arm.c 51.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10 11 12
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14 15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
19
#include <linux/kmemleak.h>
20
#include <linux/kvm.h>
21 22
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
23
#include <linux/sched/stat.h>
24
#include <linux/psci.h>
25 26 27
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
28
#include "trace_arm.h"
29

30
#include <linux/uaccess.h>
31 32
#include <asm/ptrace.h>
#include <asm/mman.h>
33
#include <asm/tlbflush.h>
34
#include <asm/cacheflush.h>
35
#include <asm/cpufeature.h>
36 37 38 39
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_emulate.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49

50 51
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55

56 57
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58
static u32 kvm_next_vmid;
59
static DEFINE_SPINLOCK(kvm_vmid_lock);
60

61 62
static bool vgic_present;

63
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 65
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66 67 68 69 70
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

71
int kvm_arch_hardware_setup(void *opaque)
72 73 74 75
{
	return 0;
}

76
int kvm_arch_check_processor_compat(void *opaque)
77
{
78
	return 0;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
94
	case KVM_CAP_ARM_MTE:
95 96 97 98 99 100 101 102
		mutex_lock(&kvm->lock);
		if (!system_supports_mte() || kvm->created_vcpus) {
			r = -EINVAL;
		} else {
			r = 0;
			kvm->arch.mte_enabled = true;
		}
		mutex_unlock(&kvm->lock);
103
		break;
104 105 106 107 108 109 110
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
111

112 113 114 115 116
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

117
static void set_default_spectre(struct kvm *kvm)
118 119 120 121 122 123 124 125 126 127 128
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
129 130
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
131 132
}

133 134 135 136
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
137 138
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
139
	int ret;
140

141
	ret = kvm_arm_setup_stage2(kvm, type);
142 143
	if (ret)
		return ret;
144

145
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146
	if (ret)
147
		return ret;
148

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* The maximum number of VCPUs is limited by the host's GIC model */
156
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157

158
	set_default_spectre(kvm);
159

160 161
	return ret;
out_free_stage2_pgd:
162
	kvm_free_stage2_pgd(&kvm->arch.mmu);
163
	return ret;
164 165
}

166
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 168 169 170 171
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
178 179
	bitmap_free(kvm->arch.pmu_filter);

180 181
	kvm_vgic_destroy(kvm);

182
	kvm_destroy_vcpus(kvm);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209
	case KVM_CAP_PTP_KVM:
210 211
		r = 1;
		break;
212 213
	case KVM_CAP_SET_GUEST_DEBUG2:
		return KVM_GUESTDBG_VALID_MASK;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217
	case KVM_CAP_NR_VCPUS:
218 219 220 221 222 223 224 225
		/*
		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
		 * architectures, as it does not always bound it to
		 * KVM_CAP_MAX_VCPUS. It should not matter much because
		 * this is just an advisory value.
		 */
		r = min_t(unsigned int, num_online_cpus(),
			  kvm_arm_default_max_vcpus());
226 227
		break;
	case KVM_CAP_MAX_VCPUS:
228
	case KVM_CAP_MAX_VCPU_ID:
229 230 231 232
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
233
		break;
V
Vladimir Murzin 已提交
234 235 236 237 238 239
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
240 241 242 243 244 245 246
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
247 248 249
	case KVM_CAP_ARM_MTE:
		r = system_supports_mte();
		break;
250 251 252
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
270
		break;
271 272 273 274 275 276 277 278 279
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
280
	}
281

282 283 284 285 286 287 288 289 290
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

291 292
struct kvm *kvm_arch_alloc_vm(void)
{
293 294
	size_t sz = sizeof(struct kvm);

295
	if (!has_vhe())
296
		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
297

298
	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
299 300
}

301 302 303 304 305 306 307 308 309 310 311
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

312
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
313
{
314 315 316 317 318 319
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

320 321
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

322 323 324 325 326 327 328 329 330
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

