i915_gem.c 45.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42 43
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"

44 45
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
46
#include "gem/i915_gem_ioctls.h"
47 48
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
49
#include "gt/intel_gt.h"
50
#include "gt/intel_gt_pm.h"
51 52 53 54
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"

55
#include "i915_drv.h"
56
#include "i915_scatterlist.h"
57 58 59 60
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
61
#include "intel_pm.h"
62

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
82
			    struct drm_file *file)
83
{
84
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
85
	struct drm_i915_gem_get_aperture *args = data;
86
	struct i915_vma *vma;
87
	u64 pinned;
88

89 90
	mutex_lock(&ggtt->vm.mutex);

91
	pinned = ggtt->vm.reserved;
92
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
93
		if (i915_vma_is_pinned(vma))
94
			pinned += vma->node.size;
95 96

	mutex_unlock(&ggtt->vm.mutex);
97

98
	args->aper_size = ggtt->vm.total;
99
	args->aper_available_size = args->aper_size - pinned;
100

101 102 103
	return 0;
}

104
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
105 106 107
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
108
	int ret = 0;
109 110

	lockdep_assert_held(&obj->base.dev->struct_mutex);
111

112 113 114 115
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
116
		list_move_tail(&vma->obj_link, &still_in_list);
117 118
		spin_unlock(&obj->vma.lock);

119
		ret = i915_vma_unbind(vma);
120 121

		spin_lock(&obj->vma.lock);
122
	}
123 124
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
125 126 127 128

	return ret;
}

129 130 131
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
132
		     struct drm_file *file)
133 134
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
135
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
136 137 138 139

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
140
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
141 142
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
143

144
	drm_clflush_virt_range(vaddr, args->size);
145
	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
146

147
	intel_fb_obj_flush(obj, ORIGIN_CPU);
148
	return 0;
149 150
}

151 152
static int
i915_gem_create(struct drm_file *file,
153
		struct drm_i915_private *dev_priv,
154
		u64 *size_p,
155
		u32 *handle_p)
156
{
157
	struct drm_i915_gem_object *obj;
158
	u32 handle;
159 160
	u64 size;
	int ret;
161

162
	size = round_up(*size_p, PAGE_SIZE);
163 164
	if (size == 0)
		return -EINVAL;
165 166

	/* Allocate the new object */
167
	obj = i915_gem_object_create_shmem(dev_priv, size);
168 169
	if (IS_ERR(obj))
		return PTR_ERR(obj);
170

171
	ret = drm_gem_handle_create(file, &obj->base, &handle);
172
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
173
	i915_gem_object_put(obj);
174 175
	if (ret)
		return ret;
176

177
	*handle_p = handle;
178
	*size_p = size;
179 180 181
	return 0;
}

182 183 184 185 186
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

204
	/* have to work out size/pitch and return them */
205 206 207 208 209 210 211
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

212
	args->size = args->pitch * args->height;
213
	return i915_gem_create(file, to_i915(dev),
214
			       &args->size, &args->handle);
215 216 217 218
}

/**
 * Creates a new mm object and returns a handle to it.
219 220 221
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
222 223 224 225 226
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
227
	struct drm_i915_private *dev_priv = to_i915(dev);
228
	struct drm_i915_gem_create *args = data;
229

230
	i915_gem_flush_free_objects(dev_priv);
231

232
	return i915_gem_create(file, dev_priv,
233
			       &args->size, &args->handle);
234 235
}

236
static int
237 238
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
239 240 241 242 243 244
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

245 246
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
247

248
	ret = __copy_to_user(user_data, vaddr + offset, len);
249

250
	kunmap(page);
251

252
	return ret ? -EFAULT : 0;
253 254 255 256 257 258 259 260
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
261 262 263
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
264 265
	int ret;

266
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
267 268 269
	if (ret)
		return ret;

270 271 272 273 274
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

275 276 277 278 279
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
280
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
281 282 283 284 285 286 287 288 289 290 291

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

292
	i915_gem_object_unlock_fence(obj, fence);
293 294 295 296 297 298 299
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
300
{
301
	void __iomem *vaddr;
302
	unsigned long unwritten;
303 304

