arm.c 36.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
102 103
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
104
	int ret, cpu;
105

106
	ret = kvm_arm_setup_stage2(kvm, type);
107 108
	if (ret)
		return ret;
109

110 111 112 113 114 115 116
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

117 118 119 120
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

121
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
122 123 124
	if (ret)
		goto out_free_stage2_pgd;

125
	kvm_vgic_early_init(kvm);
126

127
	/* Mark the initial VMID generation invalid */
128
	kvm->arch.vmid.vmid_gen = 0;
129

130
	/* The maximum number of VCPUs is limited by the host's GIC model */
131 132
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
133

134 135 136 137
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
138 139
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
140
	return ret;
141 142
}

143 144 145 146 147
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

148
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
149 150 151 152 153
{
	return VM_FAULT_SIGBUS;
}


154 155 156 157
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
158 159 160 161
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

162 163
	kvm_vgic_destroy(kvm);

164 165 166
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

167 168
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
169
			kvm_vcpu_destroy(kvm->vcpus[i]);
170 171 172
			kvm->vcpus[i] = NULL;
		}
	}
173
	atomic_set(&kvm->online_vcpus, 0);
174 175
}

176
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 178 179
{
	int r;
	switch (ext) {
180
	case KVM_CAP_IRQCHIP:
181 182
		r = vgic_present;
		break;
183
	case KVM_CAP_IOEVENTFD:
184
	case KVM_CAP_DEVICE_CTRL:
185 186 187 188
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
189
	case KVM_CAP_ARM_PSCI:
190
	case KVM_CAP_ARM_PSCI_0_2:
191
	case KVM_CAP_READONLY_MEM:
192
	case KVM_CAP_MP_STATE:
193
	case KVM_CAP_IMMEDIATE_EXIT:
194
	case KVM_CAP_VCPU_EVENTS:
195
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
196
	case KVM_CAP_ARM_NISV_TO_USER:
197
	case KVM_CAP_ARM_INJECT_EXT_DABT:
198 199
		r = 1;
		break;
200 201
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
202
		break;
203 204 205 206 207 208
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
209 210 211
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
212 213 214 215 216 217
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
218 219 220 221 222 223 224
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
225
	default:
226
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 228 229 230 231 232 233 234 235 236 237
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
253

254 255 256 257 258 259 260 261 262 263 264
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

265
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266
{
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

286
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 288
}

289
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 291 292
{
}

293
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294
{
295 296 297
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

298
	kvm_mmu_free_memory_caches(vcpu);
299
	kvm_timer_vcpu_terminate(vcpu);
300
	kvm_pmu_vcpu_destroy(vcpu);
301 302

	kvm_arm_vcpu_destroy(vcpu);
303 304 305 306
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
307
	return kvm_timer_is_pending(vcpu);
308 309
}

310 311
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
312 313 314
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
315
	 * so that we have the latest PMR and group enables. This ensures
316 317
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
318 319 320
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
321 322 323
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
324
	vgic_v4_put(vcpu, true);
325
	preempt_enable();
326 327 328 329
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
330 331 332
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
333 334
}

335 336
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
337
	int *last_ran;
338
	kvm_host_data_t *cpu_data;
339 340

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
341
	cpu_data = this_cpu_ptr(&kvm_host_data);
342 343 344 345 346 347 348 349 350 351

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

352
	vcpu->cpu = cpu;
353
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
354

355
	kvm_vgic_load(vcpu);
356
	kvm_timer_vcpu_load(vcpu);
357
	kvm_vcpu_load_sysregs(vcpu);
358
	kvm_arch_vcpu_load_fp(vcpu);
359
	kvm_vcpu_pmu_restore_guest(vcpu);
360 361
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
362 363

	if (single_task_running())
364
		vcpu_clear_wfx_traps(vcpu);
365
	else
366
		vcpu_set_wfx_traps(vcpu);
367 368

	vcpu_ptrauth_setup_lazy(vcpu);
369 370 371 372
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
373
	kvm_arch_vcpu_put_fp(vcpu);
374
	kvm_vcpu_put_sysregs(vcpu);
375
	kvm_timer_vcpu_put(vcpu);
376
	kvm_vgic_put(vcpu);
377
	kvm_vcpu_pmu_restore_host(vcpu);
378

379
	vcpu->cpu = -1;
380 381
}

A
Andrew Jones 已提交
382 383 384
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
385
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
386 387 388
	kvm_vcpu_kick(vcpu);
}

389 390 391
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392
	if (vcpu->arch.power_off)
393 394 395 396 397
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
398 399 400 401 402
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
403 404
	int ret = 0;

405 406
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
407
		vcpu->arch.power_off = false;
408 409
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
410
		vcpu_power_off(vcpu);
411 412
		break;
	default:
413
		ret = -EINVAL;
414 415
	}

