i915_gem.c 45.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42 43
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"

44 45
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
46
#include "gem/i915_gem_ioctls.h"
47 48
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
49
#include "gt/intel_engine_user.h"
50
#include "gt/intel_gt.h"
51
#include "gt/intel_gt_pm.h"
52 53
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
54
#include "gt/intel_renderstate.h"
55 56
#include "gt/intel_workarounds.h"

57
#include "i915_drv.h"
58
#include "i915_scatterlist.h"
59 60 61
#include "i915_trace.h"
#include "i915_vgpu.h"

62
#include "intel_pm.h"
63

64
static int
65
insert_mappable_node(struct i915_ggtt *ggtt,
66 67 68
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
69
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 71 72
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
73 74 75 76 77 78 79 80
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

81 82
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83
			    struct drm_file *file)
84
{
85
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86
	struct drm_i915_gem_get_aperture *args = data;
87
	struct i915_vma *vma;
88
	u64 pinned;
89

90 91
	mutex_lock(&ggtt->vm.mutex);

92
	pinned = ggtt->vm.reserved;
93
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94
		if (i915_vma_is_pinned(vma))
95
			pinned += vma->node.size;
96 97

	mutex_unlock(&ggtt->vm.mutex);
98

99
	args->aper_size = ggtt->vm.total;
100
	args->aper_available_size = args->aper_size - pinned;
101

102 103 104
	return 0;
}

105 106
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
			   unsigned long flags)
107 108 109
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
110
	int ret = 0;
111 112

	lockdep_assert_held(&obj->base.dev->struct_mutex);
113

114 115 116 117
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
118
		list_move_tail(&vma->obj_link, &still_in_list);
119 120
		spin_unlock(&obj->vma.lock);

121 122 123 124
		ret = -EBUSY;
		if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
		    !i915_vma_is_active(vma))
			ret = i915_vma_unbind(vma);
125 126

		spin_lock(&obj->vma.lock);
127
	}
128 129
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
130 131 132 133

	return ret;
}

134 135 136
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
137
		     struct drm_file *file)
138 139
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
140
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
141 142 143 144

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
145
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
146 147
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
148

149
	drm_clflush_virt_range(vaddr, args->size);
150
	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
151

152
	intel_fb_obj_flush(obj, ORIGIN_CPU);
153
	return 0;
154 155
}

156 157
static int
i915_gem_create(struct drm_file *file,
158
		struct drm_i915_private *dev_priv,
159
		u64 *size_p,
160
		u32 *handle_p)
161
{
162
	struct drm_i915_gem_object *obj;
163
	u32 handle;
164 165
	u64 size;
	int ret;
166

167
	size = round_up(*size_p, PAGE_SIZE);
168 169
	if (size == 0)
		return -EINVAL;
170 171

	/* Allocate the new object */
172
	obj = i915_gem_object_create_shmem(dev_priv, size);
173 174
	if (IS_ERR(obj))
		return PTR_ERR(obj);
175

176
	ret = drm_gem_handle_create(file, &obj->base, &handle);
177
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
178
	i915_gem_object_put(obj);
179 180
	if (ret)
		return ret;
181

182
	*handle_p = handle;
183
	*size_p = size;
184 185 186
	return 0;
}

187 188 189 190 191
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

209
	/* have to work out size/pitch and return them */
210 211 212 213 214 215 216
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

217
	args->size = args->pitch * args->height;
218
	return i915_gem_create(file, to_i915(dev),
219
			       &args->size, &args->handle);
220 221 222 223
}

/**
 * Creates a new mm object and returns a handle to it.
224 225 226
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
227 228 229 230 231
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
232
	struct drm_i915_private *dev_priv = to_i915(dev);
233
	struct drm_i915_gem_create *args = data;
234

235
	i915_gem_flush_free_objects(dev_priv);
236

237
	return i915_gem_create(file, dev_priv,
238
			       &args->size, &args->handle);
239 240
}

241
static int
242 243
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
244 245 246 247 248 249
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

