arm.c 42.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/kvm_coproc.h>
40
#include <asm/sections.h>
41

42 43 44 45
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

46 47 48 49
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

50 51
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68
extern u64 kvm_nvhe_sym(__cpu_logical_map)[NR_CPUS];
69 70
extern u32 kvm_nvhe_sym(kvm_host_psci_version);
extern struct psci_0_1_function_ids kvm_nvhe_sym(kvm_host_psci_0_1_function_ids);
71

72 73 74 75 76
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

77
int kvm_arch_hardware_setup(void *opaque)
78 79 80 81
{
	return 0;
}

82
int kvm_arch_check_processor_compat(void *opaque)
83
{
84
	return 0;
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
107

108 109 110 111 112
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

113 114 115 116
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
117 118
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
119
	int ret;
120

121
	ret = kvm_arm_setup_stage2(kvm, type);
122 123
	if (ret)
		return ret;
124

125
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
126
	if (ret)
127
		return ret;
128

129
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
130 131 132
	if (ret)
		goto out_free_stage2_pgd;

133
	kvm_vgic_early_init(kvm);
134

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137

138 139
	return ret;
out_free_stage2_pgd:
140
	kvm_free_stage2_pgd(&kvm->arch.mmu);
141
	return ret;
142 143
}

144
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 146 147 148 149
{
	return VM_FAULT_SIGBUS;
}


150 151 152 153
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
154 155 156 157
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

158 159
	bitmap_free(kvm->arch.pmu_filter);

160 161
	kvm_vgic_destroy(kvm);

162 163
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
164
			kvm_vcpu_destroy(kvm->vcpus[i]);
165 166 167
			kvm->vcpus[i] = NULL;
		}
	}
168
	atomic_set(&kvm->online_vcpus, 0);
169 170
}

171
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 173 174
{
	int r;
	switch (ext) {
175
	case KVM_CAP_IRQCHIP:
176 177
		r = vgic_present;
		break;
178
	case KVM_CAP_IOEVENTFD:
179
	case KVM_CAP_DEVICE_CTRL:
180 181 182 183
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
184
	case KVM_CAP_ARM_PSCI:
185
	case KVM_CAP_ARM_PSCI_0_2:
186
	case KVM_CAP_READONLY_MEM:
187
	case KVM_CAP_MP_STATE:
188
	case KVM_CAP_IMMEDIATE_EXIT:
189
	case KVM_CAP_VCPU_EVENTS:
190
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
191
	case KVM_CAP_ARM_NISV_TO_USER:
192
	case KVM_CAP_ARM_INJECT_EXT_DABT:
193 194
		r = 1;
		break;
195 196
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
197
		break;
198 199 200 201
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
202
	case KVM_CAP_MAX_VCPU_ID:
203 204 205 206
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
207
		break;
V
Vladimir Murzin 已提交
208 209 210 211 212 213
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
214 215 216 217 218 219 220
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
221 222 223
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
224
	default:
225
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
226 227 228 229 230 231 232 233 234 235 236
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
252

253 254 255 256 257 258 259 260 261 262 263
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

264
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
265
{
266 267 268 269 270 271
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

272 273
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

274 275 276 277 278 279 280 281 282
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

283 284
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

285 286 287 288
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

289
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
290 291
}

292
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
293 294 295
{
}

296
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
297
{
298 299 300
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

301
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
302
	kvm_timer_vcpu_terminate(vcpu);
303
	kvm_pmu_vcpu_destroy(vcpu);
304 305

	kvm_arm_vcpu_destroy(vcpu);
306 307 308 309
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
310
	return kvm_timer_is_pending(vcpu);
311 312
}

313 314
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
315 316 317
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
318
	 * so that we have the latest PMR and group enables. This ensures
319 320
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
321 322 323
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
324 325 326
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
327
	vgic_v4_put(vcpu, true);
328
	preempt_enable();
329 330 331 332
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
333 334 335
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
336 337
}

338 339
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
340
	struct kvm_s2_mmu *mmu;
341 342
	int *last_ran;

343 344
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
345 346 347 348 349 350

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
351
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
352 353 354
		*last_ran = vcpu->vcpu_id;
	}

355
	vcpu->cpu = cpu;
356

357
	kvm_vgic_load(vcpu);
358
	kvm_timer_vcpu_load(vcpu);
359 360
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
361
	kvm_arch_vcpu_load_fp(vcpu);
362
	kvm_vcpu_pmu_restore_guest(vcpu);
363 364
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
365 366

	if (single_task_running())
367
		vcpu_clear_wfx_traps(vcpu);
368
	else
369
		vcpu_set_wfx_traps(vcpu);
370