	/* We can use the cpu mem copy function because this is X86. */
305 306 307 308
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
309 310
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
311 312 313 314
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
315 316
		io_mapping_unmap(vaddr);
	}
317 318 319 320
	return unwritten;
}

static int
321 322
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
323
{
324 325
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
326
	intel_wakeref_t wakeref;
327
	struct drm_mm_node node;
328
	struct dma_fence *fence;
329
	void __user *user_data;
330
	struct i915_vma *vma;
331
	u64 remain, offset;
332 333
	int ret;

334 335 336 337
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

338
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
339
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
340 341 342
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
343 344 345
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
346
		ret = i915_vma_put_fence(vma);
347 348 349 350 351
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
352
	if (IS_ERR(vma)) {
353
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
354
		if (ret)
355 356
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
357 358
	}

359 360 361
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
362 363 364
	if (ret)
		goto out_unpin;

365 366 367 368 369 370 371 372 373 374 375 376
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
377

378 379 380
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
381 382 383 384 385 386 387 388 389 390 391 392 393 394

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
395 396 397
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
398 399 400 401
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
402

403
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
404
				  user_data, page_length)) {
405 406 407 408 409 410 411 412 413
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

414
	i915_gem_object_unlock_fence(obj, fence);
415
out_unpin:
416
	mutex_lock(&i915->drm.struct_mutex);
417 418
	if (node.allocated) {
		wmb();
419
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 421
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
422
		i915_vma_unpin(vma);
423
	}
424
out_unlock:
425
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426
	mutex_unlock(&i915->drm.struct_mutex);
427

428 429 430
	return ret;
}

431 432
/**
 * Reads data from the object referenced by handle.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441
		     struct drm_file *file)
442 443
{
	struct drm_i915_gem_pread *args = data;
444
	struct drm_i915_gem_object *obj;
445
	int ret;
446

447 448 449
	if (args->size == 0)
		return 0;

450
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
451 452 453
		       args->size))
		return -EFAULT;

454
	obj = i915_gem_object_lookup(file, args->handle);
455 456
	if (!obj)
		return -ENOENT;
457

458
	/* Bounds check source.  */
459
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
460
		ret = -EINVAL;
461
		goto out;
C
Chris Wilson 已提交
462 463
	}

C
Chris Wilson 已提交
464 465
	trace_i915_gem_object_pread(obj, args->offset, args->size);

466 467
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
468
				   MAX_SCHEDULE_TIMEOUT);
469
	if (ret)
470
		goto out;
471

472
	ret = i915_gem_object_pin_pages(obj);
473
	if (ret)
474
		goto out;
475

476
	ret = i915_gem_shmem_pread(obj, args);
477
	if (ret == -EFAULT || ret == -ENODEV)
478
		ret = i915_gem_gtt_pread(obj, args);
479

480 481
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
482
	i915_gem_object_put(obj);
483
	return ret;
484 485
}

486 487
/* This is the fast write path which cannot handle
 * page faults in the source data
488
 */
489

490 491 492 493
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
494
{
495
	void __iomem *vaddr;
496
	unsigned long unwritten;
497

498
	/* We can use the cpu mem copy function because this is X86. */
499 500
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
501
						      user_data, length);
502 503
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
504 505 506
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
507 508
		io_mapping_unmap(vaddr);
	}
509 510 511 512

	return unwritten;
}

513 514 515
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
516
 * @obj: i915 GEM object
517
 * @args: pwrite arguments structure
518
 */
519
static int
520 521
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
522
{
523
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
524
	struct i915_ggtt *ggtt = &i915->ggtt;
525
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
526
	intel_wakeref_t wakeref;
527
	struct drm_mm_node node;
528
	struct dma_fence *fence;
529 530 531
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
532
	int ret;
533

534 535 536
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
537

538 539 540 541 542 543 544 545
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
546
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
547
		if (!wakeref) {
548 549 550 551 552
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
553
		wakeref = intel_runtime_pm_get(rpm);
554 555
	}

C
Chris Wilson 已提交
556
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
557 558 559
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
560 561 562
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
563
		ret = i915_vma_put_fence(vma);
564 565 566 567 568
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
569
	if (IS_ERR(vma)) {
570
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
571
		if (ret)
572
			goto out_rpm;
573
		GEM_BUG_ON(!node.allocated);
574
	}
D
Daniel Vetter 已提交
575