416
	return ret;
417 418
}

419 420 421 422 423 424 425
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
426 427
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
428 429
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430
		&& !v->arch.power_off && !v->arch.pause);
431 432
}

433 434
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
435
	return vcpu_mode_priv(vcpu);
436 437
}

438 439 440 441 442 443 444
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
445
	preempt_disable();
446
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447
	preempt_enable();
448 449 450 451
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
452
 * @vmid: The VMID to check
453 454 455
 *
 * return true if there is a new generation of VMIDs being used
 *
456 457 458 459 460
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
461
 */
462
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463
{
464 465
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 468 469
}

/**
470 471 472
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
473
 */
474
static void update_vmid(struct kvm_vmid *vmid)
475
{
476
	if (!need_new_vmid_gen(vmid))
477 478
		return;

479
	spin_lock(&kvm_vmid_lock);
480 481 482 483 484 485

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
486
	if (!need_new_vmid_gen(vmid)) {
487
		spin_unlock(&kvm_vmid_lock);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

510
	vmid->vmid = kvm_next_vmid;
511
	kvm_next_vmid++;
512
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
513

514
	smp_wmb();
515
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
516 517

	spin_unlock(&kvm_vmid_lock);
518 519 520 521
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
522
	struct kvm *kvm = vcpu->kvm;
523
	int ret = 0;
524

525 526 527
	if (likely(vcpu->arch.has_run_once))
		return 0;

528 529 530
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

531
	vcpu->arch.has_run_once = true;
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
549 550
	}

551
	ret = kvm_timer_enable(vcpu);
552 553 554 555
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
556

557
	return ret;
558 559
}

560 561 562 563 564
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

565
void kvm_arm_halt_guest(struct kvm *kvm)
566 567 568 569 570 571
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
572
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 574
}

575
void kvm_arm_resume_guest(struct kvm *kvm)
576 577 578 579
{
	int i;
	struct kvm_vcpu *vcpu;

580 581
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
582
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
583
	}
584 585
}

586
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587
{
588
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
589

590
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
591
				       (!vcpu->arch.pause)));
592

A
Andrew Jones 已提交
593
	if (vcpu->arch.power_off || vcpu->arch.pause) {
594
		/* Awaken to handle a signal, request we sleep again later. */
595
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
596
	}
597 598 599 600 601 602 603

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
604 605
}

606 607 608 609 610
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

611 612 613
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
614 615
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
616

617 618 619
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

620 621 622 623 624
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
625 626 627

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
628 629 630 631 632 633 634 635

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
636 637 638
	}
}

639 640 641 642 643 644 645 646 647 648 649
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
650 651
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
652 653
	int ret;

654
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
655 656 657 658
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
659
		return ret;
660

C
Christoffer Dall 已提交
661 662 663
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
664
			return ret;
C
Christoffer Dall 已提交
665 666
	}

667 668 669 670
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
671

672
	kvm_sigset_activate(vcpu);
673 674 675 676 677 678 679 680 681

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

682
		update_vmid(&vcpu->kvm->arch.vmid);
683

684 685
		check_vcpu_requests(vcpu);

686 687 688 689 690
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
691
		preempt_disable();
692

693
		kvm_pmu_flush_hwstate(vcpu);
694

695 696
		local_irq_disable();

697 698
		kvm_vgic_flush_hwstate(vcpu);

699
		/*
700 701
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
702
		 */
703
		if (signal_pending(current)) {
704 705 706 707
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

723 724 725 726
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
727
		 * Documentation/virt/kvm/vcpu-requests.rst
728 729 730
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

731
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
732
		    kvm_request_pending(vcpu)) {
733
			vcpu->mode = OUTSIDE_GUEST_MODE;
734
			isb(); /* Ensure work in x_flush_hwstate is committed */
735
			kvm_pmu_sync_hwstate(vcpu);
736 737
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
738
			kvm_vgic_sync_hwstate(vcpu);
739
			local_irq_enable();
740
			preempt_enable();
741 742 743
			continue;
		}

744 745
		kvm_arm_setup_debug(vcpu);

746 747 748 749
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
750
		guest_enter_irqoff();
751

752 753 754
		if (has_vhe()) {
			ret = kvm_vcpu_run_vhe(vcpu);
		} else {
755
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
756 757
		}

758
		vcpu->mode = OUTSIDE_GUEST_MODE;
759
		vcpu->stat.exits++;
760 761 762 763
		/*
		 * Back from guest
		 *************************************************************/

764 765
		kvm_arm_clear_debug(vcpu);

766
		/*
767
		 * We must sync the PMU state before the vgic state so
768 769 770 771 772
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

773 774 775 776 777
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
778 779
		kvm_vgic_sync_hwstate(vcpu);

780 781 782 783 784
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
785 786
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
787

788 789
		kvm_arch_vcpu_ctxsync_fp(vcpu);

