arm.c 47.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69 70 71 72
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

73
int kvm_arch_hardware_setup(void *opaque)
74 75 76 77
{
	return 0;
}

78
int kvm_arch_check_processor_compat(void *opaque)
79
{
80
	return 0;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
103

104 105 106 107 108
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

109
static void set_default_spectre(struct kvm *kvm)
110 111 112 113 114 115 116 117 118 119 120
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
121 122
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
123 124
}

125 126 127 128
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
129 130
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
131
	int ret;
132

133
	ret = kvm_arm_setup_stage2(kvm, type);
134 135
	if (ret)
		return ret;
136

137
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138
	if (ret)
139
		return ret;
140

141
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 143 144
	if (ret)
		goto out_free_stage2_pgd;

145
	kvm_vgic_early_init(kvm);
146

147
	/* The maximum number of VCPUs is limited by the host's GIC model */
148
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149

150
	set_default_spectre(kvm);
151

152 153
	return ret;
out_free_stage2_pgd:
154
	kvm_free_stage2_pgd(&kvm->arch.mmu);
155
	return ret;
156 157
}

158
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 160 161 162 163
{
	return VM_FAULT_SIGBUS;
}


164 165 166 167
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
168 169 170 171
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

172 173
	bitmap_free(kvm->arch.pmu_filter);

174 175
	kvm_vgic_destroy(kvm);

176 177
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
178
			kvm_vcpu_destroy(kvm->vcpus[i]);
179 180 181
			kvm->vcpus[i] = NULL;
		}
	}
182
	atomic_set(&kvm->online_vcpus, 0);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209 210
		r = 1;
		break;
211 212
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
213
		break;
214 215 216 217
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
218
	case KVM_CAP_MAX_VCPU_ID:
219 220 221 222
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
223
		break;
V
Vladimir Murzin 已提交
224 225 226 227 228 229
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
230 231 232 233 234 235 236
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
237 238 239
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
257
		break;
258 259 260 261 262 263 264 265 266
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
267
	}
268

269 270 271 272 273 274 275 276 277
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
293

294 295 296 297 298 299 300 301 302 303 304
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

305
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306
{
307 308 309 310 311 312
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

313 314
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

315 316 317 318 319 320 321 322 323
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

324 325
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

326 327 328 329
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

330
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 332
}

333
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 335 336
{
}

337
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338
{
339 340 341
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

342
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343
	kvm_timer_vcpu_terminate(vcpu);
344
	kvm_pmu_vcpu_destroy(vcpu);
345 346

	kvm_arm_vcpu_destroy(vcpu);
347 348 349 350
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
351
	return kvm_timer_is_pending(vcpu);
352 353
}

354 355
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
356 357 358
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
359
	 * so that we have the latest PMR and group enables. This ensures
360 361
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
362 363 364
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
365 366 367
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
368
	vgic_v4_put(vcpu, true);
369
	preempt_enable();
370 371 372 373
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
374 375 376
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
377 378
}

379 380
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
381
	struct kvm_s2_mmu *mmu;
382 383
	int *last_ran;

384 385
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386 387

	/*
388 389 390 391 392
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
393 394 395 396
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
397
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
398 399 400
		*last_ran = vcpu->vcpu_id;
	}

401
	vcpu->cpu = cpu;
402

403
	kvm_vgic_load(vcpu);
404
	kvm_timer_vcpu_load(vcpu);
405 406
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
407
	kvm_arch_vcpu_load_fp(vcpu);
408
	kvm_vcpu_pmu_restore_guest(vcpu);
409 410
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
411 412

	if (single_task_running())
413
		vcpu_clear_wfx_traps(vcpu);
414
	else
415
		vcpu_set_wfx_traps(vcpu);
416

417
	if (vcpu_has_ptrauth(vcpu))
418
		vcpu_ptrauth_disable(vcpu);
419 420 421 422
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
423
	kvm_arch_vcpu_put_fp(vcpu);
424 425
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
426
	kvm_timer_vcpu_put(vcpu);
427
	kvm_vgic_put(vcpu);
428
	kvm_vcpu_pmu_restore_host(vcpu);
429

430
	vcpu->cpu = -1;
431 432
}

A
Andrew Jones 已提交
433 434 435
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
436
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
437 438 439
	kvm_vcpu_kick(vcpu);
}

440 441 442
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
443
	if (vcpu->arch.power_off)
444 445 446 447 448
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
449 450 451 452 453
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
454 455
	int ret = 0;

