i915_gem.c 44.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42 43
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"

44 45
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
46
#include "gem/i915_gem_ioctls.h"
47 48
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
49
#include "gt/intel_engine_user.h"
50
#include "gt/intel_gt.h"
51
#include "gt/intel_gt_pm.h"
52 53
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
54
#include "gt/intel_renderstate.h"
55 56
#include "gt/intel_workarounds.h"

57
#include "i915_drv.h"
58
#include "i915_scatterlist.h"
59 60 61
#include "i915_trace.h"
#include "i915_vgpu.h"

62
#include "intel_pm.h"
63

64
static int
65
insert_mappable_node(struct i915_ggtt *ggtt,
66 67 68
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
69
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 71 72
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
73 74 75 76 77 78 79 80
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

81 82
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83
			    struct drm_file *file)
84
{
85
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86
	struct drm_i915_gem_get_aperture *args = data;
87
	struct i915_vma *vma;
88
	u64 pinned;
89

90 91
	mutex_lock(&ggtt->vm.mutex);

92
	pinned = ggtt->vm.reserved;
93
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94
		if (i915_vma_is_pinned(vma))
95
			pinned += vma->node.size;
96 97

	mutex_unlock(&ggtt->vm.mutex);
98

99
	args->aper_size = ggtt->vm.total;
100
	args->aper_available_size = args->aper_size - pinned;
101

102 103 104
	return 0;
}

105 106
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
			   unsigned long flags)
107 108 109
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
110
	int ret = 0;
111 112

	lockdep_assert_held(&obj->base.dev->struct_mutex);
113

114 115 116 117
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
118
		list_move_tail(&vma->obj_link, &still_in_list);
119 120
		spin_unlock(&obj->vma.lock);

121 122 123 124
		ret = -EBUSY;
		if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
		    !i915_vma_is_active(vma))
			ret = i915_vma_unbind(vma);
125 126

		spin_lock(&obj->vma.lock);
127
	}
128 129
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
130 131 132 133

	return ret;
}

134 135 136
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
137
		     struct drm_file *file)
138 139
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
140
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
141

142 143
	/*
	 * We manually control the domain here and pretend that it
144 145
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
146 147
	intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);

148 149
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
150

151
	drm_clflush_virt_range(vaddr, args->size);
152
	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
153

154
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
155
	return 0;
156 157
}

158 159
static int
i915_gem_create(struct drm_file *file,
160
		struct drm_i915_private *dev_priv,
161
		u64 *size_p,
162
		u32 *handle_p)
163
{
164
	struct drm_i915_gem_object *obj;
165
	u32 handle;
166 167
	u64 size;
	int ret;
168

169
	size = round_up(*size_p, PAGE_SIZE);
170 171
	if (size == 0)
		return -EINVAL;
172 173

	/* Allocate the new object */
174
	obj = i915_gem_object_create_shmem(dev_priv, size);
175 176
	if (IS_ERR(obj))
		return PTR_ERR(obj);
177

178
	ret = drm_gem_handle_create(file, &obj->base, &handle);
179
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
180
	i915_gem_object_put(obj);
181 182
	if (ret)
		return ret;
183

184
	*handle_p = handle;
185
	*size_p = size;
186 187 188
	return 0;
}

189 190 191 192 193
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

211
	/* have to work out size/pitch and return them */
212 213 214 215 216 217 218
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

219
	args->size = args->pitch * args->height;
220
	return i915_gem_create(file, to_i915(dev),
221
			       &args->size, &args->handle);
222 223 224 225
}

/**
 * Creates a new mm object and returns a handle to it.
226 227 228
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
229 230 231 232 233
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
234
	struct drm_i915_private *dev_priv = to_i915(dev);
235
	struct drm_i915_gem_create *args = data;
236

237
	i915_gem_flush_free_objects(dev_priv);
238

239
	return i915_gem_create(file, dev_priv,
240
			       &args->size, &args->handle);
241 242
}

243
static int
244 245
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
246 247 248 249 250 251
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

252 253
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
254

255
	ret = __copy_to_user(user_data, vaddr + offset, len);
256

257
	kunmap(page);
258

259
	return ret ? -EFAULT : 0;
260 261 262 263 264 265 266 267
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
268 269 270
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
271 272
	int ret;

273
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
274 275 276
	if (ret)
		return ret;

277 278 279 280 281
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

282 283 284 285 286
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
287
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
288 289 290 291 292 293 294 295 296 297 298