250 251
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
252

253
	ret = __copy_to_user(user_data, vaddr + offset, len);
254

255
	kunmap(page);
256

257
	return ret ? -EFAULT : 0;
258 259 260 261 262 263 264 265
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
266 267 268
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
269 270
	int ret;

271
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
272 273 274
	if (ret)
		return ret;

275 276 277 278 279
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

280 281 282 283 284
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
285
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
286 287 288 289 290 291 292 293 294 295 296

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

297
	i915_gem_object_unlock_fence(obj, fence);
298 299 300 301 302 303 304
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
305
{
306
	void __iomem *vaddr;
307
	unsigned long unwritten;
308 309

	/* We can use the cpu mem copy function because this is X86. */
310 311 312 313
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
314 315
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
316 317 318 319
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
320 321
		io_mapping_unmap(vaddr);
	}
322 323 324 325
	return unwritten;
}

static int
326 327
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
328
{
329 330
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
331
	intel_wakeref_t wakeref;
332
	struct drm_mm_node node;
333
	struct dma_fence *fence;
334
	void __user *user_data;
335
	struct i915_vma *vma;
336
	u64 remain, offset;
337 338
	int ret;

339 340 341 342
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

343
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
344
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
345 346 347
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
348 349 350
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
351
		ret = i915_vma_put_fence(vma);
352 353 354 355 356
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
357
	if (IS_ERR(vma)) {
358
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
359
		if (ret)
360 361
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
362 363
	}

364 365 366
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
367 368 369
	if (ret)
		goto out_unpin;

370 371 372 373 374 375 376 377 378 379 380 381
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
382

383 384 385
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
386 387 388 389 390 391 392 393 394 395 396 397 398

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
399 400 401
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
402 403 404
		} else {
			page_base += offset & PAGE_MASK;
		}
405

406
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
407
				  user_data, page_length)) {
408 409 410 411 412 413 414 415 416
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

417
	i915_gem_object_unlock_fence(obj, fence);
418
out_unpin:
419
	mutex_lock(&i915->drm.struct_mutex);
420
	if (node.allocated) {
421
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
422 423
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
424
		i915_vma_unpin(vma);
425
	}
426
out_unlock:
427
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
428
	mutex_unlock(&i915->drm.struct_mutex);
429

430 431 432
	return ret;
}

433 434
/**
 * Reads data from the object referenced by handle.
435 436 437
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
438 439 440 441 442
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443
		     struct drm_file *file)
444 445
{
	struct drm_i915_gem_pread *args = data;
446
	struct drm_i915_gem_object *obj;
447
	int ret;
448

449 450 451
	if (args->size == 0)
		return 0;

452
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
453 454 455
		       args->size))
		return -EFAULT;

456
	obj = i915_gem_object_lookup(file, args->handle);
457 458
	if (!obj)
		return -ENOENT;
459

460
	/* Bounds check source.  */
461
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
462
		ret = -EINVAL;
463
		goto out;
C
Chris Wilson 已提交
464 465
	}

C
Chris Wilson 已提交
466 467
	trace_i915_gem_object_pread(obj, args->offset, args->size);

468 469
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
470
				   MAX_SCHEDULE_TIMEOUT);
471
	if (ret)
472
		goto out;
473

474
	ret = i915_gem_object_pin_pages(obj);
475
	if (ret)
476
		goto out;
477

478
	ret = i915_gem_shmem_pread(obj, args);
479
	if (ret == -EFAULT || ret == -ENODEV)
480
		ret = i915_gem_gtt_pread(obj, args);
481

482 483
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
484
	i915_gem_object_put(obj);
485
	return ret;
486 487
}

488 489
/* This is the fast write path which cannot handle
 * page faults in the source data
490
 */
491

492 493 494 495
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
496
{
497
	void __iomem *vaddr;
498
	unsigned long unwritten;
499

500
	/* We can use the cpu mem copy function because this is X86. */
501 502
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
503
						      user_data, length);
504 505
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
506 507 508
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
509 510
		io_mapping_unmap(vaddr);
	}
511 512 513 514

	return unwritten;
}

515 516 517
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
518
 * @obj: i915 GEM object
519
 * @args: pwrite arguments structure
520
 */
521
static int
522 523
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
524
{
525
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
526
	struct i915_ggtt *ggtt = &i915->ggtt;
527
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
528
	intel_wakeref_t wakeref;
529
	struct drm_mm_node node;
530
	struct dma_fence *fence;
531 532 533
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
534
	int ret;
535