576 577 578
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
579 580 581
	if (ret)
		goto out_unpin;

582 583 584 585 586 587 588 589 590 591 592 593
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
594

595
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
596

597 598 599 600
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
601 602
		/* Operation in this page
		 *
603 604 605
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
606
		 */
607
		u32 page_base = node.start;
608 609
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
610 611 612
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
613 614 615
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
616 617 618 619
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
620
		/* If we get a fault while copying data, then (presumably) our
621 622
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
623 624
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
625
		 */
626
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
627 628 629
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
630
		}
631

632 633 634
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
635
	}
636
	intel_fb_obj_flush(obj, ORIGIN_CPU);
637

638
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
639
out_unpin:
640
	mutex_lock(&i915->drm.struct_mutex);
641 642
	if (node.allocated) {
		wmb();
643
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
644 645
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
646
		i915_vma_unpin(vma);
647
	}
648
out_rpm:
649
	intel_runtime_pm_put(rpm, wakeref);
650
out_unlock:
651
	mutex_unlock(&i915->drm.struct_mutex);
652
	return ret;
653 654
}

655 656 657 658 659
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
660
static int
661 662 663
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
664
{
665
	char *vaddr;
666 667
	int ret;

668
	vaddr = kmap(page);
669

670 671
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
672

673 674 675
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
676

677 678 679
	kunmap(page);

	return ret ? -EFAULT : 0;
680 681 682 683 684 685 686
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
687
	unsigned int needs_clflush;
688
	unsigned int offset, idx;
689 690 691
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
692
	int ret;
693

694
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
695 696
	if (ret)
		return ret;
697

698 699 700 701 702
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

703 704 705 706 707 708 709
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
710

711 712 713 714 715
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
716
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
717

718 719 720
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
721
		if (ret)
722
			break;
723

724 725 726
		remain -= length;
		user_data += length;
		offset = 0;
727
	}
728

729
	intel_fb_obj_flush(obj, ORIGIN_CPU);
730 731
	i915_gem_object_unlock_fence(obj, fence);

732
	return ret;
733 734 735 736
}

/**
 * Writes data to the object referenced by handle.
737 738 739
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
740 741 742 743 744
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
745
		      struct drm_file *file)
746 747
{
	struct drm_i915_gem_pwrite *args = data;
748
	struct drm_i915_gem_object *obj;
749 750 751 752 753
	int ret;

	if (args->size == 0)
		return 0;

754
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
755 756
		return -EFAULT;

757
	obj = i915_gem_object_lookup(file, args->handle);
758 759
	if (!obj)
		return -ENOENT;
760

761
	/* Bounds check destination. */
762
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
763
		ret = -EINVAL;
764
		goto err;
C
Chris Wilson 已提交
765 766
	}

767 768 769 770 771 772
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
773 774
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

775 776 777 778 779 780
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

781 782 783
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
784
				   MAX_SCHEDULE_TIMEOUT);
785 786 787
	if (ret)
		goto err;

788
	ret = i915_gem_object_pin_pages(obj);
789
	if (ret)
790
		goto err;
791

D
Daniel Vetter 已提交
792
	ret = -EFAULT;
793 794 795 796 797 798
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
799
	if (!i915_gem_object_has_struct_page(obj) ||
800
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
801 802
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
803 804
		 * textures). Fallback to the shmem path in that case.
		 */
805
		ret = i915_gem_gtt_pwrite_fast(obj, args);
806

807
	if (ret == -EFAULT || ret == -ENOSPC) {
808 809
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
810
		else
811
			ret = i915_gem_shmem_pwrite(obj, args);
812
	}
813

814
	i915_gem_object_unpin_pages(obj);
815
err:
C
Chris Wilson 已提交
816
	i915_gem_object_put(obj);
817
	return ret;
818 819 820 821
}

/**
 * Called when user space has done writes to this buffer
822 823 824
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
825 826 827
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
828
			 struct drm_file *file)
829 830
{
	struct drm_i915_gem_sw_finish *args = data;
831
	struct drm_i915_gem_object *obj;
832

833
	obj = i915_gem_object_lookup(file, args->handle);
834 835
	if (!obj)
		return -ENOENT;
836