331 332
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

333 334 335 336
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

337
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
338 339
}

340
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
341 342 343
{
}

344
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
345
{
346 347 348
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

349
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
350
	kvm_timer_vcpu_terminate(vcpu);
351
	kvm_pmu_vcpu_destroy(vcpu);
352 353

	kvm_arm_vcpu_destroy(vcpu);
354 355 356 357
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
358
	return kvm_timer_is_pending(vcpu);
359 360
}

361 362
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
363

364 365 366 367
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
368

369 370
}

371 372
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
373
	struct kvm_s2_mmu *mmu;
374 375
	int *last_ran;

376 377
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
378 379

	/*
380 381 382 383 384
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
385 386 387 388
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
389
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
390 391 392
		*last_ran = vcpu->vcpu_id;
	}

393
	vcpu->cpu = cpu;
394

395
	kvm_vgic_load(vcpu);
396
	kvm_timer_vcpu_load(vcpu);
397 398
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
399
	kvm_arch_vcpu_load_fp(vcpu);
400
	kvm_vcpu_pmu_restore_guest(vcpu);
401 402
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
403 404

	if (single_task_running())
405
		vcpu_clear_wfx_traps(vcpu);
406
	else
407
		vcpu_set_wfx_traps(vcpu);
408

409
	if (vcpu_has_ptrauth(vcpu))
410
		vcpu_ptrauth_disable(vcpu);
411
	kvm_arch_vcpu_load_debug_state_flags(vcpu);
412 413 414 415
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
416
	kvm_arch_vcpu_put_debug_state_flags(vcpu);
417
	kvm_arch_vcpu_put_fp(vcpu);
418 419
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
420
	kvm_timer_vcpu_put(vcpu);
421
	kvm_vgic_put(vcpu);
422
	kvm_vcpu_pmu_restore_host(vcpu);
423

424
	vcpu->cpu = -1;
425 426
}

A
Andrew Jones 已提交
427 428 429
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
430
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
431 432 433
	kvm_vcpu_kick(vcpu);
}

434 435 436
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
437
	if (vcpu->arch.power_off)
438 439 440 441 442
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
443 444 445 446 447
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
448 449
	int ret = 0;

450 451
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
452
		vcpu->arch.power_off = false;
453 454
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
455
		vcpu_power_off(vcpu);
456 457
		break;
	default:
458
		ret = -EINVAL;
459 460
	}

461
	return ret;
462 463
}

464 465 466 467 468 469 470
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
471 472
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
473 474
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
475
		&& !v->arch.power_off && !v->arch.pause);
476 477
}

478 479
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
480
	return vcpu_mode_priv(vcpu);
481 482
}

483 484 485 486 487 488 489
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
490
	preempt_disable();
491
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
492
	preempt_enable();
493 494 495 496
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
497
 * @vmid: The VMID to check
498 499 500
 *
 * return true if there is a new generation of VMIDs being used
 *
501 502
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
503 504 505
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
506
 */
507
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
508
{
509 510
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
511
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
512 513 514
}

/**
515 516
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
517
 */
518
static void update_vmid(struct kvm_vmid *vmid)
519
{
520
	if (!need_new_vmid_gen(vmid))
521 522
		return;

523
	spin_lock(&kvm_vmid_lock);
524 525 526 527 528 529

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
530
	if (!need_new_vmid_gen(vmid)) {
531
		spin_unlock(&kvm_vmid_lock);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

554
	WRITE_ONCE(vmid->vmid, kvm_next_vmid);
555
	kvm_next_vmid++;
556
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
557

558
	smp_wmb();
559
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
560 561

	spin_unlock(&kvm_vmid_lock);
562 563 564 565
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
566
	struct kvm *kvm = vcpu->kvm;
567
	int ret = 0;
568

569 570 571
	if (likely(vcpu->arch.has_run_once))
		return 0;

572 573 574
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

575
	vcpu->arch.has_run_once = true;
576

577 578
	kvm_arm_vcpu_init_debug(vcpu);