536 537 538
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
539

540 541 542 543 544 545 546 547
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
548
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
549
		if (!wakeref) {
550 551 552 553 554
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
555
		wakeref = intel_runtime_pm_get(rpm);
556 557
	}

C
Chris Wilson 已提交
558
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
559 560 561
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
562 563 564
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
565
		ret = i915_vma_put_fence(vma);
566 567 568 569 570
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
571
	if (IS_ERR(vma)) {
572
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
573
		if (ret)
574
			goto out_rpm;
575
		GEM_BUG_ON(!node.allocated);
576
	}
D
Daniel Vetter 已提交
577

578 579 580
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
581 582 583
	if (ret)
		goto out_unpin;

584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
596

597
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
598

599 600 601 602
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
603 604
		/* Operation in this page
		 *
605 606 607
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
608
		 */
609
		u32 page_base = node.start;
610 611
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
612 613
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
614 615
			/* flush the write before we modify the GGTT */
			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616 617 618
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
619 620 621 622
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
623
		/* If we get a fault while copying data, then (presumably) our
624 625
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
626 627
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
628
		 */
629
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
630 631 632
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
633
		}
634

635 636 637
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
638
	}
639
	intel_fb_obj_flush(obj, ORIGIN_CPU);
640

641
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
642
out_unpin:
643
	mutex_lock(&i915->drm.struct_mutex);
644
	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
645
	if (node.allocated) {
646
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
647 648
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
649
		i915_vma_unpin(vma);
650
	}
651
out_rpm:
652
	intel_runtime_pm_put(rpm, wakeref);
653
out_unlock:
654
	mutex_unlock(&i915->drm.struct_mutex);
655
	return ret;
656 657
}

658 659 660 661 662
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
663
static int
664 665 666
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
667
{
668
	char *vaddr;
669 670
	int ret;

671
	vaddr = kmap(page);
672

673 674
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
675

676 677 678
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
679

680 681 682
	kunmap(page);

	return ret ? -EFAULT : 0;
683 684 685 686 687 688 689
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
690
	unsigned int needs_clflush;
691
	unsigned int offset, idx;
692 693 694
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
695
	int ret;
696

697
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
698 699
	if (ret)
		return ret;
700

701 702 703 704 705
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

706 707 708 709 710 711 712
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
713

714 715 716 717 718
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
719
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
720

721 722 723
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
724
		if (ret)
725
			break;
726

727 728 729
		remain -= length;
		user_data += length;
		offset = 0;
730
	}
731

732
	intel_fb_obj_flush(obj, ORIGIN_CPU);
733 734
	i915_gem_object_unlock_fence(obj, fence);

735
	return ret;
736 737 738 739
}

/**
 * Writes data to the object referenced by handle.
740 741 742
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
743 744 745 746 747
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
748
		      struct drm_file *file)
749 750
{
	struct drm_i915_gem_pwrite *args = data;
751
	struct drm_i915_gem_object *obj;
752 753 754 755 756
	int ret;

	if (args->size == 0)
		return 0;

757
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
758 759
		return -EFAULT;

760
	obj = i915_gem_object_lookup(file, args->handle);
761 762
	if (!obj)
		return -ENOENT;
763

764
	/* Bounds check destination. */
765
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
766
		ret = -EINVAL;
767
		goto err;
C
Chris Wilson 已提交
768 769
	}

770 771 772 773 774 775
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
776 777
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

778 779 780 781 782 783
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

784 785 786
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
787
				   MAX_SCHEDULE_TIMEOUT);
788 789 790
	if (ret)
		goto err;