456 457
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
458
		vcpu->arch.power_off = false;
459 460
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
461
		vcpu_power_off(vcpu);
462 463
		break;
	default:
464
		ret = -EINVAL;
465 466
	}

467
	return ret;
468 469
}

470 471 472 473 474 475 476
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
477 478
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
479 480
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
481
		&& !v->arch.power_off && !v->arch.pause);
482 483
}

484 485
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
486
	return vcpu_mode_priv(vcpu);
487 488
}

489 490 491 492 493 494 495
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
496
	preempt_disable();
497
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
498
	preempt_enable();
499 500 501 502
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
503
 * @vmid: The VMID to check
504 505 506
 *
 * return true if there is a new generation of VMIDs being used
 *
507 508
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
509 510 511
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
512
 */
513
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
514
{
515 516
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
517
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
518 519 520
}

/**
521 522
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
523
 */
524
static void update_vmid(struct kvm_vmid *vmid)
525
{
526
	if (!need_new_vmid_gen(vmid))
527 528
		return;

529
	spin_lock(&kvm_vmid_lock);
530 531 532 533 534 535

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
536
	if (!need_new_vmid_gen(vmid)) {
537
		spin_unlock(&kvm_vmid_lock);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

560
	vmid->vmid = kvm_next_vmid;
561
	kvm_next_vmid++;
562
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
563

564
	smp_wmb();
565
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
566 567

	spin_unlock(&kvm_vmid_lock);
568 569 570 571
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
572
	struct kvm *kvm = vcpu->kvm;
573
	int ret = 0;
574

575 576 577
	if (likely(vcpu->arch.has_run_once))
		return 0;

578 579 580
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

581
	vcpu->arch.has_run_once = true;
582

583 584 585 586 587
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
588 589 590
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
591 592 593 594 595 596
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
597 598
	}

599
	ret = kvm_timer_enable(vcpu);
600 601 602 603
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
604

605
	return ret;
606 607
}

608 609 610 611 612
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

613
void kvm_arm_halt_guest(struct kvm *kvm)
614 615 616 617 618 619
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
620
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
621 622
}

623
void kvm_arm_resume_guest(struct kvm *kvm)
624 625 626 627
{
	int i;
	struct kvm_vcpu *vcpu;

628 629
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
630
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
631
	}
632 633
}

634
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
635
{
636
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
637

638 639 640
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
641

A
Andrew Jones 已提交
642
	if (vcpu->arch.power_off || vcpu->arch.pause) {
643
		/* Awaken to handle a signal, request we sleep again later. */
644
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
645
	}
646 647 648 649 650 651 652

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
653 654
}

655 656 657 658 659
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

660 661 662
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
663 664
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
665

666 667 668
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

669 670 671 672 673
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
674 675 676

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
677 678 679 680 681 682 683 684

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
685 686 687
	}
}

688 689 690 691 692 693 694 695 696 697
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
698
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
699
{
700
	struct kvm_run *run = vcpu->run;
701 702
	int ret;

703
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
704 705 706 707
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
708
		return ret;
709

C
Christoffer Dall 已提交
710
	if (run->exit_reason == KVM_EXIT_MMIO) {
711
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
712
		if (ret)
713
			return ret;
C
Christoffer Dall 已提交
714 715
	}

716 717 718 719
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
720

721
	kvm_sigset_activate(vcpu);
722 723 724 725 726 727 728 729 730

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

731
		update_vmid(&vcpu->arch.hw_mmu->vmid);
732

733 734
		check_vcpu_requests(vcpu);

735 736 737 738 739
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
740
		preempt_disable();
741

742
		kvm_pmu_flush_hwstate(vcpu);
743

744 745
		local_irq_disable();

746 747
		kvm_vgic_flush_hwstate(vcpu);

748
		/*
749 750
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
751
		 */
752
		if (signal_pending(current)) {
753 754 755 756
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

772 773 774 775
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
776
		 * Documentation/virt/kvm/vcpu-requests.rst
777 778 779
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

780
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
781
		    kvm_request_pending(vcpu)) {
782
			vcpu->mode = OUTSIDE_GUEST_MODE;
783
			isb(); /* Ensure work in x_flush_hwstate is committed */
784
			kvm_pmu_sync_hwstate(vcpu);
785
			if (static_branch_unlikely(&userspace_irqchip_in_use))
786
				kvm_timer_sync_user(vcpu);
787
			kvm_vgic_sync_hwstate(vcpu);
788
			local_irq_enable();
789
			preempt_enable();
790 791 792
			continue;
		}

