arm.c 37.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret, cpu;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115 116 117 118 119 120 121
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

122 123 124 125
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131

132
	/* Mark the initial VMID generation invalid */
133
	kvm->arch.vmid.vmid_gen = 0;
134

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 149 150 151 152
{
	return VM_FAULT_SIGBUS;
}


153 154 155 156
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
157 158 159 160
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

161 162
	kvm_vgic_destroy(kvm);

163 164 165
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

166 167
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
168
			kvm_vcpu_destroy(kvm->vcpus[i]);
169 170 171
			kvm->vcpus[i] = NULL;
		}
	}
172
	atomic_set(&kvm->online_vcpus, 0);
173 174
}

175
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 177 178
{
	int r;
	switch (ext) {
179
	case KVM_CAP_IRQCHIP:
180 181
		r = vgic_present;
		break;
182
	case KVM_CAP_IOEVENTFD:
183
	case KVM_CAP_DEVICE_CTRL:
184 185 186 187
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
188
	case KVM_CAP_ARM_PSCI:
189
	case KVM_CAP_ARM_PSCI_0_2:
190
	case KVM_CAP_READONLY_MEM:
191
	case KVM_CAP_MP_STATE:
192
	case KVM_CAP_IMMEDIATE_EXIT:
193
	case KVM_CAP_VCPU_EVENTS:
194
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
195
	case KVM_CAP_ARM_NISV_TO_USER:
196
	case KVM_CAP_ARM_INJECT_EXT_DABT:
197 198
		r = 1;
		break;
199 200
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
201
		break;
202 203 204 205
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
206
	case KVM_CAP_MAX_VCPU_ID:
207 208 209 210
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
211
		break;
V
Vladimir Murzin 已提交
212 213 214 215 216 217
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
218 219 220 221 222 223 224
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
225
	default:
226
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 228 229 230 231 232 233 234 235 236 237
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
253

254 255 256 257 258 259 260 261 262 263 264
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

265
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266
{
267 268 269 270 271 272
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

273 274
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

275 276 277 278 279 280 281 282 283 284 285 286 287
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

288
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
289 290
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 293 294
{
}

295
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296
{
297 298 299
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

300
	kvm_mmu_free_memory_caches(vcpu);
301
	kvm_timer_vcpu_terminate(vcpu);
302
	kvm_pmu_vcpu_destroy(vcpu);
303 304

	kvm_arm_vcpu_destroy(vcpu);
305 306 307 308
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
309
	return kvm_timer_is_pending(vcpu);
310 311
}

312 313
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
314 315 316
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
317
	 * so that we have the latest PMR and group enables. This ensures
318 319
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
320 321 322
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
323 324 325
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
326
	vgic_v4_put(vcpu, true);
327
	preempt_enable();
328 329 330 331
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
332 333 334
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
335 336
}

337 338
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
339 340 341 342 343 344 345 346 347 348 349 350 351
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

352
	vcpu->cpu = cpu;
353

354
	kvm_vgic_load(vcpu);
355
	kvm_timer_vcpu_load(vcpu);
356
	kvm_vcpu_load_sysregs(vcpu);
357
	kvm_arch_vcpu_load_fp(vcpu);
358
	kvm_vcpu_pmu_restore_guest(vcpu);
359 360
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
361 362

	if (single_task_running())
363
		vcpu_clear_wfx_traps(vcpu);
364
	else
365
		vcpu_set_wfx_traps(vcpu);
366

367
	if (vcpu_has_ptrauth(vcpu))
368
		vcpu_ptrauth_disable(vcpu);
369 370 371 372
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
373
	kvm_arch_vcpu_put_fp(vcpu);
374
	kvm_vcpu_put_sysregs(vcpu);
375
	kvm_timer_vcpu_put(vcpu);
376
	kvm_vgic_put(vcpu);
377
	kvm_vcpu_pmu_restore_host(vcpu);
378

379
	vcpu->cpu = -1;
380 381
}

A
Andrew Jones 已提交
382 383 384
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
385
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
386 387 388
	kvm_vcpu_kick(vcpu);
}

389 390 391
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392
	if (vcpu->arch.power_off)
393 394 395 396 397
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
398 399 400 401 402
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
403 404
	int ret = 0;

405 406
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
407
		vcpu->arch.power_off = false;
408 409
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
410
		vcpu_power_off(vcpu);
411 412
		break;
	default:
413
		ret = -EINVAL;
414 415
	}

416
	return ret;
417 418
}

419 420 421 422 423 424 425
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
426 427
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
428 429
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430
		&& !v->arch.power_off && !v->arch.pause);
431 432
}

433 434
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
435
	return vcpu_mode_priv(vcpu);
436 437
}