791
	ret = i915_gem_object_pin_pages(obj);
792
	if (ret)
793
		goto err;
794

D
Daniel Vetter 已提交
795
	ret = -EFAULT;
796 797 798 799 800 801
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
802
	if (!i915_gem_object_has_struct_page(obj) ||
803
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
804 805
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
806 807
		 * textures). Fallback to the shmem path in that case.
		 */
808
		ret = i915_gem_gtt_pwrite_fast(obj, args);
809

810
	if (ret == -EFAULT || ret == -ENOSPC) {
811 812
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
813
		else
814
			ret = i915_gem_shmem_pwrite(obj, args);
815
	}
816

817
	i915_gem_object_unpin_pages(obj);
818
err:
C
Chris Wilson 已提交
819
	i915_gem_object_put(obj);
820
	return ret;
821 822 823 824
}

/**
 * Called when user space has done writes to this buffer
825 826 827
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
828 829 830
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
831
			 struct drm_file *file)
832 833
{
	struct drm_i915_gem_sw_finish *args = data;
834
	struct drm_i915_gem_object *obj;
835

836
	obj = i915_gem_object_lookup(file, args->handle);
837 838
	if (!obj)
		return -ENOENT;
839

T
Tina Zhang 已提交
840 841 842 843 844
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

845
	/* Pinned buffers may be scanout, so flush the cache */
846
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
847
	i915_gem_object_put(obj);
848 849

	return 0;
850 851
}

852
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
853
{
854
	struct drm_i915_gem_object *obj, *on;
855
	int i;
856

857 858 859 860 861 862
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
863

864
	list_for_each_entry_safe(obj, on,
865
				 &i915->ggtt.userfault_list, userfault_link)
866
		__i915_gem_object_release_mmap(obj);
867

868 869
	/*
	 * The fence will be lost when the device powers down. If any were
870 871 872
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
873 874
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
875

876 877
		/*
		 * Ideally we want to assert that the fence register is not
878 879 880 881 882 883 884 885 886
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
887 888 889 890

		if (!reg->vma)
			continue;

891
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
892 893
		reg->dirty = true;
	}
894 895
}

896 897 898 899
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
900
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
901
	struct intel_timeline *tl;
902

903 904
	spin_lock(&timelines->lock);
	list_for_each_entry(tl, &timelines->active_list, link) {
905 906
		struct i915_request *rq;

907
		rq = i915_active_request_get_unlocked(&tl->last_request);
908 909 910
		if (!rq)
			continue;

911
		spin_unlock(&timelines->lock);
912 913 914 915 916 917 918 919 920 921 922

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
923
			gen6_rps_boost(rq);
924 925 926 927 928 929 930

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
931 932
		spin_lock(&timelines->lock);
		tl = list_entry(&timelines->active_list, typeof(*tl), link);
933
	}
934
	spin_unlock(&timelines->lock);
935 936 937 938

	return timeout;
}

939 940
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
941
{
942
	/* If the device is asleep, we have no requests outstanding */
943
	if (!intel_gt_pm_is_awake(&i915->gt))
944 945
		return 0;

946
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
947
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
948
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
949

950 951 952 953
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

954 955 956
	if (flags & I915_WAIT_LOCKED) {
		lockdep_assert_held(&i915->drm.struct_mutex);

957
		i915_retire_requests(i915);
958
	}
959 960

	return 0;
961 962
}

C
Chris Wilson 已提交
963
struct i915_vma *
964 965
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
966
			 u64 size,
967 968
			 u64 alignment,
			 u64 flags)
969
{
970
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
971
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
972 973
	struct i915_vma *vma;
	int ret;
974

975 976
	lockdep_assert_held(&obj->base.dev->struct_mutex);

977 978
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1009
	vma = i915_vma_instance(obj, vm, view);
1010
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1011
		return vma;
1012 1013

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1014 1015 1016
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1017

1018
			if (flags & PIN_MAPPABLE &&
1019
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1020 1021 1022
				return ERR_PTR(-ENOSPC);
		}

1023 1024
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1025 1026 1027
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1028
		     !!(flags & PIN_MAPPABLE),
1029
		     i915_vma_is_map_and_fenceable(vma));
1030 1031
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1032
			return ERR_PTR(ret);
1033 1034
	}

C
Chris Wilson 已提交
1035 1036 1037
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1038