371
	if (vcpu_has_ptrauth(vcpu))
372
		vcpu_ptrauth_disable(vcpu);
373 374 375 376
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
377
	kvm_arch_vcpu_put_fp(vcpu);
378 379
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
380
	kvm_timer_vcpu_put(vcpu);
381
	kvm_vgic_put(vcpu);
382
	kvm_vcpu_pmu_restore_host(vcpu);
383

384
	vcpu->cpu = -1;
385 386
}

A
Andrew Jones 已提交
387 388 389
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
390
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
391 392 393
	kvm_vcpu_kick(vcpu);
}

394 395 396
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
397
	if (vcpu->arch.power_off)
398 399 400 401 402
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
403 404 405 406 407
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
408 409
	int ret = 0;

410 411
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
412
		vcpu->arch.power_off = false;
413 414
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
415
		vcpu_power_off(vcpu);
416 417
		break;
	default:
418
		ret = -EINVAL;
419 420
	}

421
	return ret;
422 423
}

424 425 426 427 428 429 430
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
431 432
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
433 434
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
435
		&& !v->arch.power_off && !v->arch.pause);
436 437
}

438 439
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
440
	return vcpu_mode_priv(vcpu);
441 442
}

443 444 445 446 447 448 449
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
450
	preempt_disable();
451
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
452
	preempt_enable();
453 454 455 456
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
457
 * @vmid: The VMID to check
458 459 460
 *
 * return true if there is a new generation of VMIDs being used
 *
461 462
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
463 464 465
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
466
 */
467
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
468
{
469 470
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
471
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
472 473 474
}

/**
475 476
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
477
 */
478
static void update_vmid(struct kvm_vmid *vmid)
479
{
480
	if (!need_new_vmid_gen(vmid))
481 482
		return;

483
	spin_lock(&kvm_vmid_lock);
484 485 486 487 488 489

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
490
	if (!need_new_vmid_gen(vmid)) {
491
		spin_unlock(&kvm_vmid_lock);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

514
	vmid->vmid = kvm_next_vmid;
515
	kvm_next_vmid++;
516
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
517

518
	smp_wmb();
519
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
520 521

	spin_unlock(&kvm_vmid_lock);
522 523 524 525
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
526
	struct kvm *kvm = vcpu->kvm;
527
	int ret = 0;
528

529 530 531
	if (likely(vcpu->arch.has_run_once))
		return 0;

532 533 534
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

535
	vcpu->arch.has_run_once = true;
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
553 554
	}

555
	ret = kvm_timer_enable(vcpu);
556 557 558 559
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
560

561
	return ret;
562 563
}

564 565 566 567 568
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

569
void kvm_arm_halt_guest(struct kvm *kvm)
570 571 572 573 574 575
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
576
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
577 578
}

579
void kvm_arm_resume_guest(struct kvm *kvm)
580 581 582 583
{
	int i;
	struct kvm_vcpu *vcpu;

584 585
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
586
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
587
	}
588 589
}

590
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
591
{
592
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
593

594 595 596
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
597

A
Andrew Jones 已提交
598
	if (vcpu->arch.power_off || vcpu->arch.pause) {
599
		/* Awaken to handle a signal, request we sleep again later. */
600
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
601
	}
602 603 604 605 606 607 608

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
609 610
}

611 612 613 614 615
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

616 617 618
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
619 620
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
621

622 623 624
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

625 626 627 628 629
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
630 631 632

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
633 634 635 636 637 638 639 640

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
641 642 643
	}
}

644 645 646 647 648 649 650 651 652 653
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
654
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
655
{
656
	struct kvm_run *run = vcpu->run;
657 658
	int ret;

659
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
660 661 662 663
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
664
		return ret;
665

C
Christoffer Dall 已提交
666
	if (run->exit_reason == KVM_EXIT_MMIO) {
667
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
668
		if (ret)
669
			return ret;
C
Christoffer Dall 已提交
670 671
	}

672 673 674 675
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
676

677
	kvm_sigset_activate(vcpu);
678 679 680 681 682 683 684 685 686

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

687
		update_vmid(&vcpu->arch.hw_mmu->vmid);
688

689 690
		check_vcpu_requests(vcpu);

691 692 693 694 695
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
696
		preempt_disable();
697