T
Tina Zhang 已提交
837 838 839 840 841
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

842
	/* Pinned buffers may be scanout, so flush the cache */
843
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
844
	i915_gem_object_put(obj);
845 846

	return 0;
847 848
}

849
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
850
{
851
	struct drm_i915_gem_object *obj, *on;
852
	int i;
853

854 855 856 857 858 859
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
860

861
	list_for_each_entry_safe(obj, on,
862
				 &i915->ggtt.userfault_list, userfault_link)
863
		__i915_gem_object_release_mmap(obj);
864

865 866
	/*
	 * The fence will be lost when the device powers down. If any were
867 868 869
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
870 871
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
872

873 874
		/*
		 * Ideally we want to assert that the fence register is not
875 876 877 878 879 880 881 882 883
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
884 885 886 887

		if (!reg->vma)
			continue;

888
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
889 890
		reg->dirty = true;
	}
891 892
}

893 894
static int wait_for_engines(struct drm_i915_private *i915)
{
895
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
896 897
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
898
		GEM_TRACE_DUMP();
899 900
		i915_gem_set_wedged(i915);
		return -EIO;
901 902 903 904 905
	}

	return 0;
}

906 907 908 909
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
910
	struct intel_gt_timelines *gt = &i915->gt.timelines;
911
	struct intel_timeline *tl;
912 913

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
914
	list_for_each_entry(tl, &gt->active_list, link) {
915 916
		struct i915_request *rq;

917
		rq = i915_active_request_get_unlocked(&tl->last_request);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
933
			gen6_rps_boost(rq);
934 935 936 937 938 939 940 941

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
942
		tl = list_entry(&gt->active_list, typeof(*tl), link);
943 944 945 946 947 948
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

949 950
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
951
{
952
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
953
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
954 955
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
956

957 958 959 960
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

961 962 963 964
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

965
	if (flags & I915_WAIT_LOCKED) {
966
		int err;
967 968 969

		lockdep_assert_held(&i915->drm.struct_mutex);

970 971 972 973
		err = wait_for_engines(i915);
		if (err)
			return err;

974
		i915_retire_requests(i915);
975
	}
976 977

	return 0;
978 979
}

C
Chris Wilson 已提交
980
struct i915_vma *
981 982
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
983
			 u64 size,
984 985
			 u64 alignment,
			 u64 flags)
986
{
987
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
988
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
989 990
	struct i915_vma *vma;
	int ret;
991

992 993
	lockdep_assert_held(&obj->base.dev->struct_mutex);

994 995
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1026
	vma = i915_vma_instance(obj, vm, view);
1027
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1028
		return vma;
1029 1030

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1031 1032 1033
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1034

1035
			if (flags & PIN_MAPPABLE &&
1036
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1037 1038 1039
				return ERR_PTR(-ENOSPC);
		}

1040 1041
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1042 1043 1044
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1045
		     !!(flags & PIN_MAPPABLE),
1046
		     i915_vma_is_map_and_fenceable(vma));
1047 1048
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1049
			return ERR_PTR(ret);
1050 1051
	}

C
Chris Wilson 已提交
1052 1053 1054
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1055

C
Chris Wilson 已提交
1056
	return vma;
1057 1058
}

1059 1060 1061 1062
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1063
	struct drm_i915_private *i915 = to_i915(dev);
1064
	struct drm_i915_gem_madvise *args = data;
1065
	struct drm_i915_gem_object *obj;
1066
	int err;
1067 1068 1069 1070 1071 1072 1073 1074 1075

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1076
	obj = i915_gem_object_lookup(file_priv, args->handle);
1077 1078 1079 1080 1081 1082
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1083

1084
	if (i915_gem_object_has_pages(obj) &&
1085
	    i915_gem_object_is_tiled(obj) &&
1086
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1087 1088
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1089
			__i915_gem_object_unpin_pages(obj);
1090 1091 1092
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1093
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1094
			__i915_gem_object_pin_pages(obj);
1095 1096
			obj->mm.quirked = true;
		}
1097 1098
	}

C
Chris Wilson 已提交
1099 1100
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1101

1102 1103 1104
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1105
		if (i915_gem_object_is_shrinkable(obj)) {
1106 1107 1108 1109
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1110 1111 1112
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1113
				list = &i915->mm.shrink_list;
1114
			list_move_tail(&obj->mm.link, list);
1115 1116