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

299
	i915_gem_object_unlock_fence(obj, fence);
300 301 302 303 304 305 306
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
307
{
308
	void __iomem *vaddr;
309
	unsigned long unwritten;
310 311

	/* We can use the cpu mem copy function because this is X86. */
312 313 314 315
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
316 317
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
318 319 320 321
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
322 323
		io_mapping_unmap(vaddr);
	}
324 325 326 327
	return unwritten;
}

static int
328 329
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
330
{
331 332
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
333
	intel_wakeref_t wakeref;
334
	struct drm_mm_node node;
335
	struct dma_fence *fence;
336
	void __user *user_data;
337
	struct i915_vma *vma;
338
	u64 remain, offset;
339 340
	int ret;

341 342 343 344
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

345
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
347 348 349
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
350 351 352
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
353
		ret = i915_vma_put_fence(vma);
354 355 356 357 358
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
359
	if (IS_ERR(vma)) {
360
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
361
		if (ret)
362 363
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
364 365
	}

366 367 368
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
369 370 371
	if (ret)
		goto out_unpin;

372 373 374 375 376 377 378 379 380 381 382 383
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
384

385 386 387
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
388 389 390 391 392 393 394 395 396 397 398 399 400

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
401 402 403
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
404 405 406
		} else {
			page_base += offset & PAGE_MASK;
		}
407

408
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
409
				  user_data, page_length)) {
410 411 412 413 414 415 416 417 418
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

419
	i915_gem_object_unlock_fence(obj, fence);
420
out_unpin:
421
	mutex_lock(&i915->drm.struct_mutex);
422
	if (node.allocated) {
423
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
424 425
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
426
		i915_vma_unpin(vma);
427
	}
428
out_unlock:
429
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
430
	mutex_unlock(&i915->drm.struct_mutex);
431

432 433 434
	return ret;
}

435 436
/**
 * Reads data from the object referenced by handle.
437 438 439
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
440 441 442 443 444
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445
		     struct drm_file *file)
446 447
{
	struct drm_i915_gem_pread *args = data;
448
	struct drm_i915_gem_object *obj;
449
	int ret;
450

451 452 453
	if (args->size == 0)
		return 0;

454
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
455 456 457
		       args->size))
		return -EFAULT;

458
	obj = i915_gem_object_lookup(file, args->handle);
459 460
	if (!obj)
		return -ENOENT;
461

462
	/* Bounds check source.  */
463
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
464
		ret = -EINVAL;
465
		goto out;
C
Chris Wilson 已提交
466 467
	}

C
Chris Wilson 已提交
468 469
	trace_i915_gem_object_pread(obj, args->offset, args->size);

470 471
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
472
				   MAX_SCHEDULE_TIMEOUT);
473
	if (ret)
474
		goto out;
475

476
	ret = i915_gem_object_pin_pages(obj);
477
	if (ret)
478
		goto out;
479

480
	ret = i915_gem_shmem_pread(obj, args);
481
	if (ret == -EFAULT || ret == -ENODEV)
482
		ret = i915_gem_gtt_pread(obj, args);
483

484 485
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
486
	i915_gem_object_put(obj);
487
	return ret;
488 489
}

490 491
/* This is the fast write path which cannot handle
 * page faults in the source data
492
 */
493

494 495 496 497
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
498
{
499
	void __iomem *vaddr;
500
	unsigned long unwritten;
501

502
	/* We can use the cpu mem copy function because this is X86. */
503 504
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
505
						      user_data, length);
506 507
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
508 509 510
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
511 512
		io_mapping_unmap(vaddr);
	}
513 514 515 516

	return unwritten;
}

517 518 519
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
520
 * @obj: i915 GEM object
521
 * @args: pwrite arguments structure
522
 */
523
static int
524 525
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
526
{
527
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
528
	struct i915_ggtt *ggtt = &i915->ggtt;
529
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
530
	intel_wakeref_t wakeref;
531
	struct drm_mm_node node;
532
	struct dma_fence *fence;
533 534 535
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
536
	int ret;
537

538 539 540
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
541

542 543 544 545 546 547 548 549
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
550
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
551
		if (!wakeref) {
552 553 554 555 556
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
557
		wakeref = intel_runtime_pm_get(rpm);
558 559
	}