698
		kvm_pmu_flush_hwstate(vcpu);
699

700 701
		local_irq_disable();

702 703
		kvm_vgic_flush_hwstate(vcpu);

704
		/*
705 706
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
707
		 */
708
		if (signal_pending(current)) {
709 710 711 712
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

728 729 730 731
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
732
		 * Documentation/virt/kvm/vcpu-requests.rst
733 734 735
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

736
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
737
		    kvm_request_pending(vcpu)) {
738
			vcpu->mode = OUTSIDE_GUEST_MODE;
739
			isb(); /* Ensure work in x_flush_hwstate is committed */
740
			kvm_pmu_sync_hwstate(vcpu);
741
			if (static_branch_unlikely(&userspace_irqchip_in_use))
742
				kvm_timer_sync_user(vcpu);
743
			kvm_vgic_sync_hwstate(vcpu);
744
			local_irq_enable();
745
			preempt_enable();
746 747 748
			continue;
		}

749 750
		kvm_arm_setup_debug(vcpu);

751 752 753 754
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
755
		guest_enter_irqoff();
756

757
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
758

759
		vcpu->mode = OUTSIDE_GUEST_MODE;
760
		vcpu->stat.exits++;
761 762 763 764
		/*
		 * Back from guest
		 *************************************************************/

765 766
		kvm_arm_clear_debug(vcpu);

767
		/*
768
		 * We must sync the PMU state before the vgic state so
769 770 771 772 773
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

774 775 776 777 778
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
779 780
		kvm_vgic_sync_hwstate(vcpu);

781 782 783 784 785
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
786
		if (static_branch_unlikely(&userspace_irqchip_in_use))
787
			kvm_timer_sync_user(vcpu);
788

789 790
		kvm_arch_vcpu_ctxsync_fp(vcpu);

791 792 793 794 795 796 797 798 799 800 801 802 803
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
804
		 * We do local_irq_enable() before calling guest_exit() so
805 806
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
807
		 * preemption after calling guest_exit() so that if we get
808 809 810
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
811
		guest_exit();
812
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
813

814
		/* Exit types that need handling before we can be preempted */
815
		handle_exit_early(vcpu, ret);
816

817 818
		preempt_enable();

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

838
		ret = handle_exit(vcpu, ret);
839 840
	}

841
	/* Tell userspace about in-kernel device output levels */
842 843 844 845
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
846

847 848
	kvm_sigset_deactivate(vcpu);

849
	vcpu_put(vcpu);
850
	return ret;
851 852
}

853 854 855 856
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
857
	unsigned long *hcr;
858 859 860 861 862 863

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

864
	hcr = vcpu_hcr(vcpu);
865
	if (level)
866
		set = test_and_set_bit(bit_index, hcr);
867
	else
868
		set = test_and_clear_bit(bit_index, hcr);
869 870 871 872 873 874 875 876 877 878 879 880

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
881
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
882 883 884 885 886
	kvm_vcpu_kick(vcpu);

	return 0;
}

887 888
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
889 890 891 892 893 894 895 896 897
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
898
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
899 900 901 902
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

903 904 905 906
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
907

908 909
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
910

911 912 913
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
932

933
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
934 935 936 937
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

938
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
939 940
			return -EINVAL;

941
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
942 943 944
	}

	return -EINVAL;
945 946
}

947 948 949
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
950
	unsigned int i, ret;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
985 986 987 988 989
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
990

991 992
	return ret;
}
993

994 995 996 997 998 999 1000 1001 1002
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1003 1004 1005
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1006
	 *
1007 1008 1009 1010
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1011
	 */
1012 1013 1014 1015 1016 1017
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1018

1019 1020
	vcpu_reset_hcr(vcpu);

1021
	/*
1022
	 * Handle the "start in power-off" case.
1023
	 */
1024
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1025
		vcpu_power_off(vcpu);
1026
	else
1027
		vcpu->arch.power_off = false;
1028 1029 1030 1031

	return 0;
}

1032 1033 1034 1035 1036 1037 1038
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1039
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1053
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1067
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1068 1069 1070 1071 1072 1073
		break;
	}

	return ret;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1100 1101 1102 1103 1104
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1105
	struct kvm_device_attr attr;
1106 1107
	long r;

1108 1109 1110 1111
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1112
		r = -EFAULT;
1113
		if (copy_from_user(&init, argp, sizeof(init)))
1114
			break;
1115

1116 1117
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1118 1119 1120 1121
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1122