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1117
		}
1118 1119
	}

C
Chris Wilson 已提交
1120
	/* if the object is no longer attached, discard its backing storage */
1121 1122
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1123
		i915_gem_object_truncate(obj);
1124

C
Chris Wilson 已提交
1125
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1126
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1127

1128
out:
1129
	i915_gem_object_put(obj);
1130
	return err;
1131 1132
}

1133 1134
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1135 1136
	intel_wakeref_t wakeref;

1137 1138
	GEM_TRACE("\n");

1139
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1140
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1141 1142 1143 1144 1145 1146 1147

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1148
	if (i915_terminally_wedged(i915))
1149 1150
		i915_gem_unset_wedged(i915);

1151 1152 1153 1154 1155 1156
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1157
	 * of the reset, so this could be applied to even earlier gen.
1158
	 */
1159
	intel_gt_sanitize(&i915->gt, false);
1160

1161
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1162
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1163 1164
}

1165
static void init_unused_ring(struct intel_gt *gt, u32 base)
1166
{
1167 1168 1169 1170 1171 1172
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
1173 1174
}

1175
static void init_unused_rings(struct intel_gt *gt)
1176
{
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
1191 1192 1193
	}
}

1194
int i915_gem_init_hw(struct drm_i915_private *i915)
1195
{
1196 1197
	struct intel_uncore *uncore = &i915->uncore;
	struct intel_gt *gt = &i915->gt;
C
Chris Wilson 已提交
1198
	int ret;
1199

1200 1201 1202 1203 1204
	BUG_ON(!i915->kernel_context);
	ret = i915_terminally_wedged(i915);
	if (ret)
		return ret;

1205
	gt->last_init_time = ktime_get();
1206

1207
	/* Double layer security blanket, see i915_gem_init() */
1208
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1209

1210 1211
	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1212

1213 1214 1215 1216 1217
	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1218

1219
	/* Apply the GT workarounds... */
1220
	intel_gt_apply_workarounds(gt);
1221
	/* ...and determine whether they are sticking. */
1222
	intel_gt_verify_workarounds(gt, "init");
1223

1224
	intel_gt_init_swizzling(gt);
1225

1226 1227 1228 1229 1230 1231
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1232
	init_unused_rings(gt);
1233

1234
	ret = i915_ppgtt_init_hw(gt);
1235
	if (ret) {
1236
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1237 1238 1239
		goto out;
	}

1240
	ret = intel_wopcm_init_hw(&i915->wopcm, gt);
1241 1242 1243 1244 1245
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

1246
	/* We can't enable contexts until all firmware is loaded */
1247
	ret = intel_uc_init_hw(i915);
1248 1249
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
1250
		goto out;
1251
	}
1252

1253
	intel_mocs_init_l3cc_table(gt);
1254

1255 1256
	intel_engines_set_scheduler_caps(i915);

1257
out:
1258
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1259
	return ret;
1260 1261
}

1262 1263 1264
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
1265 1266
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
1267
	enum intel_engine_id id;
1268
	int err = 0;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

1283 1284
	e = i915_gem_context_lock_engines(ctx);

1285
	for_each_engine(engine, i915, id) {
1286
		struct intel_context *ce = e->engines[id];
1287
		struct i915_request *rq;
1288

1289
		rq = intel_context_create_request(ce);
1290 1291
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1292
			goto err_active;
1293 1294
		}

1295
		err = 0;
1296 1297
		if (rq->engine->init_context)
			err = rq->engine->init_context(rq);
1298

1299
		i915_request_add(rq);
1300 1301 1302 1303
		if (err)
			goto err_active;
	}

1304
	/* Flush the default context image to memory, and enable powersaving. */
1305
	if (!i915_gem_load_power_context(i915)) {
1306
		err = -EIO;
1307
		goto err_active;
1308
	}
1309 1310

	for_each_engine(engine, i915, id) {
1311 1312
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
1313
		void *vaddr;
1314 1315 1316 1317

		if (!state)
			continue;

1318
		GEM_BUG_ON(intel_context_is_pinned(ce));
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

1332
		i915_gem_object_lock(state->obj);
1333
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1334
		i915_gem_object_unlock(state->obj);
1335 1336 1337 1338
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
1339 1340
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
1341 1342 1343