793 794
		kvm_arm_setup_debug(vcpu);

795 796 797 798
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
799
		guest_enter_irqoff();
800

801
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
802

803
		vcpu->mode = OUTSIDE_GUEST_MODE;
804
		vcpu->stat.exits++;
805 806 807 808
		/*
		 * Back from guest
		 *************************************************************/

809 810
		kvm_arm_clear_debug(vcpu);

811
		/*
812
		 * We must sync the PMU state before the vgic state so
813 814 815 816 817
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

818 819 820 821 822
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
823 824
		kvm_vgic_sync_hwstate(vcpu);

825 826 827 828 829
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
830
		if (static_branch_unlikely(&userspace_irqchip_in_use))
831
			kvm_timer_sync_user(vcpu);
832

833 834
		kvm_arch_vcpu_ctxsync_fp(vcpu);

835 836 837 838 839 840 841 842 843 844 845 846 847
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
848
		 * We do local_irq_enable() before calling guest_exit() so
849 850
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
851
		 * preemption after calling guest_exit() so that if we get
852 853 854
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
855
		guest_exit();
856
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
857

858
		/* Exit types that need handling before we can be preempted */
859
		handle_exit_early(vcpu, ret);
860

861 862
		preempt_enable();

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

882
		ret = handle_exit(vcpu, ret);
883 884
	}

885
	/* Tell userspace about in-kernel device output levels */
886 887 888 889
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
890

891 892
	kvm_sigset_deactivate(vcpu);

893
	vcpu_put(vcpu);
894
	return ret;
895 896
}

897 898 899 900
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
901
	unsigned long *hcr;
902 903 904 905 906 907

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

908
	hcr = vcpu_hcr(vcpu);
909
	if (level)
910
		set = test_and_set_bit(bit_index, hcr);
911
	else
912
		set = test_and_clear_bit(bit_index, hcr);
913 914 915 916 917 918 919 920 921 922 923 924

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
925
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
926 927 928 929 930
	kvm_vcpu_kick(vcpu);

	return 0;
}

931 932
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
933 934 935 936 937 938 939 940 941
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
942
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
943 944 945 946
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

947 948 949 950
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
951

952 953
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
954

955 956 957
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
976

977
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
978 979 980 981
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

982
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
983 984
			return -EINVAL;

985
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
986 987 988
	}

	return -EINVAL;
989 990
}

991 992 993
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
994
	unsigned int i, ret;
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1029 1030 1031 1032 1033
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1034

1035 1036
	return ret;
}
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1047 1048 1049
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1050
	 *
1051 1052 1053 1054
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1055
	 */
1056 1057 1058 1059 1060 1061
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1062

1063 1064
	vcpu_reset_hcr(vcpu);

1065
	/*
1066
	 * Handle the "start in power-off" case.
1067
	 */
1068
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1069
		vcpu_power_off(vcpu);
1070
	else
1071
		vcpu->arch.power_off = false;
1072 1073 1074 1075

	return 0;
}

1076 1077 1078 1079 1080 1081 1082
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1083
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1097
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1111
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1112 1113 1114 1115 1116 1117
		break;
	}

	return ret;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1144 1145 1146 1147 1148
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1149
	struct kvm_device_attr attr;
1150 1151
	long r;

1152 1153 1154 1155
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1156
		r = -EFAULT;
1157
		if (copy_from_user(&init, argp, sizeof(init)))
1158
			break;
1159

1160 1161
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1162 1163 1164 1165
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1166

1167
		r = -ENOEXEC;
1168
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1169
			break;
1170

1171
		r = -EFAULT;
1172
		if (copy_from_user(&reg, argp, sizeof(reg)))
1173 1174
			break;

1175
		if (ioctl == KVM_SET_ONE_REG)
1176
			r = kvm_arm_set_reg(vcpu, &reg);
1177
		else
1178 1179
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1180 1181 1182 1183 1184 1185
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1186
		r = -ENOEXEC;
1187
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1188
			break;
1189