1123
		r = -ENOEXEC;
1124
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125
			break;
1126

1127
		r = -EFAULT;
1128
		if (copy_from_user(&reg, argp, sizeof(reg)))
1129 1130
			break;

1131
		if (ioctl == KVM_SET_ONE_REG)
1132
			r = kvm_arm_set_reg(vcpu, &reg);
1133
		else
1134 1135
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1136 1137 1138 1139 1140 1141
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1142
		r = -ENOEXEC;
1143
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1144
			break;
1145

1146 1147 1148 1149
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1150
		r = -EFAULT;
1151
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1152
			break;
1153 1154 1155
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1156 1157
			break;
		r = -E2BIG;
1158
		if (n < reg_list.n)
1159 1160 1161
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1162
	}
1163
	case KVM_SET_DEVICE_ATTR: {
1164
		r = -EFAULT;
1165
		if (copy_from_user(&attr, argp, sizeof(attr)))
1166 1167 1168
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1169 1170
	}
	case KVM_GET_DEVICE_ATTR: {
1171
		r = -EFAULT;
1172
		if (copy_from_user(&attr, argp, sizeof(attr)))
1173 1174 1175
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1176 1177
	}
	case KVM_HAS_DEVICE_ATTR: {
1178
		r = -EFAULT;
1179
		if (copy_from_user(&attr, argp, sizeof(attr)))
1180 1181 1182
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1183
	}
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1214
	default:
1215
		r = -EINVAL;
1216
	}
1217 1218

	return r;
1219 1220
}

1221
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1222
{
1223

1224 1225
}

1226 1227
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1228
{
1229
	kvm_flush_remote_tlbs(kvm);
1230 1231
}

1232 1233 1234
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1235 1236 1237 1238 1239 1240 1241 1242 1243
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1244 1245
		if (!vgic_present)
			return -ENXIO;
1246
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1247 1248 1249
	default:
		return -ENODEV;
	}
1250 1251
}

1252 1253 1254
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1255 1256 1257 1258
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1259
	case KVM_CREATE_IRQCHIP: {
1260
		int ret;
1261 1262
		if (!vgic_present)
			return -ENXIO;
1263 1264 1265 1266
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1267
	}
1268 1269 1270 1271 1272 1273 1274
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1288 1289 1290
	default:
		return -EINVAL;
	}
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static int kvm_map_vectors(void)
{
	/*
	 * SV2  = ARM64_SPECTRE_V2
	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
	 *
	 * !SV2 + !HEL2 -> use direct vectors
	 *  SV2 + !HEL2 -> use hardened vectors in place
	 * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
	 *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
	 */
	if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
	}

	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;

		/*
		 * Always allocate a spare vector slot, as we don't
		 * know yet which CPUs have a BP hardening slot that
		 * we can reuse.
		 */
		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
		return create_hyp_exec_mappings(vect_pa, size,
						&__kvm_bp_vect_base);
	}

	return 0;
}

1340
static void cpu_init_hyp_mode(void)
1341
{
1342
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1343
	struct arm_smccc_res res;
1344
	unsigned long tcr;
1345 1346

	/* Switch from the HYP stub to our own HYP init vector */
1347
	__hyp_set_vectors(kvm_get_idmap_vector());
1348

1349 1350 1351 1352 1353
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1354 1355
	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1378 1379 1380 1381 1382 1383 1384 1385
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();

	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1386

1387 1388 1389 1390 1391 1392 1393
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1394
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1395
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1396 1397 1398 1399 1400 1401

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1402
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1403
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1404
	}
1405 1406
}

1407 1408 1409 1410 1411 1412
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1413 1414
static void cpu_hyp_reinit(void)
{
1415
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1416

1417 1418
	cpu_hyp_reset();

1419
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1420

1421
	if (is_kernel_in_hyp_mode())
1422
		kvm_timer_init_vhe();
1423
	else
1424
		cpu_init_hyp_mode();
1425

1426
	kvm_arm_init_debug();
1427 1428 1429

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1430 1431
}

1432 1433 1434
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1435
		cpu_hyp_reinit();
1436
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1437
	}
1438
}
1439

1440 1441 1442 1443
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1458

1459 1460 1461 1462 1463
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1479
		return NOTIFY_OK;
1480
	case CPU_PM_ENTER_FAILED:
1481 1482 1483 1484
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1485

1486 1487 1488 1489 1490
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1501 1502 1503 1504
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1505 1506 1507 1508
#else
static inline void hyp_cpu_pm_init(void)
{
}
1509 1510 1511
static inline void hyp_cpu_pm_exit(void)
{
}
1512 1513
#endif