579 580 581 582 583
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
584 585 586
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
587 588 589 590 591 592
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
593 594
	}

595
	ret = kvm_timer_enable(vcpu);
596 597 598 599
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
600

601 602 603 604 605 606 607 608
	/*
	 * Initialize traps for protected VMs.
	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
	 * the code is in place for first run initialization at EL2.
	 */
	if (kvm_vm_is_protected(kvm))
		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);

609
	return ret;
610 611
}

612 613 614 615 616
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

617
void kvm_arm_halt_guest(struct kvm *kvm)
618
{
619
	unsigned long i;
620 621 622 623
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
624
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
625 626
}

627
void kvm_arm_resume_guest(struct kvm *kvm)
628
{
629
	unsigned long i;
630 631
	struct kvm_vcpu *vcpu;

632 633
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
634
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
635
	}
636 637
}

638
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
639
{
640
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
641

642 643 644
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
645

A
Andrew Jones 已提交
646
	if (vcpu->arch.power_off || vcpu->arch.pause) {
647
		/* Awaken to handle a signal, request we sleep again later. */
648
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
649
	}
650 651 652 653 654 655 656

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
 * @vcpu:	The VCPU pointer
 *
 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
 * on when a wake event arrives, e.g. there may already be a pending wake event.
 */
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
{
	/*
	 * Sync back the state of the GIC CPU interface so that we have
	 * the latest PMR and group enables. This ensures that
	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
	 * we have pending interrupts, e.g. when determining if the
	 * vCPU should block.
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	vgic_v4_put(vcpu, true);
	preempt_enable();

	kvm_vcpu_block(vcpu);
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);

	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
}

692 693 694 695 696
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

697 698 699
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
700 701
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
702

703 704 705
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

706 707 708 709 710
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
711 712 713

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
714 715 716 717 718 719 720 721

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
722 723 724 725

		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
			kvm_pmu_handle_pmcr(vcpu,
					    __vcpu_sys_reg(vcpu, PMCR_EL0));
726 727 728
	}
}

729 730 731 732 733 734 735 736 737
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
{
	if (likely(!vcpu_mode_is_32bit(vcpu)))
		return false;

	return !system_supports_32bit_el0() ||
		static_branch_unlikely(&arm64_mismatched_32bit_el0);
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
/**
 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
 * @vcpu:	The VCPU pointer
 * @ret:	Pointer to write optional return code
 *
 * Returns: true if the VCPU needs to return to a preemptible + interruptible
 *	    and skip guest entry.
 *
 * This function disambiguates between two different types of exits: exits to a
 * preemptible + interruptible kernel context and exits to userspace. For an
 * exit to userspace, this function will write the return code to ret and return
 * true. For an exit to preemptible + interruptible kernel context (i.e. check
 * for pending work and re-enter), return true without writing to ret.
 */
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
{
	struct kvm_run *run = vcpu->run;

	/*
	 * If we're using a userspace irqchip, then check if we need
	 * to tell a userspace irqchip about timer or PMU level
	 * changes and if so, exit to userspace (the actual level
	 * state gets updated in kvm_timer_update_run and
	 * kvm_pmu_update_run below).
	 */
	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
		if (kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
			*ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
			return true;
		}
	}

	return kvm_request_pending(vcpu) ||
			need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
			xfer_to_guest_mode_work_pending();
}

777 778 779 780 781 782 783 784 785 786
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
787
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
788
{
789
	struct kvm_run *run = vcpu->run;
790 791
	int ret;

792
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
793 794 795 796
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
797
		return ret;
798

C
Christoffer Dall 已提交
799
	if (run->exit_reason == KVM_EXIT_MMIO) {
800
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
801
		if (ret)
802
			return ret;
C
Christoffer Dall 已提交
803 804
	}

805
	vcpu_load(vcpu);
806

807 808 809 810 811
	if (run->immediate_exit) {
		ret = -EINTR;
		goto out;
	}

812
	kvm_sigset_activate(vcpu);
813 814 815 816 817 818 819

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
820 821 822
		ret = xfer_to_guest_mode_handle_work(vcpu);
		if (!ret)
			ret = 1;
823