C
Chris Wilson 已提交
560
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
561 562 563
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
564 565 566
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
567
		ret = i915_vma_put_fence(vma);
568 569 570 571 572
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
573
	if (IS_ERR(vma)) {
574
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
575
		if (ret)
576
			goto out_rpm;
577
		GEM_BUG_ON(!node.allocated);
578
	}
D
Daniel Vetter 已提交
579

580 581 582
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
583 584 585
	if (ret)
		goto out_unpin;

586 587 588 589 590 591 592 593 594 595 596 597
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
598

599
	intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
600

601 602 603 604
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
605 606
		/* Operation in this page
		 *
607 608 609
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
610
		 */
611
		u32 page_base = node.start;
612 613
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
614 615
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
616 617
			/* flush the write before we modify the GGTT */
			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
618 619 620
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
621 622 623 624
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
625
		/* If we get a fault while copying data, then (presumably) our
626 627
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
628 629
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
630
		 */
631
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
632 633 634
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
635
		}
636

637 638 639
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
640
	}
641
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
642

643
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
644
out_unpin:
645
	mutex_lock(&i915->drm.struct_mutex);
646
	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
647
	if (node.allocated) {
648
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
649 650
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
651
		i915_vma_unpin(vma);
652
	}
653
out_rpm:
654
	intel_runtime_pm_put(rpm, wakeref);
655
out_unlock:
656
	mutex_unlock(&i915->drm.struct_mutex);
657
	return ret;
658 659
}

660 661 662 663 664
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
665
static int
666 667 668
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
669
{
670
	char *vaddr;
671 672
	int ret;

673
	vaddr = kmap(page);
674

675 676
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
677

678 679 680
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
681

682 683 684
	kunmap(page);

	return ret ? -EFAULT : 0;
685 686 687 688 689 690 691
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
692
	unsigned int needs_clflush;
693
	unsigned int offset, idx;
694 695 696
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
697
	int ret;
698

699
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
700 701
	if (ret)
		return ret;
702

703 704 705 706 707
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

708 709 710 711 712 713 714
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
715

716 717 718 719 720
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
721
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
722

723 724 725
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
726
		if (ret)
727
			break;
728

729 730 731
		remain -= length;
		user_data += length;
		offset = 0;
732
	}
733

734
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
735 736
	i915_gem_object_unlock_fence(obj, fence);

737
	return ret;
738 739 740 741
}

/**
 * Writes data to the object referenced by handle.
742 743 744
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
745 746 747 748 749
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
750
		      struct drm_file *file)
751 752
{
	struct drm_i915_gem_pwrite *args = data;
753
	struct drm_i915_gem_object *obj;
754 755 756 757 758
	int ret;

	if (args->size == 0)
		return 0;

759
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
760 761
		return -EFAULT;

762
	obj = i915_gem_object_lookup(file, args->handle);
763 764
	if (!obj)
		return -ENOENT;
765

766
	/* Bounds check destination. */
767
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
768
		ret = -EINVAL;
769
		goto err;
C
Chris Wilson 已提交
770 771
	}

772 773 774 775 776 777
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
778 779
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

780 781 782 783 784 785
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

786 787 788
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
789
				   MAX_SCHEDULE_TIMEOUT);
790 791 792
	if (ret)
		goto err;

793
	ret = i915_gem_object_pin_pages(obj);
794
	if (ret)
795
		goto err;
796

D
Daniel Vetter 已提交
797
	ret = -EFAULT;
798 799 800 801 802 803
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
804
	if (!i915_gem_object_has_struct_page(obj) ||
805
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
806 807
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
808 809
		 * textures). Fallback to the shmem path in that case.
		 */
810
		ret = i915_gem_gtt_pwrite_fast(obj, args);
811

812
	if (ret == -EFAULT || ret == -ENOSPC) {
813 814
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
815
		else
816
			ret = i915_gem_shmem_pwrite(obj, args);
817
	}
818

819
	i915_gem_object_unpin_pages(obj);
820
err:
C
Chris Wilson 已提交
821
	i915_gem_object_put(obj);
822
	return ret;
823 824 825 826
}

/**
 * Called when user space has done writes to this buffer
827 828 829
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
830 831 832
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
833
			 struct drm_file *file)
834 835
{
	struct drm_i915_gem_sw_finish *args = data;
836
	struct drm_i915_gem_object *obj;
837

838
	obj = i915_gem_object_lookup(file, args->handle);
839 840
	if (!obj)
		return -ENOENT;
841

T
Tina Zhang 已提交
842 843 844 845 846
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