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
		kvm_nvhe_sym(__cpu_logical_map)[cpu] = cpu_logical_map(cpu);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

	kvm_nvhe_sym(kvm_host_psci_version) = psci_ops.get_version();
	kvm_nvhe_sym(kvm_host_psci_0_1_function_ids) = get_psci_0_1_function_ids();
	return true;
}

1544 1545
static int init_common_resources(void)
{
1546
	return kvm_set_ipa_limit();
1547 1548 1549 1550
}

static int init_subsystems(void)
{
1551
	int err = 0;
1552

1553
	/*
1554
	 * Enable hardware so that subsystem initialisation can access EL2.
1555
	 */
1556
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1557 1558 1559 1560 1561 1562

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1574
		err = 0;
1575 1576
		break;
	default:
1577
		goto out;
1578 1579 1580 1581 1582
	}

	/*
	 * Init HYP architected timer support
	 */
1583
	err = kvm_timer_hyp_init(vgic_present);
1584
	if (err)
1585
		goto out;
1586 1587 1588 1589

	kvm_perf_init();
	kvm_coproc_table_init();

1590 1591 1592 1593
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1594 1595 1596 1597 1598 1599 1600
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1601
	for_each_possible_cpu(cpu) {
1602
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1603 1604
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1631
			goto out_err;
1632 1633 1634 1635 1636
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1655 1656 1657
	/*
	 * Map the Hyp-code called directly from the host
	 */
1658
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1659
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1660 1661
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1662
		goto out_err;
1663 1664
	}

1665 1666 1667 1668 1669 1670 1671 1672
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
				  PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
		goto out_err;
	}

1673
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1674
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1675 1676
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1677 1678 1679 1680 1681 1682 1683
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1684
		goto out_err;
1685 1686
	}

1687 1688 1689 1690 1691 1692
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1693 1694 1695 1696 1697
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1698 1699
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1700 1701 1702

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1703
			goto out_err;
1704 1705 1706
		}
	}

1707 1708 1709
	/*
	 * Map Hyp percpu pages
	 */
1710
	for_each_possible_cpu(cpu) {
1711 1712
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1713

1714
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1715 1716

		if (err) {
1717
			kvm_err("Cannot map hyp percpu region\n");
1718 1719
			goto out_err;
		}
1720 1721
	}

1722
	if (is_protected_kvm_enabled()) {
1723 1724
		init_cpu_logical_map();

1725 1726 1727 1728
		if (!init_psci_relay())
			goto out_err;
	}

1729
	return 0;
1730

1731
out_err:
1732
	teardown_hyp_mode();
1733 1734 1735 1736
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1737 1738 1739 1740 1741
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1766 1767
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1768 1769 1770 1771 1772 1773 1774
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1775 1776
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1795 1796 1797
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1798 1799
int kvm_arch_init(void *opaque)
{
1800
	int err;
1801
	int ret, cpu;
1802
	bool in_hyp_mode;
1803 1804

	if (!is_hyp_mode_available()) {
1805
		kvm_info("HYP mode not available\n");
1806 1807 1808
		return -ENODEV;
	}

1809 1810 1811 1812
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1813 1814 1815
		return -ENODEV;
	}

1816 1817
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1818 1819 1820
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1821 1822 1823 1824 1825 1826
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1827 1828
	}

1829
	err = init_common_resources();
1830
	if (err)
1831
		return err;
1832

1833
	err = kvm_arm_init_sve();
1834 1835 1836
	if (err)
		return err;

1837
	if (!in_hyp_mode) {
1838
		err = init_hyp_mode();
1839 1840 1841
		if (err)
			goto out_err;
	}
1842

1843 1844 1845
	err = init_subsystems();
	if (err)
		goto out_hyp;
1846

1847 1848 1849
	if (is_protected_kvm_enabled())
		kvm_info("Protected nVHE mode initialized successfully\n");
	else if (in_hyp_mode)
1850 1851 1852 1853
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1854
	return 0;
1855 1856

out_hyp:
1857
	hyp_cpu_pm_exit();
1858 1859
	if (!in_hyp_mode)
		teardown_hyp_mode();
1860 1861
out_err:
	return err;
1862 1863 1864 1865 1866
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1867
	kvm_perf_teardown();
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1884 1885 1886 1887 1888
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1889 1890 1891 1892 1893 1894 1895
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);