1190 1191 1192 1193
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1194
		r = -EFAULT;
1195
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1196
			break;
1197 1198 1199
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1200 1201
			break;
		r = -E2BIG;
1202
		if (n < reg_list.n)
1203 1204 1205
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1206
	}
1207
	case KVM_SET_DEVICE_ATTR: {
1208
		r = -EFAULT;
1209
		if (copy_from_user(&attr, argp, sizeof(attr)))
1210 1211 1212
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1213 1214
	}
	case KVM_GET_DEVICE_ATTR: {
1215
		r = -EFAULT;
1216
		if (copy_from_user(&attr, argp, sizeof(attr)))
1217 1218 1219
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1220 1221
	}
	case KVM_HAS_DEVICE_ATTR: {
1222
		r = -EFAULT;
1223
		if (copy_from_user(&attr, argp, sizeof(attr)))
1224 1225 1226
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1227
	}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1258
	default:
1259
		r = -EINVAL;
1260
	}
1261 1262

	return r;
1263 1264
}

1265
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1266
{
1267

1268 1269
}

1270 1271
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1272
{
1273
	kvm_flush_remote_tlbs(kvm);
1274 1275
}

1276 1277 1278
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1279 1280 1281 1282 1283 1284 1285 1286 1287
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1288 1289
		if (!vgic_present)
			return -ENXIO;
1290
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1291 1292 1293
	default:
		return -ENODEV;
	}
1294 1295
}

1296 1297 1298
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1299 1300 1301 1302
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1303
	case KVM_CREATE_IRQCHIP: {
1304
		int ret;
1305 1306
		if (!vgic_present)
			return -ENXIO;
1307 1308 1309 1310
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1311
	}
1312 1313 1314 1315 1316 1317 1318
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1332 1333 1334
	default:
		return -EINVAL;
	}
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1350 1351 1352 1353
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1354
{
1355
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1368

1369
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1370
		return 0;
1371

1372 1373 1374 1375 1376
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1377 1378
	}

1379 1380
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1381 1382 1383
	return 0;
}

1384
static void cpu_prepare_hyp_mode(int cpu)
1385
{
1386
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1387
	unsigned long tcr;
1388

1389 1390 1391 1392
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1393
	 * Also drop the KASAN tag which gets in the way...
1394
	 */
1395
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1396
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1419
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1420
	params->pgd_pa = kvm_mmu_get_httbr();
1421 1422 1423 1424 1425
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1426

1427 1428 1429 1430 1431
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1432 1433
}

1434
static void hyp_install_host_vector(void)
1435 1436 1437 1438 1439 1440
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1441

1442 1443 1444 1445 1446 1447 1448
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1449
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1450
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1451
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1452 1453 1454 1455 1456
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1457 1458 1459 1460 1461 1462

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1463
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1464
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1465
	}
1466 1467
}

1468 1469 1470 1471 1472 1473
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1474 1475 1476 1477 1478 1479 1480 1481
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1482
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1483 1484 1485
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1486
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1487 1488 1489
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1490
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1491 1492 1493 1494 1495
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1496
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1497
	void *vector = hyp_spectre_vector_selector[data->slot];
1498

1499 1500 1501 1502
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1503 1504
}

1505 1506
static void cpu_hyp_reinit(void)
{
1507
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1508

1509
	cpu_hyp_reset();
1510

1511
	if (is_kernel_in_hyp_mode())
1512
		kvm_timer_init_vhe();
1513
	else
1514
		cpu_init_hyp_mode();
1515

1516 1517
	cpu_set_hyp_vector();

1518
	kvm_arm_init_debug();
1519 1520 1521

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1522 1523
}

1524 1525 1526
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1527
		cpu_hyp_reinit();
1528
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1529
	}
1530
}
1531

1532 1533 1534 1535
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1548 1549
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1550
}
1551

1552 1553 1554 1555 1556
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1572
		return NOTIFY_OK;
1573
	case CPU_PM_ENTER_FAILED:
1574 1575 1576 1577
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1578

1579 1580 1581 1582 1583
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1584 1585 1586 1587 1588 1589
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1590
static void hyp_cpu_pm_init(void)
1591
{
1592 1593
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1594
}
1595
static void hyp_cpu_pm_exit(void)
1596
{
1597 1598
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1599
}
1600 1601 1602 1603
#else
static inline void hyp_cpu_pm_init(void)
{
}
1604 1605 1606
static inline void hyp_cpu_pm_exit(void)
{
}
1607 1608
#endif

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1620
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1621 1622
}

1623 1624 1625
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1637 1638 1639 1640
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1641 1642 1643 1644
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1645
	}
1646 1647 1648
	return true;
}

1649 1650
static int init_common_resources(void)
{
1651
	return kvm_set_ipa_limit();
1652 1653 1654 1655
}

static int init_subsystems(void)
{
1656
	int err = 0;
1657

1658
	/*
1659
	 * Enable hardware so that subsystem initialisation can access EL2.
1660
	 */
1661
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1662 1663 1664 1665 1666 1667