438 439 440 441 442 443 444
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
445
	preempt_disable();
446
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447
	preempt_enable();
448 449 450 451
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
452
 * @vmid: The VMID to check
453 454 455
 *
 * return true if there is a new generation of VMIDs being used
 *
456 457
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
458 459 460
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
461
 */
462
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463
{
464 465
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 468 469
}

/**
470 471 472
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
473
 */
474
static void update_vmid(struct kvm_vmid *vmid)
475
{
476
	if (!need_new_vmid_gen(vmid))
477 478
		return;

479
	spin_lock(&kvm_vmid_lock);
480 481 482 483 484 485

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
486
	if (!need_new_vmid_gen(vmid)) {
487
		spin_unlock(&kvm_vmid_lock);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

510
	vmid->vmid = kvm_next_vmid;
511
	kvm_next_vmid++;
512
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
513

514
	smp_wmb();
515
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
516 517

	spin_unlock(&kvm_vmid_lock);
518 519 520 521
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
522
	struct kvm *kvm = vcpu->kvm;
523
	int ret = 0;
524

525 526 527
	if (likely(vcpu->arch.has_run_once))
		return 0;

528 529 530
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

531
	vcpu->arch.has_run_once = true;
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
549 550
	}

551
	ret = kvm_timer_enable(vcpu);
552 553 554 555
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
556

557
	return ret;
558 559
}

560 561 562 563 564
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

565
void kvm_arm_halt_guest(struct kvm *kvm)
566 567 568 569 570 571
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
572
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 574
}

575
void kvm_arm_resume_guest(struct kvm *kvm)
576 577 578 579
{
	int i;
	struct kvm_vcpu *vcpu;

580 581
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
582
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
583
	}
584 585
}

586
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587
{
588
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
589

590 591 592
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
593

A
Andrew Jones 已提交
594
	if (vcpu->arch.power_off || vcpu->arch.pause) {
595
		/* Awaken to handle a signal, request we sleep again later. */
596
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
597
	}
598 599 600 601 602 603 604

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
605 606
}

607 608 609 610 611
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

612 613 614
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
615 616
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
617

618 619 620
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

621 622 623 624 625
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
626 627 628

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
629 630 631 632 633 634 635 636

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
637 638 639
	}
}

640 641 642 643 644 645 646 647 648 649
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
650
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
651
{
652
	struct kvm_run *run = vcpu->run;
653 654
	int ret;

655
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
656 657 658 659
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
660
		return ret;
661

C
Christoffer Dall 已提交
662
	if (run->exit_reason == KVM_EXIT_MMIO) {
663
		ret = kvm_handle_mmio_return(vcpu, run);
C
Christoffer Dall 已提交
664
		if (ret)
665
			return ret;
C
Christoffer Dall 已提交
666 667
	}

668 669 670 671
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
672

673
	kvm_sigset_activate(vcpu);
674 675 676 677 678 679 680 681 682

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

683
		update_vmid(&vcpu->kvm->arch.vmid);
684

685 686
		check_vcpu_requests(vcpu);

687 688 689 690 691
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
692
		preempt_disable();
693

694
		kvm_pmu_flush_hwstate(vcpu);
695

696 697
		local_irq_disable();

698 699
		kvm_vgic_flush_hwstate(vcpu);

700
		/*
701 702
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
703
		 */
704
		if (signal_pending(current)) {
705 706 707 708
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

724 725 726 727
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
728
		 * Documentation/virt/kvm/vcpu-requests.rst
729 730 731
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

732
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
733
		    kvm_request_pending(vcpu)) {
734
			vcpu->mode = OUTSIDE_GUEST_MODE;
735
			isb(); /* Ensure work in x_flush_hwstate is committed */
736
			kvm_pmu_sync_hwstate(vcpu);
737 738
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
739
			kvm_vgic_sync_hwstate(vcpu);
740
			local_irq_enable();
741
			preempt_enable();
742 743 744
			continue;
		}

745 746
		kvm_arm_setup_debug(vcpu);

747 748 749 750
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
751
		guest_enter_irqoff();
752

753 754 755
		if (has_vhe()) {
			ret = kvm_vcpu_run_vhe(vcpu);
		} else {
756
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
757 758
		}

759
		vcpu->mode = OUTSIDE_GUEST_MODE;
760
		vcpu->stat.exits++;
761 762 763 764
		/*
		 * Back from guest
		 *************************************************************/

765 766
		kvm_arm_clear_debug(vcpu);

767
		/*
768
		 * We must sync the PMU state before the vgic state so
769 770 771 772 773
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

774 775 776 777 778
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
779 780
		kvm_vgic_sync_hwstate(vcpu);

781 782 783 784 785
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
786 787
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
788

789 790
		kvm_arch_vcpu_ctxsync_fp(vcpu);

791 792 793 794 795 796 797 798 799 800 801 802 803
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
804
		 * We do local_irq_enable() before calling guest_exit() so
805 806
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
807
		 * preemption after calling guest_exit() so that if we get
808 809 810
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
811
		guest_exit();
812
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
813