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
1344
						I915_MAP_FORCE_WB);
1345 1346 1347 1348 1349 1350
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
1372
	i915_gem_context_unlock_engines(ctx);
1373 1374 1375 1376 1377 1378 1379
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
1380 1381
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1382
	 */
1383
	i915_gem_set_wedged(i915);
1384 1385 1386
	goto out_ctx;
}

1387 1388 1389
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
1390
	return intel_gt_init_scratch(&i915->gt, size);
1391 1392 1393 1394
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
1395
	intel_gt_fini_scratch(&i915->gt);
1396 1397
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1415
int i915_gem_init(struct drm_i915_private *dev_priv)
1416 1417 1418
{
	int ret;

1419 1420
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1421 1422 1423
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1424
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1425

1426
	intel_timelines_init(dev_priv);
1427

1428 1429 1430 1431
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1432
	ret = intel_uc_init_misc(dev_priv);
1433 1434 1435
	if (ret)
		return ret;

1436
	ret = intel_wopcm_init(&dev_priv->wopcm);
1437
	if (ret)
1438
		goto err_uc_misc;
1439

1440 1441 1442 1443 1444 1445
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1446
	mutex_lock(&dev_priv->drm.struct_mutex);
1447
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1448

1449
	ret = i915_init_ggtt(dev_priv);
1450 1451 1452 1453
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1454

1455
	ret = i915_gem_init_scratch(dev_priv,
1456
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1457 1458 1459 1460
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1461

1462 1463 1464 1465 1466 1467
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1468 1469 1470 1471 1472 1473
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1474
	ret = intel_engines_init(dev_priv);
1475 1476 1477 1478
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1479

1480 1481
	intel_init_gt_powersave(dev_priv);

1482
	ret = intel_uc_init(dev_priv);
1483
	if (ret)
1484
		goto err_pm;
1485

1486 1487 1488 1489
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1490 1491 1492 1493 1494
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = intel_gt_resume(&dev_priv->gt);
	if (ret)
		goto err_init_hw;

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1506 1507
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
1508
		goto err_gt;
1509

1510
	ret = __intel_engines_record_defaults(dev_priv);
1511
	if (ret)
1512
		goto err_gt;
1513 1514 1515

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
1516
		goto err_gt;
1517 1518 1519 1520
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
1521
		goto err_gt;
1522 1523
	}

1524
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
1535
err_gt:
1536 1537
	mutex_unlock(&dev_priv->drm.struct_mutex);

1538
	i915_gem_set_wedged(dev_priv);
1539
	i915_gem_suspend(dev_priv);
1540 1541
	i915_gem_suspend_late(dev_priv);

1542 1543
	i915_gem_drain_workqueue(dev_priv);

1544
	mutex_lock(&dev_priv->drm.struct_mutex);
1545
err_init_hw:
1546
	intel_uc_fini_hw(dev_priv);
1547 1548
err_uc_init:
	intel_uc_fini(dev_priv);
1549 1550 1551
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1552
		intel_engines_cleanup(dev_priv);
1553 1554 1555 1556
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1557 1558
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1559 1560
err_ggtt:
err_unlock:
1561
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1562 1563
	mutex_unlock(&dev_priv->drm.struct_mutex);

1564
err_uc_misc:
1565
	intel_uc_fini_misc(dev_priv);
1566

1567
	if (ret != -EIO) {
1568
		i915_gem_cleanup_userptr(dev_priv);
1569
		intel_timelines_fini(dev_priv);
1570
	}
1571

1572
	if (ret == -EIO) {
1573 1574
		mutex_lock(&dev_priv->drm.struct_mutex);

1575 1576
		/*
		 * Allow engine initialisation to fail by marking the GPU as
1577 1578 1579
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
1580
		if (!i915_reset_failed(dev_priv)) {
1581 1582
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
1583 1584
			i915_gem_set_wedged(dev_priv);
		}
1585 1586 1587 1588 1589 1590 1591 1592

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1593 1594
	}

1595
	i915_gem_drain_freed_objects(dev_priv);
1596
	return ret;
1597 1598
}

1599
void i915_gem_fini_hw(struct drm_i915_private *dev_priv)
1600
{
1601 1602
	GEM_BUG_ON(dev_priv->gt.awake);