847
	/* Pinned buffers may be scanout, so flush the cache */
848
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
849
	i915_gem_object_put(obj);
850 851

	return 0;
852 853
}

854
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
855
{
856
	struct drm_i915_gem_object *obj, *on;
857
	int i;
858

859 860 861 862 863 864
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
865

866
	list_for_each_entry_safe(obj, on,
867
				 &i915->ggtt.userfault_list, userfault_link)
868
		__i915_gem_object_release_mmap(obj);
869

870 871
	/*
	 * The fence will be lost when the device powers down. If any were
872 873 874
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
875 876
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
877

878 879
		/*
		 * Ideally we want to assert that the fence register is not
880 881 882 883 884 885 886 887 888
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
889 890 891 892

		if (!reg->vma)
			continue;

893
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
894 895
		reg->dirty = true;
	}
896 897
}

898 899 900 901
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
902
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
903
	struct intel_timeline *tl;
904

905 906
	spin_lock(&timelines->lock);
	list_for_each_entry(tl, &timelines->active_list, link) {
907 908
		struct i915_request *rq;

909
		rq = i915_active_request_get_unlocked(&tl->last_request);
910 911 912
		if (!rq)
			continue;

913
		spin_unlock(&timelines->lock);
914 915 916 917 918 919 920 921 922 923 924

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
925
			gen6_rps_boost(rq);
926 927 928 929 930 931 932

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
933 934
		spin_lock(&timelines->lock);
		tl = list_entry(&timelines->active_list, typeof(*tl), link);
935
	}
936
	spin_unlock(&timelines->lock);
937 938 939 940

	return timeout;
}

941 942
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
943
{
944
	/* If the device is asleep, we have no requests outstanding */
945
	if (!intel_gt_pm_is_awake(&i915->gt))
946 947
		return 0;

948
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
949
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
950
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
951

952 953 954 955
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

956 957 958
	if (flags & I915_WAIT_LOCKED) {
		lockdep_assert_held(&i915->drm.struct_mutex);

959
		i915_retire_requests(i915);
960
	}
961 962

	return 0;
963 964
}

C
Chris Wilson 已提交
965
struct i915_vma *
966 967
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
968
			 u64 size,
969 970
			 u64 alignment,
			 u64 flags)
971
{
972
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
973
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
974 975
	struct i915_vma *vma;
	int ret;
976

977 978
	lockdep_assert_held(&obj->base.dev->struct_mutex);

979 980
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1011
	vma = i915_vma_instance(obj, vm, view);
1012
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1013
		return vma;
1014 1015

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1016 1017 1018
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1019

1020
			if (flags & PIN_MAPPABLE &&
1021
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1022 1023 1024
				return ERR_PTR(-ENOSPC);
		}

1025 1026
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1027 1028 1029
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1030
		     !!(flags & PIN_MAPPABLE),
1031
		     i915_vma_is_map_and_fenceable(vma));
1032 1033
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1034
			return ERR_PTR(ret);
1035 1036
	}

C
Chris Wilson 已提交
1037 1038 1039
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1040

C
Chris Wilson 已提交
1041
	return vma;
1042 1043
}

1044 1045 1046 1047
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1048
	struct drm_i915_private *i915 = to_i915(dev);
1049
	struct drm_i915_gem_madvise *args = data;
1050
	struct drm_i915_gem_object *obj;
1051
	int err;
1052 1053 1054 1055 1056 1057 1058 1059 1060

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1061
	obj = i915_gem_object_lookup(file_priv, args->handle);
1062 1063 1064 1065 1066 1067
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1068

1069
	if (i915_gem_object_has_pages(obj) &&
1070
	    i915_gem_object_is_tiled(obj) &&
1071
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1072 1073
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1074
			__i915_gem_object_unpin_pages(obj);
1075 1076 1077
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1078
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1079
			__i915_gem_object_pin_pages(obj);
1080 1081
			obj->mm.quirked = true;
		}
1082 1083
	}

C
Chris Wilson 已提交
1084 1085
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1086

1087 1088 1089
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1090
		if (i915_gem_object_is_shrinkable(obj)) {
1091 1092 1093 1094
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1095 1096 1097
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1098
				list = &i915->mm.shrink_list;
1099
			list_move_tail(&obj->mm.link, list);
1100 1101

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1102
		}
1103 1104
	}

C
Chris Wilson 已提交
1105
	/* if the object is no longer attached, discard its backing storage */
1106 1107
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1108
		i915_gem_object_truncate(obj);
1109