814 815 816
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

817 818
		preempt_enable();

819 820 821
		ret = handle_exit(vcpu, run, ret);
	}

822
	/* Tell userspace about in-kernel device output levels */
823 824 825 826
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
827

828 829
	kvm_sigset_deactivate(vcpu);

830
	vcpu_put(vcpu);
831
	return ret;
832 833
}

834 835 836 837
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
838
	unsigned long *hcr;
839 840 841 842 843 844

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

845
	hcr = vcpu_hcr(vcpu);
846
	if (level)
847
		set = test_and_set_bit(bit_index, hcr);
848
	else
849
		set = test_and_clear_bit(bit_index, hcr);
850 851 852 853 854 855 856 857 858 859 860 861

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
862
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
863 864 865 866 867
	kvm_vcpu_kick(vcpu);

	return 0;
}

868 869
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
870 871 872 873 874 875 876 877 878
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
879
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
880 881 882 883
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

884 885 886 887
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
888

889 890
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
891

892 893 894
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
913

914
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
915 916 917 918
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

919
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
920 921
			return -EINVAL;

922
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
923 924 925
	}

	return -EINVAL;
926 927
}

928 929 930
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
931
	unsigned int i, ret;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
966 967 968 969 970
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
971

972 973
	return ret;
}
974

975 976 977 978 979 980 981 982 983
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

984 985 986
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
987
	 *
988 989 990 991
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
992
	 */
993 994 995 996 997 998
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
999

1000 1001
	vcpu_reset_hcr(vcpu);

1002
	/*
1003
	 * Handle the "start in power-off" case.
1004
	 */
1005
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1006
		vcpu_power_off(vcpu);
1007
	else
1008
		vcpu->arch.power_off = false;
1009 1010 1011 1012

	return 0;
}

1013 1014 1015 1016 1017 1018 1019
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1020
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1034
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1048
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1049 1050 1051 1052 1053 1054
		break;
	}

	return ret;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1081 1082 1083 1084 1085
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1086
	struct kvm_device_attr attr;
1087 1088
	long r;

1089 1090 1091 1092
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1093
		r = -EFAULT;
1094
		if (copy_from_user(&init, argp, sizeof(init)))
1095
			break;
1096

1097 1098
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1099 1100 1101 1102
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1103

1104
		r = -ENOEXEC;
1105
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1106
			break;
1107

1108
		r = -EFAULT;
1109
		if (copy_from_user(&reg, argp, sizeof(reg)))
1110 1111
			break;

1112
		if (ioctl == KVM_SET_ONE_REG)
1113
			r = kvm_arm_set_reg(vcpu, &reg);
1114
		else
1115 1116
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1117 1118 1119 1120 1121 1122
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1123
		r = -ENOEXEC;
1124
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125
			break;
1126

1127 1128 1129 1130
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1131
		r = -EFAULT;
1132
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1133
			break;
1134 1135 1136
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1137 1138
			break;
		r = -E2BIG;
1139
		if (n < reg_list.n)
1140 1141 1142
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1143
	}
1144
	case KVM_SET_DEVICE_ATTR: {
1145
		r = -EFAULT;
1146
		if (copy_from_user(&attr, argp, sizeof(attr)))
1147 1148 1149
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1150 1151
	}
	case KVM_GET_DEVICE_ATTR: {
1152
		r = -EFAULT;
1153
		if (copy_from_user(&attr, argp, sizeof(attr)))
1154 1155 1156
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1157 1158
	}
	case KVM_HAS_DEVICE_ATTR: {
1159
		r = -EFAULT;
1160
		if (copy_from_user(&attr, argp, sizeof(attr)))
1161 1162 1163
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1164
	}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1195
	default:
1196
		r = -EINVAL;
1197
	}
1198 1199

	return r;
1200 1201
}

1202
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1203
{
1204

1205 1206
}

1207 1208
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1209
{
1210
	kvm_flush_remote_tlbs(kvm);
1211 1212
}

1213 1214 1215
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1216 1217 1218 1219 1220 1221 1222 1223 1224
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1225 1226
		if (!vgic_present)
			return -ENXIO;
1227
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1228 1229 1230
	default:
		return -ENODEV;
	}
1231 1232
}

1233 1234 1235
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1236 1237 1238 1239
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1240
	case KVM_CREATE_IRQCHIP: {
1241
		int ret;
1242 1243
		if (!vgic_present)
			return -ENXIO;
1244 1245 1246 1247
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1248
	}
1249 1250 1251 1252 1253 1254 1255
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1269 1270 1271
	default:
		return -EINVAL;
	}
1272 1273
}

1274
static void cpu_init_hyp_mode(void)
1275
{
1276
	phys_addr_t pgd_ptr;
1277 1278
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1279
	unsigned long tpidr_el2;
1280 1281

