Dall 已提交
663
	if (run->exit_reason == KVM_EXIT_MMIO) {
664
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
665
		if (ret)
666
			return ret;
C
Christoffer Dall 已提交
667 668
	}

669 670 671 672
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
673

674
	kvm_sigset_activate(vcpu);
675 676 677 678 679 680 681 682 683

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

684
		update_vmid(&vcpu->arch.hw_mmu->vmid);
685

686 687
		check_vcpu_requests(vcpu);

688 689 690 691 692
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
693
		preempt_disable();
694

695
		kvm_pmu_flush_hwstate(vcpu);
696

697 698
		local_irq_disable();

699 700
		kvm_vgic_flush_hwstate(vcpu);

701
		/*
702 703
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
704
		 */
705
		if (signal_pending(current)) {
706 707 708 709
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

725 726 727 728
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
729
		 * Documentation/virt/kvm/vcpu-requests.rst
730 731 732
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

733
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
734
		    kvm_request_pending(vcpu)) {
735
			vcpu->mode = OUTSIDE_GUEST_MODE;
736
			isb(); /* Ensure work in x_flush_hwstate is committed */
737
			kvm_pmu_sync_hwstate(vcpu);
738
			if (static_branch_unlikely(&userspace_irqchip_in_use))
739
				kvm_timer_sync_user(vcpu);
740
			kvm_vgic_sync_hwstate(vcpu);
741
			local_irq_enable();
742
			preempt_enable();
743 744 745
			continue;
		}

746 747
		kvm_arm_setup_debug(vcpu);

748 749 750 751
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
752
		guest_enter_irqoff();
753

754
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
755

756
		vcpu->mode = OUTSIDE_GUEST_MODE;
757
		vcpu->stat.exits++;
758 759 760 761
		/*
		 * Back from guest
		 *************************************************************/

762 763
		kvm_arm_clear_debug(vcpu);

764
		/*
765
		 * We must sync the PMU state before the vgic state so
766 767 768 769 770
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

771 772 773 774 775
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
776 777
		kvm_vgic_sync_hwstate(vcpu);

778 779 780 781 782
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
783
		if (static_branch_unlikely(&userspace_irqchip_in_use))
784
			kvm_timer_sync_user(vcpu);
785

786 787
		kvm_arch_vcpu_ctxsync_fp(vcpu);

788 789 790 791 792 793 794 795 796 797 798 799 800
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
801
		 * We do local_irq_enable() before calling guest_exit() so
802 803
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
804
		 * preemption after calling guest_exit() so that if we get
805 806 807
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
808
		guest_exit();
809
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
810

811
		/* Exit types that need handling before we can be preempted */
812
		handle_exit_early(vcpu, ret);
813

814 815
		preempt_enable();

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

835
		ret = handle_exit(vcpu, ret);
836 837
	}

838
	/* Tell userspace about in-kernel device output levels */
839 840 841 842
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
843

844 845
	kvm_sigset_deactivate(vcpu);

846
	vcpu_put(vcpu);
847
	return ret;
848 849
}

850 851 852 853
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
854
	unsigned long *hcr;
855 856 857 858 859 860

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

861
	hcr = vcpu_hcr(vcpu);
862
	if (level)
863
		set = test_and_set_bit(bit_index, hcr);
864
	else
865
		set = test_and_clear_bit(bit_index, hcr);
866 867 868 869 870 871 872 873 874 875 876 877

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
878
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
879 880 881 882 883
	kvm_vcpu_kick(vcpu);

	return 0;
}

884 885
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
886 887 888 889 890 891 892 893 894
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
895
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
896 897 898 899
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

900 901 902 903
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
904

905 906
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
907

908 909 910
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
929

930
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
931 932 933 934
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

935
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
936 937
			return -EINVAL;

938
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
939 940 941
	}

	return -EINVAL;
942 943
}

944 945 946
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
947
	unsigned int i, ret;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
982 983 984 985 986
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
987

988 989
	return ret;
}
990

991 992 993 994 995 996 997 998 999
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1000 1001 1002
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1003
	 *
1004 1005 1006 1007
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1008
	 */
1009 1010 1011 1012 1013 1014
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1015

1016 1017
	vcpu_reset_hcr(vcpu);

1018
	/*
1019
	 * Handle the "start in power-off" case.
1020
	 */
1021
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1022
		vcpu_power_off(vcpu);
1023
	else
1024
		vcpu->arch.power_off = false;
1025 1026 1027 1028

	return 0;
}

1029 1030 1031 1032 1033 1034 1035
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1036
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1050
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1064
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1065 1066 1067 1068 1069 1070
		break;
	}

	return ret;
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1097 1098 1099 1100 1101
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1102
	struct kvm_device_attr attr;
1103 1104
	long r;