824
		update_vmid(&vcpu->arch.hw_mmu->vmid);
825

826 827
		check_vcpu_requests(vcpu);

828 829 830 831 832
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
833
		preempt_disable();
834

835
		kvm_pmu_flush_hwstate(vcpu);
836

837 838
		local_irq_disable();

839 840
		kvm_vgic_flush_hwstate(vcpu);

841 842 843 844
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
845
		 * Documentation/virt/kvm/vcpu-requests.rst
846 847 848
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

849
		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
850
			vcpu->mode = OUTSIDE_GUEST_MODE;
851
			isb(); /* Ensure work in x_flush_hwstate is committed */
852
			kvm_pmu_sync_hwstate(vcpu);
853
			if (static_branch_unlikely(&userspace_irqchip_in_use))
854
				kvm_timer_sync_user(vcpu);
855
			kvm_vgic_sync_hwstate(vcpu);
856
			local_irq_enable();
857
			preempt_enable();
858 859 860
			continue;
		}

861 862
		kvm_arm_setup_debug(vcpu);

863 864 865 866
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
867
		guest_enter_irqoff();
868

869
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
870

871
		vcpu->mode = OUTSIDE_GUEST_MODE;
872
		vcpu->stat.exits++;
873 874 875 876
		/*
		 * Back from guest
		 *************************************************************/

877 878
		kvm_arm_clear_debug(vcpu);

879
		/*
880
		 * We must sync the PMU state before the vgic state so
881 882 883 884 885
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

886 887 888 889 890
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
891 892
		kvm_vgic_sync_hwstate(vcpu);

893 894 895 896 897
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
898
		if (static_branch_unlikely(&userspace_irqchip_in_use))
899
			kvm_timer_sync_user(vcpu);
900

901 902
		kvm_arch_vcpu_ctxsync_fp(vcpu);

903 904 905 906 907 908 909 910 911 912 913 914 915
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
916
		 * We do local_irq_enable() before calling guest_exit() so
917 918
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
919
		 * preemption after calling guest_exit() so that if we get
920 921 922
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
923
		guest_exit();
924
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
925

926
		/* Exit types that need handling before we can be preempted */
927
		handle_exit_early(vcpu, ret);
928

929 930
		preempt_enable();

931 932 933 934 935 936 937 938
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
939
		if (vcpu_mode_is_bad_32bit(vcpu)) {
940 941 942 943 944 945 946 947 948 949
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

950
		ret = handle_exit(vcpu, ret);
951 952
	}

953
	/* Tell userspace about in-kernel device output levels */
954 955 956 957
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
958

959
	kvm_sigset_deactivate(vcpu);
960

961
out:
962 963 964 965 966 967 968 969 970 971
	/*
	 * In the unlikely event that we are returning to userspace
	 * with pending exceptions or PC adjustment, commit these
	 * adjustments in order to give userspace a consistent view of
	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
	 * being preempt-safe on VHE.
	 */
	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
					 KVM_ARM64_INCREMENT_PC)))
		kvm_call_hyp(__kvm_adjust_pc, vcpu);
972

973
	vcpu_put(vcpu);
974
	return ret;
975 976
}

977 978 979 980
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
981
	unsigned long *hcr;
982 983 984 985 986 987

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

988
	hcr = vcpu_hcr(vcpu);
989
	if (level)
990
		set = test_and_set_bit(bit_index, hcr);
991
	else
992
		set = test_and_clear_bit(bit_index, hcr);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
1005
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1006 1007 1008 1009 1010
	kvm_vcpu_kick(vcpu);

	return 0;
}

1011 1012
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1022
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1023 1024 1025 1026
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

1027 1028 1029 1030
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
1031

1032 1033
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
1034

1035 1036 1037
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
1056

1057
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1058 1059 1060 1061
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