	/* Switch from the HYP stub to our own HYP init vector */
1282
	__hyp_set_vectors(kvm_get_idmap_vector());
1283

1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
		     (unsigned long)kvm_ksym_ref(kvm_host_data));

1292
	pgd_ptr = kvm_mmu_get_httbr();
1293
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1294
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		kvm_call_hyp(__kvm_enable_ssbs);
	}
1313 1314
}

1315 1316 1317 1318 1319 1320
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1321 1322
static void cpu_hyp_reinit(void)
{
1323 1324
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1325 1326
	cpu_hyp_reset();

1327
	if (is_kernel_in_hyp_mode())
1328
		kvm_timer_init_vhe();
1329
	else
1330
		cpu_init_hyp_mode();
1331

1332
	kvm_arm_init_debug();
1333 1334 1335

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1336 1337
}

1338 1339 1340
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1341
		cpu_hyp_reinit();
1342
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1343
	}
1344
}
1345

1346 1347 1348 1349
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1364

1365 1366 1367 1368 1369
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1385
		return NOTIFY_OK;
1386
	case CPU_PM_ENTER_FAILED:
1387 1388 1389 1390
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1391

1392 1393 1394 1395 1396
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1407 1408 1409 1410
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1411 1412 1413 1414
#else
static inline void hyp_cpu_pm_init(void)
{
}
1415 1416 1417
static inline void hyp_cpu_pm_exit(void)
{
}
1418 1419
#endif

1420 1421
static int init_common_resources(void)
{
1422
	return kvm_set_ipa_limit();
1423 1424 1425 1426
}

static int init_subsystems(void)
{
1427
	int err = 0;
1428

1429
	/*
1430
	 * Enable hardware so that subsystem initialisation can access EL2.
1431
	 */
1432
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1433 1434 1435 1436 1437 1438

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1450
		err = 0;
1451 1452
		break;
	default:
1453
		goto out;
1454 1455 1456 1457 1458
	}

	/*
	 * Init HYP architected timer support
	 */
1459
	err = kvm_timer_hyp_init(vgic_present);
1460
	if (err)
1461
		goto out;
1462 1463 1464 1465

	kvm_perf_init();
	kvm_coproc_table_init();

1466 1467 1468 1469
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1505
			goto out_err;
1506 1507 1508 1509 1510 1511 1512 1513
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1514
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1515
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1516 1517
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1518
		goto out_err;
1519 1520
	}

1521
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1522
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1523 1524
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1525 1526 1527 1528 1529 1530 1531
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1532
		goto out_err;
1533 1534
	}

1535 1536 1537 1538 1539 1540
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1541 1542 1543 1544 1545
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1546 1547
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1548 1549 1550

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1551
			goto out_err;
1552 1553 1554 1555
		}
	}

	for_each_possible_cpu(cpu) {
1556
		kvm_host_data_t *cpu_data;
1557

1558 1559
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1560 1561

		if (err) {
1562
			kvm_err("Cannot map host CPU state: %d\n", err);
1563
			goto out_err;
1564 1565 1566
		}
	}

1567 1568
	err = hyp_map_aux_data();
	if (err)
1569
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1570

1571
	return 0;
1572

1573
out_err:
1574
	teardown_hyp_mode();
1575 1576 1577 1578
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1579 1580 1581 1582 1583
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1608 1609
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1610 1611 1612 1613 1614 1615 1616
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1617 1618
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1637 1638 1639
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1640 1641
int kvm_arch_init(void *opaque)
{
1642
	int err;
1643
	int ret, cpu;
1644
	bool in_hyp_mode;
1645 1646

	if (!is_hyp_mode_available()) {
1647
		kvm_info("HYP mode not available\n");
1648 1649 1650
		return -ENODEV;
	}

1651 1652 1653 1654
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1655 1656 1657
		return -ENODEV;
	}

1658 1659 1660 1661 1662 1663
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1664 1665
	}

1666
	err = init_common_resources();
1667
	if (err)
1668
		return err;
1669

1670
	err = kvm_arm_init_sve();
1671 1672 1673
	if (err)
		return err;

1674
	if (!in_hyp_mode) {
1675
		err = init_hyp_mode();
1676 1677 1678
		if (err)
			goto out_err;
	}
1679

1680 1681 1682
	err = init_subsystems();
	if (err)
		goto out_hyp;
1683

1684 1685 1686 1687 1688
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1689
	return 0;
1690 1691

out_hyp:
1692
	hyp_cpu_pm_exit();
1693 1694
	if (!in_hyp_mode)
		teardown_hyp_mode();
1695 1696
out_err:
	return err;
1697 1698 1699 1700 1701
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1702
	kvm_perf_teardown();
1703 1704 1705 1706 1707 1708 1709 1710 1711
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);