1603
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1604

1605
	i915_gem_suspend_late(dev_priv);
1606
	intel_disable_gt_powersave(dev_priv);
1607 1608 1609 1610 1611 1612 1613

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
1614 1615 1616 1617 1618 1619 1620 1621
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1622
	intel_engines_cleanup(dev_priv);
1623
	i915_gem_contexts_fini(dev_priv);
1624
	i915_gem_fini_scratch(dev_priv);
1625 1626
	mutex_unlock(&dev_priv->drm.struct_mutex);

1627 1628
	intel_wa_list_free(&dev_priv->gt_wa_list);

1629 1630
	intel_cleanup_gt_powersave(dev_priv);

1631 1632
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
1633
	intel_timelines_fini(dev_priv);
1634 1635 1636 1637 1638 1639

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1640 1641 1642 1643 1644
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1645 1646 1647 1648 1649 1650 1651
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

1652
	INIT_LIST_HEAD(&i915->mm.purge_list);
1653
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1654

1655
	i915_gem_init__objects(i915);
1656 1657
}

1658
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1659
{
1660
	int err;
1661

1662
	i915_gem_init__mm(dev_priv);
1663
	i915_gem_init__pm(dev_priv);
1664

1665
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1666
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
1667
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
1668
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
1669

1670 1671
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

1672
	spin_lock_init(&dev_priv->fb_tracking.lock);
1673

M
Matthew Auld 已提交
1674 1675 1676 1677
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1678
	return 0;
1679
}
1680

1681
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1682
{
1683
	i915_gem_drain_freed_objects(dev_priv);
1684 1685
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1686
	WARN_ON(dev_priv->mm.shrink_count);
1687

1688 1689
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
1690
	i915_gemfs_fini(dev_priv);
1691 1692
}

1693 1694
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1695 1696 1697
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1698 1699 1700 1701 1702
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1703
int i915_gem_freeze_late(struct drm_i915_private *i915)
1704 1705
{
	struct drm_i915_gem_object *obj;
1706
	intel_wakeref_t wakeref;
1707

1708 1709
	/*
	 * Called just before we write the hibernation image.
1710 1711 1712 1713 1714 1715 1716 1717
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1718 1719
	 *
	 * To try and reduce the hibernation image, we manually shrink
1720
	 * the objects as well, see i915_gem_freeze()
1721 1722
	 */

1723
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1724 1725

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1726
	i915_gem_drain_freed_objects(i915);
1727

1728 1729 1730 1731
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1732
	}
1733

1734
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1735 1736 1737 1738

	return 0;
}

1739
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1740
{
1741
	struct drm_i915_file_private *file_priv = file->driver_priv;
1742
	struct i915_request *request;
1743 1744 1745 1746 1747

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1748
	spin_lock(&file_priv->mm.lock);
1749
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1750
		request->file_priv = NULL;
1751
	spin_unlock(&file_priv->mm.lock);
1752 1753
}

1754
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1755 1756
{
	struct drm_i915_file_private *file_priv;
1757
	int ret;
1758

1759
	DRM_DEBUG("\n");
1760 1761 1762 1763 1764 1765

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1766
	file_priv->dev_priv = i915;
1767
	file_priv->file = file;
1768 1769 1770 1771

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1772
	file_priv->bsd_engine = -1;
1773
	file_priv->hang_timestamp = jiffies;
1774

1775
	ret = i915_gem_context_open(i915, file);
1776 1777
	if (ret)
		kfree(file_priv);
1778

1779
	return ret;
1780 1781
}

1782 1783
/**
 * i915_gem_track_fb - update frontbuffer tracking
1784 1785 1786
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1787 1788 1789 1790
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1791 1792 1793 1794
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1795 1796 1797 1798 1799 1800 1801
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1802
		     BITS_PER_TYPE(atomic_t));
1803

1804
	if (old) {
1805 1806
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1807 1808 1809
	}

	if (new) {
1810 1811
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1812 1813 1814
	}
}

1815
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1816
#include "selftests/mock_gem_device.c"
1817
#include "selftests/i915_gem.c"
1818
#endif