C
Chris Wilson 已提交
1110
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1111
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1112

1113
out:
1114
	i915_gem_object_put(obj);
1115
	return err;
1116 1117
}

1118 1119
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1120 1121
	intel_wakeref_t wakeref;

1122 1123
	GEM_TRACE("\n");

1124
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1125
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1126 1127 1128 1129 1130 1131 1132

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1133 1134
	if (intel_gt_is_wedged(&i915->gt))
		intel_gt_unset_wedged(&i915->gt);
1135

1136 1137 1138 1139 1140 1141
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1142
	 * of the reset, so this could be applied to even earlier gen.
1143
	 */
1144
	intel_gt_sanitize(&i915->gt, false);
1145

1146
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1147
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1148 1149
}

1150
static void init_unused_ring(struct intel_gt *gt, u32 base)
1151
{
1152 1153 1154 1155 1156 1157
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
1158 1159
}

1160
static void init_unused_rings(struct intel_gt *gt)
1161
{
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
1176 1177 1178
	}
}

1179
int i915_gem_init_hw(struct drm_i915_private *i915)
1180
{
1181 1182
	struct intel_uncore *uncore = &i915->uncore;
	struct intel_gt *gt = &i915->gt;
C
Chris Wilson 已提交
1183
	int ret;
1184

1185
	BUG_ON(!i915->kernel_context);
1186
	ret = intel_gt_terminally_wedged(gt);
1187 1188 1189
	if (ret)
		return ret;

1190
	gt->last_init_time = ktime_get();
1191

1192
	/* Double layer security blanket, see i915_gem_init() */
1193
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1194

1195 1196
	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1197

1198 1199 1200 1201 1202
	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1203

1204
	/* Apply the GT workarounds... */
1205
	intel_gt_apply_workarounds(gt);
1206
	/* ...and determine whether they are sticking. */
1207
	intel_gt_verify_workarounds(gt, "init");
1208

1209
	intel_gt_init_swizzling(gt);
1210

1211 1212 1213 1214 1215 1216
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1217
	init_unused_rings(gt);
1218

1219
	ret = i915_ppgtt_init_hw(gt);
1220
	if (ret) {
1221
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1222 1223 1224
		goto out;
	}

1225
	/* We can't enable contexts until all firmware is loaded */
1226
	ret = intel_uc_init_hw(&gt->uc);
1227
	if (ret) {
1228
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1229
		goto out;
1230
	}
1231

1232
	intel_mocs_init(gt);
1233

1234
out:
1235
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1236
	return ret;
1237 1238
}

1239 1240
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
1241
	struct i915_request *requests[I915_NUM_ENGINES] = {};
1242 1243
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1244
	int err = 0;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, i915, id) {
1256
		struct intel_context *ce;
1257
		struct i915_request *rq;
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);
		engine->serial++; /* force the kernel context switch */

		ce = intel_context_create(i915->kernel_context, engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

1269
		rq = intel_context_create_request(ce);
1270 1271
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1272 1273
			intel_context_put(ce);
			goto out;
1274 1275
		}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		/*
		 * Failing to program the MOCS is non-fatal.The system will not
		 * run at peak performance. So warn the user and carry on.
		 */
		err = intel_mocs_emit(rq);
		if (err)
			dev_notice(i915->drm.dev,
				   "Failed to program MOCS registers; expect performance issues.\n");

		err = intel_renderstate_emit(rq);
		if (err)
			goto err_rq;
1292

1293
err_rq:
1294
		requests[id] = i915_request_get(rq);
1295
		i915_request_add(rq);
1296
		if (err)
1297
			goto out;
1298 1299
	}

1300
	/* Flush the default context image to memory, and enable powersaving. */
1301
	if (!i915_gem_load_power_context(i915)) {
1302
		err = -EIO;
1303
		goto out;
1304
	}
1305

1306 1307 1308
	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
		struct i915_vma *state;
1309
		void *vaddr;
1310

1311 1312
		rq = requests[id];
		if (!rq)
1313 1314
			continue;

1315 1316 1317 1318 1319 1320
		/* We want to be able to unbind the state from the GGTT */
		GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));

		state = rq->hw_context->state;
		if (!state)
			continue;
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
1332
			goto out;
1333