790 791 792 793 794 795 796 797 798 799 800 801 802
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
803
		 * We do local_irq_enable() before calling guest_exit() so
804 805
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
806
		 * preemption after calling guest_exit() so that if we get
807 808 809
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
810
		guest_exit();
811
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
812

813 814 815
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

816 817
		preempt_enable();

818 819 820
		ret = handle_exit(vcpu, run, ret);
	}

821
	/* Tell userspace about in-kernel device output levels */
822 823 824 825
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
826

827 828
	kvm_sigset_deactivate(vcpu);

829
	vcpu_put(vcpu);
830
	return ret;
831 832
}

833 834 835 836
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
837
	unsigned long *hcr;
838 839 840 841 842 843

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

844
	hcr = vcpu_hcr(vcpu);
845
	if (level)
846
		set = test_and_set_bit(bit_index, hcr);
847
	else
848
		set = test_and_clear_bit(bit_index, hcr);
849 850 851 852 853 854 855 856 857 858 859 860

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
861
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
862 863 864 865 866
	kvm_vcpu_kick(vcpu);

	return 0;
}

867 868
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
869 870 871 872 873 874 875 876 877
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
878
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
879 880 881 882
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

883 884 885 886
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
887

888 889
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
890

891 892 893
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
912

913
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
914 915 916 917
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

918
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
919 920
			return -EINVAL;

921
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
922 923 924
	}

	return -EINVAL;
925 926
}

927 928 929
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
930
	unsigned int i, ret;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
965 966 967 968 969
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
970

971 972
	return ret;
}
973

974 975 976 977 978 979 980 981 982
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

983 984 985 986 987 988 989
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

990 991
	vcpu_reset_hcr(vcpu);

992
	/*
993
	 * Handle the "start in power-off" case.
994
	 */
995
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
996
		vcpu_power_off(vcpu);
997
	else
998
		vcpu->arch.power_off = false;
999 1000 1001 1002

	return 0;
}

1003 1004 1005 1006 1007 1008 1009
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1010
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1024
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1038
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1039 1040 1041 1042 1043 1044
		break;
	}

	return ret;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1071 1072 1073 1074 1075
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1076
	struct kvm_device_attr attr;
1077 1078
	long r;

1079 1080 1081 1082
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1083
		r = -EFAULT;
1084
		if (copy_from_user(&init, argp, sizeof(init)))
1085
			break;
1086

1087 1088
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1089 1090 1091 1092
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1093

1094
		r = -ENOEXEC;
1095
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1096
			break;
1097

1098
		r = -EFAULT;
1099
		if (copy_from_user(&reg, argp, sizeof(reg)))
1100 1101
			break;

1102
		if (ioctl == KVM_SET_ONE_REG)
1103
			r = kvm_arm_set_reg(vcpu, &reg);
1104
		else
1105 1106
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1107 1108 1109 1110 1111 1112
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1113
		r = -ENOEXEC;
1114
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1115
			break;
1116

1117 1118 1119 1120
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1121
		r = -EFAULT;
1122
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1123
			break;
1124 1125 1126
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1127 1128
			break;
		r = -E2BIG;
1129
		if (n < reg_list.n)
1130 1131 1132
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1133
	}
1134
	case KVM_SET_DEVICE_ATTR: {
1135
		r = -EFAULT;
1136
		if (copy_from_user(&attr, argp, sizeof(attr)))
1137 1138 1139
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1140 1141
	}
	case KVM_GET_DEVICE_ATTR: {
1142
		r = -EFAULT;
1143
		if (copy_from_user(&attr, argp, sizeof(attr)))
1144 1145 1146
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1147 1148
	}
	case KVM_HAS_DEVICE_ATTR: {
1149
		r = -EFAULT;
1150
		if (copy_from_user(&attr, argp, sizeof(attr)))
1151 1152 1153
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1154
	}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1185
	default:
1186
		r = -EINVAL;
1187
	}
1188 1189

	return r;
1190 1191
}

1192
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1193
{
1194

1195 1196
}

1197 1198
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1199
{
1200
	kvm_flush_remote_tlbs(kvm);
1201 1202
}

1203 1204 1205
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1206 1207 1208 1209 1210 1211 1212 1213 1214
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1215 1216
		if (!vgic_present)
			return -ENXIO;
1217
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1218 1219 1220
	default:
		return -ENODEV;
	}
1221 1222
}

1223 1224 1225
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1226 1227 1228 1229
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1230
	case KVM_CREATE_IRQCHIP: {
1231
		int ret;
1232 1233
		if (!vgic_present)
			return -ENXIO;
1234 1235 1236 1237
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1238
	}
1239 1240 1241 1242 1243 1244 1245
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1259 1260 1261
	default:
		return -EINVAL;
	}
1262 1263
}