1062
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1063 1064
			return -EINVAL;

1065
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1066 1067 1068
	}

	return -EINVAL;
1069 1070
}

1071 1072 1073
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
1074
	unsigned int i, ret;
1075
	u32 phys_target = kvm_target_cpu();
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1109 1110 1111 1112 1113
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1114

1115 1116
	return ret;
}
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1127 1128 1129
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1130
	 *
1131 1132 1133 1134
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1135
	 */
1136 1137 1138 1139
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
1140
			icache_inval_all_pou();
1141
	}
1142

1143
	vcpu_reset_hcr(vcpu);
1144
	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1145

1146
	/*
1147
	 * Handle the "start in power-off" case.
1148
	 */
1149
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1150
		vcpu_power_off(vcpu);
1151
	else
1152
		vcpu->arch.power_off = false;
1153 1154 1155 1156

	return 0;
}

1157 1158 1159 1160 1161 1162 1163
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1164
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1178
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1192
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1193 1194 1195 1196 1197 1198
		break;
	}

	return ret;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1225 1226 1227 1228 1229
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1230
	struct kvm_device_attr attr;
1231 1232
	long r;

1233 1234 1235 1236
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1237
		r = -EFAULT;
1238
		if (copy_from_user(&init, argp, sizeof(init)))
1239
			break;
1240

1241 1242
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1243 1244 1245 1246
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1247

1248
		r = -ENOEXEC;
1249
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1250
			break;
1251

1252
		r = -EFAULT;
1253
		if (copy_from_user(&reg, argp, sizeof(reg)))
1254 1255
			break;

1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * We could owe a reset due to PSCI. Handle the pending reset
		 * here to ensure userspace register accesses are ordered after
		 * the reset.
		 */
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

1264
		if (ioctl == KVM_SET_ONE_REG)
1265
			r = kvm_arm_set_reg(vcpu, &reg);
1266
		else
1267 1268
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1269 1270 1271 1272 1273 1274
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1275
		r = -ENOEXEC;
1276
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1277
			break;
1278

1279 1280 1281 1282
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1283
		r = -EFAULT;
1284
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1285
			break;
1286 1287 1288
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1289 1290
			break;
		r = -E2BIG;
1291
		if (n < reg_list.n)
1292 1293 1294
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1295
	}
1296
	case KVM_SET_DEVICE_ATTR: {
1297
		r = -EFAULT;
1298
		if (copy_from_user(&attr, argp, sizeof(attr)))
1299 1300 1301
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1302 1303
	}
	case KVM_GET_DEVICE_ATTR: {
1304
		r = -EFAULT;
1305
		if (copy_from_user(&attr, argp, sizeof(attr)))
1306 1307 1308
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1309 1310
	}
	case KVM_HAS_DEVICE_ATTR: {
1311
		r = -EFAULT;
1312
		if (copy_from_user(&attr, argp, sizeof(attr)))
1313 1314 1315
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1316
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1347
	default:
1348
		r = -EINVAL;
1349
	}
1350 1351

	return r;
1352 1353
}

1354
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1355
{
1356

1357 1358
}

1359
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1360
					const struct kvm_memory_slot *memslot)
1361
{
1362
	kvm_flush_remote_tlbs(kvm);
1363 1364
}

1365 1366 1367
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1377 1378
		if (!vgic_present)
			return -ENXIO;
1379
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1380 1381 1382
	default:
		return -ENODEV;
	}
1383 1384
}

1385 1386 1387
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1388 1389 1390 1391
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1392
	case KVM_CREATE_IRQCHIP: {
1393
		int ret;
1394 1395
		if (!vgic_present)
			return -ENXIO;
1396 1397 1398 1399
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1400
	}
1401 1402 1403 1404 1405 1406 1407
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1408 1409 1410
	case KVM_ARM_PREFERRED_TARGET: {
		struct kvm_vcpu_init init;