1334
		i915_gem_object_lock(state->obj);
1335
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1336
		i915_gem_object_unlock(state->obj);
1337
		if (err)
1338
			goto out;
1339

1340
		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1341 1342

		/* Check we can acquire the image of the context state */
1343
		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1344 1345
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
1346
			goto out;
1347 1348
		}

1349 1350
		rq->engine->default_state = i915_gem_object_get(state->obj);
		i915_gem_object_unpin_map(state->obj);
1351 1352
	}

1353
out:
1354 1355
	/*
	 * If we have to abandon now, we expect the engines to be idle
1356 1357
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1358
	 */
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (err)
		intel_gt_set_wedged(&i915->gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->hw_context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
1375 1376
}

1377 1378 1379
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
1380
	return intel_gt_init_scratch(&i915->gt, size);
1381 1382 1383 1384
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
1385
	intel_gt_fini_scratch(&i915->gt);
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1405
int i915_gem_init(struct drm_i915_private *dev_priv)
1406 1407 1408
{
	int ret;

1409 1410
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1411 1412 1413
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1414
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1415

1416
	intel_timelines_init(dev_priv);
1417

1418 1419 1420 1421
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1422
	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1423
	intel_wopcm_init(&dev_priv->wopcm);
1424

1425 1426 1427 1428 1429 1430
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1431
	mutex_lock(&dev_priv->drm.struct_mutex);
1432
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1433

1434
	ret = i915_init_ggtt(dev_priv);
1435 1436 1437 1438
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1439

1440
	ret = i915_gem_init_scratch(dev_priv,
1441
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1442 1443 1444 1445
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1446

1447 1448 1449 1450 1451 1452
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1453 1454 1455 1456 1457 1458
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1459
	ret = intel_engines_init(dev_priv);
1460 1461 1462 1463
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1464

1465 1466
	intel_init_gt_powersave(dev_priv);

1467
	ret = intel_uc_init(&dev_priv->gt.uc);
1468 1469
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
1470
		goto err_pm;
1471
	}
1472

1473 1474 1475 1476
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1477 1478 1479 1480 1481
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = intel_gt_resume(&dev_priv->gt);
	if (ret)
		goto err_init_hw;

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1493 1494
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
1495
		goto err_gt;
1496

1497
	ret = __intel_engines_record_defaults(dev_priv);
1498
	if (ret)
1499
		goto err_gt;
1500

1501 1502
	ret = i915_inject_load_error(dev_priv, -ENODEV);
	if (ret)
1503
		goto err_gt;
1504

1505 1506
	ret = i915_inject_load_error(dev_priv, -EIO);
	if (ret)
1507
		goto err_gt;
1508

1509
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
1520
err_gt:
1521 1522
	mutex_unlock(&dev_priv->drm.struct_mutex);

1523
	intel_gt_set_wedged(&dev_priv->gt);
1524
	i915_gem_suspend(dev_priv);
1525 1526
	i915_gem_suspend_late(dev_priv);

1527 1528
	i915_gem_drain_workqueue(dev_priv);

1529
	mutex_lock(&dev_priv->drm.struct_mutex);
1530
err_init_hw:
1531
	intel_uc_fini_hw(&dev_priv->gt.uc);
1532
err_uc_init:
1533 1534
	if (ret != -EIO)
		intel_uc_fini(&dev_priv->gt.uc);
1535 1536 1537
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1538
		intel_engines_cleanup(dev_priv);
1539 1540 1541 1542
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1543 1544
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1545 1546
err_ggtt:
err_unlock:
1547
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1548 1549
	mutex_unlock(&dev_priv->drm.struct_mutex);

1550
	if (ret != -EIO) {
1551
		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1552
		i915_gem_cleanup_userptr(dev_priv);
1553
		intel_timelines_fini(dev_priv);
1554
	}
1555

1556
	if (ret == -EIO) {
1557 1558
		mutex_lock(&dev_priv->drm.struct_mutex);

1559
		/*
1560 1561
		 * Allow engines or uC initialisation to fail by marking the GPU
		 * as wedged. But we only want to do this when the GPU is angry,
1562 1563
		 * for all other failure, such as an allocation failure, bail.
		 */
1564
		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1565 1566
			i915_probe_error(dev_priv,
					 "Failed to initialize GPU, declaring it wedged!\n");
1567
			intel_gt_set_wedged(&dev_priv->gt);
1568
		}
1569 1570 1571 1572 1573 1574 1575 1576