1264
static void cpu_init_hyp_mode(void)
1265
{
1266
	phys_addr_t pgd_ptr;
1267 1268 1269 1270 1271
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1272
	__hyp_set_vectors(kvm_get_idmap_vector());
1273

1274
	pgd_ptr = kvm_mmu_get_httbr();
1275
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1276
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1277
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1278

M
Marc Zyngier 已提交
1279
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1280
	__cpu_init_stage2();
1281 1282
}

1283 1284 1285 1286 1287 1288
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1289 1290
static void cpu_hyp_reinit(void)
{
1291 1292
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1293 1294
	cpu_hyp_reset();

1295
	if (is_kernel_in_hyp_mode())
1296
		kvm_timer_init_vhe();
1297
	else
1298
		cpu_init_hyp_mode();
1299

1300
	kvm_arm_init_debug();
1301 1302 1303

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1304 1305
}

1306 1307 1308
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1309
		cpu_hyp_reinit();
1310
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1311
	}
1312
}
1313

1314 1315 1316 1317
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1332

1333 1334 1335 1336 1337
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1353
		return NOTIFY_OK;
1354
	case CPU_PM_ENTER_FAILED:
1355 1356 1357 1358
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1359

1360 1361 1362 1363 1364
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1375 1376 1377 1378
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1379 1380 1381 1382
#else
static inline void hyp_cpu_pm_init(void)
{
}
1383 1384 1385
static inline void hyp_cpu_pm_exit(void)
{
}
1386 1387
#endif

1388 1389
static int init_common_resources(void)
{
1390 1391
	kvm_set_ipa_limit();

1392 1393 1394 1395 1396
	return 0;
}

static int init_subsystems(void)
{
1397
	int err = 0;
1398

1399
	/*
1400
	 * Enable hardware so that subsystem initialisation can access EL2.
1401
	 */
1402
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1403 1404 1405 1406 1407 1408

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1420
		err = 0;
1421 1422
		break;
	default:
1423
		goto out;
1424 1425 1426 1427 1428
	}

	/*
	 * Init HYP architected timer support
	 */
1429
	err = kvm_timer_hyp_init(vgic_present);
1430
	if (err)
1431
		goto out;
1432 1433 1434 1435

	kvm_perf_init();
	kvm_coproc_table_init();

1436 1437 1438 1439
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1475
			goto out_err;
1476 1477 1478 1479 1480 1481 1482 1483
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1484
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1485
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1486 1487
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1488
		goto out_err;
1489 1490
	}

1491
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1492
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1493 1494
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1495 1496 1497 1498 1499 1500 1501
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1502
		goto out_err;
1503 1504
	}

1505 1506 1507 1508 1509 1510
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1511 1512 1513 1514 1515
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1516 1517
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1518 1519 1520

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1521
			goto out_err;
1522 1523 1524 1525
		}
	}

	for_each_possible_cpu(cpu) {
1526
		kvm_host_data_t *cpu_data;
1527

1528 1529
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1530 1531

		if (err) {
1532
			kvm_err("Cannot map host CPU state: %d\n", err);
1533
			goto out_err;
1534 1535 1536
		}
	}

1537 1538
	err = hyp_map_aux_data();
	if (err)
1539
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1540

1541
	return 0;
1542

1543
out_err:
1544
	teardown_hyp_mode();
1545 1546 1547 1548
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1549 1550 1551 1552 1553
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1578 1579
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1580 1581 1582 1583 1584 1585 1586
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1587 1588
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1607 1608 1609
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1610 1611
int kvm_arch_init(void *opaque)
{
1612
	int err;
1613
	int ret, cpu;
1614
	bool in_hyp_mode;
1615 1616

	if (!is_hyp_mode_available()) {
1617
		kvm_info("HYP mode not available\n");
1618 1619 1620
		return -ENODEV;
	}

1621 1622 1623 1624
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1625 1626 1627
		return -ENODEV;
	}

1628 1629 1630 1631 1632 1633
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1634 1635
	}

1636
	err = init_common_resources();
1637
	if (err)
1638
		return err;
1639

1640
	err = kvm_arm_init_sve();
1641 1642 1643
	if (err)
		return err;

1644
	if (!in_hyp_mode) {
1645
		err = init_hyp_mode();
1646 1647 1648
		if (err)
			goto out_err;
	}
1649

1650 1651 1652
	err = init_subsystems();
	if (err)
		goto out_hyp;
1653

1654 1655 1656 1657 1658
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1659
	return 0;
1660 1661

out_hyp:
1662
	hyp_cpu_pm_exit();
1663 1664
	if (!in_hyp_mode)
		teardown_hyp_mode();
1665 1666
out_err:
	return err;
1667 1668 1669 1670 1671
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1672
	kvm_perf_teardown();
1673 1674 1675 1676 1677 1678 1679 1680 1681
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);