1411
		kvm_vcpu_preferred_target(&init);
1412 1413 1414 1415 1416 1417

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1418 1419 1420 1421 1422 1423 1424
	case KVM_ARM_MTE_COPY_TAGS: {
		struct kvm_arm_copy_mte_tags copy_tags;

		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
			return -EFAULT;
		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
	}
1425 1426 1427
	default:
		return -EINVAL;
	}
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1443 1444 1445 1446
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1447
{
1448
	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1461

1462
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1463
		return 0;
1464

1465 1466 1467 1468 1469
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1470 1471
	}

1472 1473
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1474 1475 1476
	return 0;
}

1477
static void cpu_prepare_hyp_mode(int cpu)
1478
{
1479
	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1480
	unsigned long tcr;
1481

1482 1483 1484 1485
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1486
	 * Also drop the KASAN tag which gets in the way...
1487
	 */
1488
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1489
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1512
	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1513
	params->pgd_pa = kvm_mmu_get_httbr();
1514 1515 1516 1517 1518
	if (is_protected_kvm_enabled())
		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
	else
		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
	params->vttbr = params->vtcr = 0;
1519

1520 1521 1522 1523 1524
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1525 1526
}

1527
static void hyp_install_host_vector(void)
1528 1529 1530 1531 1532 1533
{
	struct kvm_nvhe_init_params *params;
	struct arm_smccc_res res;

	/* Switch from the HYP stub to our own HYP init vector */
	__hyp_set_vectors(kvm_get_idmap_vector());
1534

1535 1536 1537 1538 1539 1540 1541
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1542
	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1543
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1544
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1545 1546 1547 1548 1549
}

static void cpu_init_hyp_mode(void)
{
	hyp_install_host_vector();
1550 1551 1552 1553 1554 1555

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1556
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1557
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1558
	}
1559 1560
}

1561 1562 1563 1564 1565 1566
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1567 1568 1569 1570 1571 1572 1573 1574
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1575
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1576 1577 1578
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1579
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1580 1581 1582
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1583
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1584 1585 1586 1587 1588
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1589
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1590
	void *vector = hyp_spectre_vector_selector[data->slot];
1591

1592 1593 1594 1595
	if (!is_protected_kvm_enabled())
		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
	else
		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1596 1597
}

1598
static void cpu_hyp_init_context(void)
1599
{
1600
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1601

1602
	if (!is_kernel_in_hyp_mode())
1603
		cpu_init_hyp_mode();
1604
}
1605

1606 1607
static void cpu_hyp_init_features(void)
{
1608
	cpu_set_hyp_vector();
1609
	kvm_arm_init_debug();
1610

1611 1612 1613
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1614 1615
	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1616 1617
}

1618 1619 1620 1621 1622 1623 1624
static void cpu_hyp_reinit(void)
{
	cpu_hyp_reset();
	cpu_hyp_init_context();
	cpu_hyp_init_features();
}

1625 1626 1627
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1628
		cpu_hyp_reinit();
1629
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1630
	}
1631
}
1632

1633 1634 1635 1636
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1637 1638
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1649 1650
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1651
}
1652

1653 1654 1655 1656 1657
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1673
		return NOTIFY_OK;
1674
	case CPU_PM_ENTER_FAILED:
1675 1676 1677 1678
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1679

1680 1681 1682 1683 1684
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1685 1686 1687 1688 1689 1690
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1691
static void hyp_cpu_pm_init(void)
1692
{
1693 1694
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1695
}
1696
static void hyp_cpu_pm_exit(void)
1697
{
1698 1699
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1700
}
1701 1702 1703 1704
#else
static inline void hyp_cpu_pm_init(void)
{
}
1705 1706 1707
static inline void hyp_cpu_pm_exit(void)
{
}
1708 1709
#endif

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1721
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1722 1723
}

1724 1725 1726
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1738 1739 1740 1741
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1742 1743 1744 1745
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1746
	}
1747 1748 1749
	return true;
}