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1577 1578
	}

1579
	i915_gem_drain_freed_objects(dev_priv);
1580
	return ret;
1581 1582
}

1583 1584 1585
void i915_gem_driver_register(struct drm_i915_private *i915)
{
	i915_gem_driver_register__shrinker(i915);
1586 1587

	intel_engines_driver_register(i915);
1588 1589 1590 1591 1592 1593 1594
}

void i915_gem_driver_unregister(struct drm_i915_private *i915)
{
	i915_gem_driver_unregister__shrinker(i915);
}

1595
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1596
{
1597 1598
	GEM_BUG_ON(dev_priv->gt.awake);

1599
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1600

1601
	i915_gem_suspend_late(dev_priv);
1602
	intel_disable_gt_powersave(dev_priv);
1603 1604 1605 1606 1607

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
1608 1609
	intel_uc_fini_hw(&dev_priv->gt.uc);
	intel_uc_fini(&dev_priv->gt.uc);
1610 1611 1612 1613 1614
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

1615
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1616 1617
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1618
	intel_engines_cleanup(dev_priv);
1619
	i915_gem_contexts_fini(dev_priv);
1620
	i915_gem_fini_scratch(dev_priv);
1621 1622
	mutex_unlock(&dev_priv->drm.struct_mutex);

1623 1624
	intel_wa_list_free(&dev_priv->gt_wa_list);

1625 1626
	intel_cleanup_gt_powersave(dev_priv);

1627
	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1628
	i915_gem_cleanup_userptr(dev_priv);
1629
	intel_timelines_fini(dev_priv);
1630 1631 1632 1633 1634 1635

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1636 1637 1638 1639 1640
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1641 1642 1643 1644 1645 1646
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);

	init_llist_head(&i915->mm.free_list);

1647
	INIT_LIST_HEAD(&i915->mm.purge_list);
1648
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1649

1650
	i915_gem_init__objects(i915);
1651 1652
}

1653
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1654
{
1655
	int err;
1656

1657
	i915_gem_init__mm(dev_priv);
1658
	i915_gem_init__pm(dev_priv);
1659

1660
	spin_lock_init(&dev_priv->fb_tracking.lock);
1661

M
Matthew Auld 已提交
1662 1663 1664 1665
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1666
	return 0;
1667
}
1668

1669
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1670
{
1671
	i915_gem_drain_freed_objects(dev_priv);
1672 1673
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1674
	WARN_ON(dev_priv->mm.shrink_count);
1675

M
Matthew Auld 已提交
1676
	i915_gemfs_fini(dev_priv);
1677 1678
}

1679 1680
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1681 1682 1683
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1684 1685 1686 1687 1688
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1689
int i915_gem_freeze_late(struct drm_i915_private *i915)
1690 1691
{
	struct drm_i915_gem_object *obj;
1692
	intel_wakeref_t wakeref;
1693

1694 1695
	/*
	 * Called just before we write the hibernation image.
1696 1697 1698 1699 1700 1701 1702 1703
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1704 1705
	 *
	 * To try and reduce the hibernation image, we manually shrink
1706
	 * the objects as well, see i915_gem_freeze()
1707 1708
	 */

1709
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1710 1711

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1712
	i915_gem_drain_freed_objects(i915);
1713

1714 1715 1716 1717
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1718
	}
1719

1720
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1721 1722 1723 1724

	return 0;
}

1725
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1726
{
1727
	struct drm_i915_file_private *file_priv = file->driver_priv;
1728
	struct i915_request *request;
1729 1730 1731 1732 1733

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1734
	spin_lock(&file_priv->mm.lock);
1735
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1736
		request->file_priv = NULL;
1737
	spin_unlock(&file_priv->mm.lock);
1738 1739
}

1740
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1741 1742
{
	struct drm_i915_file_private *file_priv;
1743
	int ret;
1744

1745
	DRM_DEBUG("\n");
1746 1747 1748 1749 1750 1751

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1752
	file_priv->dev_priv = i915;
1753
	file_priv->file = file;
1754 1755 1756 1757

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1758
	file_priv->bsd_engine = -1;
1759
	file_priv->hang_timestamp = jiffies;
1760

1761
	ret = i915_gem_context_open(i915, file);
1762 1763
	if (ret)
		kfree(file_priv);
1764

1765
	return ret;
1766 1767
}

1768
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1769
#include "selftests/mock_gem_device.c"
1770
#include "selftests/i915_gem.c"
1771
#endif