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1679
		err = 0;
1680 1681
		break;
	default:
1682
		goto out;
1683 1684 1685 1686 1687
	}

	/*
	 * Init HYP architected timer support
	 */
1688
	err = kvm_timer_hyp_init(vgic_present);
1689
	if (err)
1690
		goto out;
1691 1692

	kvm_perf_init();
M
Marc Zyngier 已提交
1693
	kvm_sys_reg_table_init();
1694

1695
out:
1696 1697
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1698 1699

	return err;
1700 1701 1702 1703 1704 1705 1706
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1707
	for_each_possible_cpu(cpu) {
1708
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1709 1710
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1711 1712
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
	hyp_install_host_vector();
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1746 1747 1748 1749 1750
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1751
	u32 hyp_va_bits;
1752
	int cpu;
1753 1754 1755 1756 1757 1758 1759 1760
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1761 1762 1763 1764

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1765
	err = kvm_mmu_init(&hyp_va_bits);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1778
			goto out_err;
1779 1780 1781 1782 1783
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1802 1803 1804
	/*
	 * Map the Hyp-code called directly from the host
	 */
1805
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1806
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1807 1808
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1809
		goto out_err;
1810 1811
	}

1812 1813
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1814
	if (err) {
1815
		kvm_err("Cannot map .hyp.rodata section\n");
1816 1817 1818
		goto out_err;
	}

1819
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1820
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1821 1822
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1823 1824 1825
		goto out_err;
	}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1839 1840 1841
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1842
		goto out_err;
1843 1844
	}

1845 1846 1847 1848 1849
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1850 1851
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1852 1853 1854

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1855
			goto out_err;
1856 1857 1858 1859
		}
	}

	for_each_possible_cpu(cpu) {
1860 1861
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1862

1863
		/* Map Hyp percpu pages */
1864
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1865
		if (err) {
1866
			kvm_err("Cannot map hyp percpu region\n");
1867 1868
			goto out_err;
		}
1869 1870 1871

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1872 1873
	}

1874
	if (is_protected_kvm_enabled()) {
1875 1876
		init_cpu_logical_map();

1877 1878 1879 1880
		if (!init_psci_relay())
			goto out_err;
	}

1881 1882 1883 1884 1885 1886 1887 1888
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
			goto out_err;
		}
	}

1889
	return 0;
1890

1891
out_err:
1892
	teardown_hyp_mode();
1893 1894 1895 1896
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

	static_branch_enable(&kvm_protected_mode_initialized);

	return 0;
}

1907 1908 1909 1910 1911
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1936 1937
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1938 1939 1940 1941 1942 1943 1944
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1945 1946
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1965 1966 1967
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1968 1969
int kvm_arch_init(void *opaque)
{
1970
	int err;
1971
	int ret, cpu;
1972
	bool in_hyp_mode;
1973 1974

	if (!is_hyp_mode_available()) {
1975
		kvm_info("HYP mode not available\n");
1976 1977 1978
		return -ENODEV;
	}

1979 1980
	in_hyp_mode = is_kernel_in_hyp_mode();

1981 1982
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1983 1984 1985
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1986 1987 1988 1989 1990 1991
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1992 1993
	}

1994
	err = init_common_resources();
1995
	if (err)
1996
		return err;
1997

1998
	err = kvm_arm_init_sve();
1999 2000 2001
	if (err)
		return err;

2002
	if (!in_hyp_mode) {
2003
		err = init_hyp_mode();
2004 2005 2006
		if (err)
			goto out_err;
	}
2007

2008 2009 2010 2011 2012 2013
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2014 2015 2016
	err = init_subsystems();
	if (err)
		goto out_hyp;
2017

2018 2019 2020 2021 2022 2023 2024 2025
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2026
	if (is_protected_kvm_enabled()) {
2027
		kvm_info("Protected nVHE mode initialized successfully\n");
2028
	} else if (in_hyp_mode) {
2029
		kvm_info("VHE mode initialized successfully\n");
2030
	} else {
2031
		kvm_info("Hyp mode initialized successfully\n");
2032
	}
2033

2034
	return 0;
2035 2036

out_hyp:
2037
	hyp_cpu_pm_exit();
2038 2039
	if (!in_hyp_mode)
		teardown_hyp_mode();
2040 2041
out_err:
	return err;
2042 2043 2044 2045 2046
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2047
	kvm_perf_teardown();
2048 2049
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2060 2061 2062
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
		return 0;

2063 2064 2065 2066
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2067 2068 2069 2070 2071
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2072 2073 2074 2075 2076 2077 2078
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);