1750 1751
static int init_subsystems(void)
{
1752
	int err = 0;
1753

1754
	/*
1755
	 * Enable hardware so that subsystem initialisation can access EL2.
1756
	 */
1757
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1758 1759 1760 1761 1762 1763

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1775
		err = 0;
1776 1777
		break;
	default:
1778
		goto out;
1779 1780 1781 1782 1783
	}

	/*
	 * Init HYP architected timer support
	 */
1784
	err = kvm_timer_hyp_init(vgic_present);
1785
	if (err)
1786
		goto out;
1787 1788

	kvm_perf_init();
M
Marc Zyngier 已提交
1789
	kvm_sys_reg_table_init();
1790

1791
out:
1792 1793
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1794 1795

	return err;
1796 1797 1798 1799 1800 1801 1802
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1803
	for_each_possible_cpu(cpu) {
1804
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1805 1806
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1807 1808
}

1809 1810 1811 1812 1813 1814
static int do_pkvm_init(u32 hyp_va_bits)
{
	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
	int ret;

	preempt_disable();
1815
	cpu_hyp_init_context();
1816 1817 1818
	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
				num_possible_cpus(), kern_hyp_va(per_cpu_base),
				hyp_va_bits);
1819 1820 1821 1822 1823 1824 1825
	cpu_hyp_init_features();

	/*
	 * The stub hypercalls are now disabled, so set our local flag to
	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
	 */
	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	preempt_enable();

	return ret;
}

static int kvm_hyp_init_protection(u32 hyp_va_bits)
{
	void *addr = phys_to_virt(hyp_mem_base);
	int ret;

1836 1837 1838 1839
	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1840 1841
	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1842
	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
	if (ret)
		return ret;

	ret = do_pkvm_init(hyp_va_bits);
	if (ret)
		return ret;

	free_hyp_pgds();

	return 0;
}

1857 1858 1859 1860 1861
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
1862
	u32 hyp_va_bits;
1863
	int cpu;
1864 1865 1866 1867 1868 1869 1870 1871
	int err = -ENOMEM;

	/*
	 * The protected Hyp-mode cannot be initialized if the memory pool
	 * allocation has failed.
	 */
	if (is_protected_kvm_enabled() && !hyp_mem_base)
		goto out_err;
1872 1873 1874 1875

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
1876
	err = kvm_mmu_init(&hyp_va_bits);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1889
			goto out_err;
1890 1891 1892 1893 1894
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1913 1914 1915
	/*
	 * Map the Hyp-code called directly from the host
	 */
1916
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1917
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1918 1919
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1920
		goto out_err;
1921 1922
	}

1923 1924
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1925
	if (err) {
1926
		kvm_err("Cannot map .hyp.rodata section\n");
1927 1928 1929
		goto out_err;
	}

1930
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1931
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1932 1933
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1934 1935 1936
		goto out_err;
	}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
	 * section thanks to an assertion in the linker script. Map it RW and
	 * the rest of .bss RO.
	 */
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
	if (err) {
		kvm_err("Cannot map hyp bss section: %d\n", err);
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
M
Marc Zyngier 已提交
1950 1951 1952
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1953
		goto out_err;
1954 1955
	}

1956 1957 1958 1959 1960
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1961 1962
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1963 1964 1965

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1966
			goto out_err;
1967 1968 1969 1970
		}
	}

	for_each_possible_cpu(cpu) {
1971 1972
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1973

1974
		/* Map Hyp percpu pages */
1975
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1976
		if (err) {
1977
			kvm_err("Cannot map hyp percpu region\n");
1978 1979
			goto out_err;
		}
1980 1981 1982

		/* Prepare the CPU initialization parameters */
		cpu_prepare_hyp_mode(cpu);
1983 1984
	}

1985
	if (is_protected_kvm_enabled()) {
1986 1987
		init_cpu_logical_map();

1988 1989
		if (!init_psci_relay()) {
			err = -ENODEV;
1990
			goto out_err;
1991
		}
1992 1993
	}