1105 1106 1107 1108
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1109
		r = -EFAULT;
1110
		if (copy_from_user(&init, argp, sizeof(init)))
1111
			break;
1112

1113 1114
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1115 1116 1117 1118
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1119

1120
		r = -ENOEXEC;
1121
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1122
			break;
1123

1124
		r = -EFAULT;
1125
		if (copy_from_user(&reg, argp, sizeof(reg)))
1126 1127
			break;

1128
		if (ioctl == KVM_SET_ONE_REG)
1129
			r = kvm_arm_set_reg(vcpu, &reg);
1130
		else
1131 1132
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1133 1134 1135 1136 1137 1138
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1139
		r = -ENOEXEC;
1140
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1141
			break;
1142

1143 1144 1145 1146
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1147
		r = -EFAULT;
1148
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1149
			break;
1150 1151 1152
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1153 1154
			break;
		r = -E2BIG;
1155
		if (n < reg_list.n)
1156 1157 1158
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1159
	}
1160
	case KVM_SET_DEVICE_ATTR: {
1161
		r = -EFAULT;
1162
		if (copy_from_user(&attr, argp, sizeof(attr)))
1163 1164 1165
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1166 1167
	}
	case KVM_GET_DEVICE_ATTR: {
1168
		r = -EFAULT;
1169
		if (copy_from_user(&attr, argp, sizeof(attr)))
1170 1171 1172
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1173 1174
	}
	case KVM_HAS_DEVICE_ATTR: {
1175
		r = -EFAULT;
1176
		if (copy_from_user(&attr, argp, sizeof(attr)))
1177 1178 1179
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1180
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1211
	default:
1212
		r = -EINVAL;
1213
	}
1214 1215

	return r;
1216 1217
}

1218
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1219
{
1220

1221 1222
}

1223 1224
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1225
{
1226
	kvm_flush_remote_tlbs(kvm);
1227 1228
}

1229 1230 1231
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1232 1233 1234 1235 1236 1237 1238 1239 1240
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1241 1242
		if (!vgic_present)
			return -ENXIO;
1243
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1244 1245 1246
	default:
		return -ENODEV;
	}
1247 1248
}

1249 1250 1251
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1252 1253 1254 1255
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1256
	case KVM_CREATE_IRQCHIP: {
1257
		int ret;
1258 1259
		if (!vgic_present)
			return -ENXIO;
1260 1261 1262 1263
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1264
	}
1265 1266 1267 1268 1269 1270 1271
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1285 1286 1287
	default:
		return -EINVAL;
	}
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static int kvm_map_vectors(void)
{
	/*
	 * SV2  = ARM64_SPECTRE_V2
	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
	 *
	 * !SV2 + !HEL2 -> use direct vectors
	 *  SV2 + !HEL2 -> use hardened vectors in place
	 * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
	 *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
	 */
	if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
	}

	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;

		/*
		 * Always allocate a spare vector slot, as we don't
		 * know yet which CPUs have a BP hardening slot that
		 * we can reuse.
		 */
		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
		return create_hyp_exec_mappings(vect_pa, size,
						&__kvm_bp_vect_base);
	}

	return 0;
}

1337
static void cpu_init_hyp_mode(void)
1338
{
1339
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1340
	struct arm_smccc_res res;
1341
	unsigned long tcr;
1342 1343

	/* Switch from the HYP stub to our own HYP init vector */
1344
	__hyp_set_vectors(kvm_get_idmap_vector());
1345

1346 1347 1348 1349 1350
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1351 1352
	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1375 1376 1377 1378 1379 1380 1381 1382
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();

	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1383

1384 1385 1386 1387 1388 1389 1390
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1391
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1392
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1393 1394 1395 1396 1397 1398

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1399
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1400
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1401
	}
1402 1403
}

1404 1405 1406 1407 1408 1409
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1410 1411
static void cpu_hyp_reinit(void)
{
1412
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1413

1414 1415
	cpu_hyp_reset();

1416
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1417

1418
	if (is_kernel_in_hyp_mode())
1419
		kvm_timer_init_vhe();
1420
	else
1421
		cpu_init_hyp_mode();
1422

1423
	kvm_arm_init_debug();
1424 1425 1426

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1427 1428
}

1429 1430 1431
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1432
		cpu_hyp_reinit();
1433
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1434
	}
1435
}
1436