1994 1995 1996 1997
	if (is_protected_kvm_enabled()) {
		err = kvm_hyp_init_protection(hyp_va_bits);
		if (err) {
			kvm_err("Failed to init hyp memory protection\n");
1998
			goto out_err;
1999
		}
2000 2001
	}

2002
	return 0;
2003

2004
out_err:
2005
	teardown_hyp_mode();
2006 2007 2008 2009
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

2010
static void _kvm_host_prot_finalize(void *arg)
2011
{
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	int *err = arg;

	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
		WRITE_ONCE(*err, -EINVAL);
}

static int pkvm_drop_host_privileges(void)
{
	int ret = 0;

	/*
	 * Flip the static key upfront as that may no longer be possible
	 * once the host stage 2 is installed.
	 */
	static_branch_enable(&kvm_protected_mode_initialized);
	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
	return ret;
2029 2030
}

2031 2032 2033 2034 2035
static int finalize_hyp_mode(void)
{
	if (!is_protected_kvm_enabled())
		return 0;

2036 2037 2038 2039 2040 2041
	/*
	 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
	 * at, which would end badly once the section is inaccessible.
	 * None of other sections should ever be introspected.
	 */
	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2042
	return pkvm_drop_host_privileges();
2043 2044
}

2045 2046 2047
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
2048
	unsigned long i;
2049 2050 2051 2052 2053 2054 2055 2056 2057

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2069 2070
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
2071 2072 2073 2074 2075 2076 2077
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

2078 2079
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

2098 2099 2100
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
2101 2102
int kvm_arch_init(void *opaque)
{
2103
	int err;
2104
	bool in_hyp_mode;
2105 2106

	if (!is_hyp_mode_available()) {
2107
		kvm_info("HYP mode not available\n");
2108 2109 2110
		return -ENODEV;
	}

2111 2112 2113 2114 2115
	if (kvm_get_mode() == KVM_MODE_NONE) {
		kvm_info("KVM disabled from command line\n");
		return -ENODEV;
	}

2116 2117
	in_hyp_mode = is_kernel_in_hyp_mode();

2118 2119
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2120 2121 2122
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

2123
	err = kvm_set_ipa_limit();
2124
	if (err)
2125
		return err;
2126

2127
	err = kvm_arm_init_sve();
2128 2129 2130
	if (err)
		return err;

2131
	if (!in_hyp_mode) {
2132
		err = init_hyp_mode();
2133 2134 2135
		if (err)
			goto out_err;
	}
2136

2137 2138 2139 2140 2141 2142
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

2143 2144 2145
	err = init_subsystems();
	if (err)
		goto out_hyp;
2146

2147 2148 2149 2150 2151 2152 2153 2154
	if (!in_hyp_mode) {
		err = finalize_hyp_mode();
		if (err) {
			kvm_err("Failed to finalize Hyp protection\n");
			goto out_hyp;
		}
	}

2155
	if (is_protected_kvm_enabled()) {
2156
		kvm_info("Protected nVHE mode initialized successfully\n");
2157
	} else if (in_hyp_mode) {
2158
		kvm_info("VHE mode initialized successfully\n");
2159
	} else {
2160
		kvm_info("Hyp mode initialized successfully\n");
2161
	}
2162

2163
	return 0;
2164 2165

out_hyp:
2166
	hyp_cpu_pm_exit();
2167 2168
	if (!in_hyp_mode)
		teardown_hyp_mode();
2169 2170
out_err:
	return err;
2171 2172 2173 2174 2175
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
2176
	kvm_perf_teardown();
2177 2178
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

2189 2190
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
		kvm_mode = KVM_MODE_DEFAULT;
2191
		return 0;
2192 2193 2194 2195
	}

	if (strcmp(arg, "none") == 0) {
		kvm_mode = KVM_MODE_NONE;
2196
		return 0;
2197
	}
2198

2199 2200 2201 2202
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

2203 2204 2205 2206 2207
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

2208 2209 2210 2211 2212 2213 2214
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);