1437 1438 1439 1440
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1455

1456 1457 1458 1459 1460
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1476
		return NOTIFY_OK;
1477
	case CPU_PM_ENTER_FAILED:
1478 1479 1480 1481
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1482

1483 1484 1485 1486 1487
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1498 1499 1500 1501
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1502 1503 1504 1505
#else
static inline void hyp_cpu_pm_init(void)
{
}
1506 1507 1508
static inline void hyp_cpu_pm_exit(void)
{
}
1509 1510
#endif

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
		kvm_nvhe_sym(__cpu_logical_map)[cpu] = cpu_logical_map(cpu);
}

1525 1526
static int init_common_resources(void)
{
1527
	return kvm_set_ipa_limit();
1528 1529 1530 1531
}

static int init_subsystems(void)
{
1532
	int err = 0;
1533

1534
	/*
1535
	 * Enable hardware so that subsystem initialisation can access EL2.
1536
	 */
1537
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1538 1539 1540 1541 1542 1543

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1555
		err = 0;
1556 1557
		break;
	default:
1558
		goto out;
1559 1560 1561 1562 1563
	}

	/*
	 * Init HYP architected timer support
	 */
1564
	err = kvm_timer_hyp_init(vgic_present);
1565
	if (err)
1566
		goto out;
1567 1568 1569 1570

	kvm_perf_init();
	kvm_coproc_table_init();

1571 1572 1573 1574
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1575 1576 1577 1578 1579 1580 1581
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1582
	for_each_possible_cpu(cpu) {
1583
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1584 1585
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1612
			goto out_err;
1613 1614 1615 1616 1617
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1636 1637 1638
	/*
	 * Map the Hyp-code called directly from the host
	 */
1639
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1640
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1641 1642
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1643
		goto out_err;
1644 1645
	}

1646 1647 1648 1649 1650 1651 1652 1653
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
				  PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
		goto out_err;
	}

1654
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1655
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1656 1657
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1658 1659 1660 1661 1662 1663 1664
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1665
		goto out_err;
1666 1667
	}

1668 1669 1670 1671 1672 1673
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1674 1675 1676 1677 1678
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1679 1680
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1681 1682 1683

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1684
			goto out_err;
1685 1686 1687
		}
	}

1688 1689 1690
	/*
	 * Map Hyp percpu pages
	 */
1691
	for_each_possible_cpu(cpu) {
1692 1693
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1694

1695
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1696 1697

		if (err) {
1698
			kvm_err("Cannot map hyp percpu region\n");
1699 1700
			goto out_err;
		}
1701 1702
	}

1703 1704 1705
	if (is_protected_kvm_enabled())
		init_cpu_logical_map();

1706
	return 0;
1707

1708
out_err:
1709
	teardown_hyp_mode();
1710 1711 1712 1713
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1714 1715 1716 1717 1718
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1743 1744
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1745 1746 1747 1748 1749 1750 1751
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1752 1753
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1772 1773 1774
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1775 1776
int kvm_arch_init(void *opaque)
{
1777
	int err;
1778
	int ret, cpu;
1779
	bool in_hyp_mode;
1780 1781

	if (!is_hyp_mode_available()) {
1782
		kvm_info("HYP mode not available\n");
1783 1784 1785
		return -ENODEV;
	}

1786 1787 1788 1789
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1790 1791 1792
		return -ENODEV;
	}

1793 1794
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1795 1796 1797
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1798 1799 1800 1801 1802 1803
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1804 1805
	}

1806
	err = init_common_resources();
1807
	if (err)
1808
		return err;
1809

1810
	err = kvm_arm_init_sve();
1811 1812 1813
	if (err)
		return err;

1814
	if (!in_hyp_mode) {
1815
		err = init_hyp_mode();
1816 1817 1818
		if (err)
			goto out_err;
	}
1819

1820 1821 1822
	err = init_subsystems();
	if (err)
		goto out_hyp;
1823

1824 1825 1826
	if (is_protected_kvm_enabled())
		kvm_info("Protected nVHE mode initialized successfully\n");
	else if (in_hyp_mode)
1827 1828 1829 1830
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1831
	return 0;
1832 1833

out_hyp:
1834
	hyp_cpu_pm_exit();
1835 1836
	if (!in_hyp_mode)
		teardown_hyp_mode();
1837 1838
out_err:
	return err;
1839 1840 1841 1842 1843
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1844
	kvm_perf_teardown();
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1861 1862 1863 1864 1865
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1866 1867 1868 1869 1870 1871 1872
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);