C
Chris Wilson 已提交
1039
	return vma;
1040 1041
}

1042 1043 1044 1045
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1046
	struct drm_i915_private *i915 = to_i915(dev);
1047
	struct drm_i915_gem_madvise *args = data;
1048
	struct drm_i915_gem_object *obj;
1049
	int err;
1050 1051 1052 1053 1054 1055 1056 1057 1058

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1059
	obj = i915_gem_object_lookup(file_priv, args->handle);
1060 1061 1062 1063 1064 1065
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1066

1067
	if (i915_gem_object_has_pages(obj) &&
1068
	    i915_gem_object_is_tiled(obj) &&
1069
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1070 1071
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1072
			__i915_gem_object_unpin_pages(obj);
1073 1074 1075
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1076
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1077
			__i915_gem_object_pin_pages(obj);
1078 1079
			obj->mm.quirked = true;
		}
1080 1081
	}

C
Chris Wilson 已提交
1082 1083
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1084

1085 1086 1087
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1088
		if (i915_gem_object_is_shrinkable(obj)) {
1089 1090 1091 1092
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1093 1094 1095
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1096
				list = &i915->mm.shrink_list;
1097
			list_move_tail(&obj->mm.link, list);
1098 1099

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1100
		}
1101 1102
	}

C
Chris Wilson 已提交
1103
	/* if the object is no longer attached, discard its backing storage */
1104 1105
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1106
		i915_gem_object_truncate(obj);
1107

C
Chris Wilson 已提交
1108
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1109
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1110

1111
out:
1112
	i915_gem_object_put(obj);
1113
	return err;
1114 1115
}

1116 1117
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1118 1119
	intel_wakeref_t wakeref;

1120 1121
	GEM_TRACE("\n");

1122
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1123
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1124 1125 1126 1127 1128 1129 1130

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1131 1132
	if (intel_gt_is_wedged(&i915->gt))
		intel_gt_unset_wedged(&i915->gt);
1133

1134 1135 1136 1137 1138 1139
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1140
	 * of the reset, so this could be applied to even earlier gen.
1141
	 */
1142
	intel_gt_sanitize(&i915->gt, false);
1143

1144
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1145
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1146 1147
}

1148
static void init_unused_ring(struct intel_gt *gt, u32 base)
1149
{
1150 1151 1152 1153 1154 1155
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
1156 1157
}

1158
static void init_unused_rings(struct intel_gt *gt)
1159
{
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
1174 1175 1176
	}
}

1177
int i915_gem_init_hw(struct drm_i915_private *i915)
1178
{
1179 1180
	struct intel_uncore *uncore = &i915->uncore;
	struct intel_gt *gt = &i915->gt;
C
Chris Wilson 已提交
1181
	int ret;
1182

1183
	BUG_ON(!i915->kernel_context);
1184
	ret = intel_gt_terminally_wedged(gt);
1185 1186 1187
	if (ret)
		return ret;

1188
	gt->last_init_time = ktime_get();
1189

1190
	/* Double layer security blanket, see i915_gem_init() */
1191
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1192

1193 1194
	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1195

1196 1197 1198 1199 1200
	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1201

1202
	/* Apply the GT workarounds... */
1203
	intel_gt_apply_workarounds(gt);
1204
	/* ...and determine whether they are sticking. */
1205
	intel_gt_verify_workarounds(gt, "init");
1206

1207
	intel_gt_init_swizzling(gt);
1208

1209 1210 1211 1212 1213 1214
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1215
	init_unused_rings(gt);
1216

1217
	ret = i915_ppgtt_init_hw(gt);
1218
	if (ret) {
1219
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1220 1221 1222
		goto out;
	}

1223
	/* We can't enable contexts until all firmware is loaded */
1224
	ret = intel_uc_init_hw(&gt->uc);
1225
	if (ret) {
1226
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1227
		goto out;
1228
	}
1229

1230
	intel_mocs_init(gt);
1231

1232
out:
1233
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1234
	return ret;
1235 1236
}

1237 1238
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
1239
	struct i915_request *requests[I915_NUM_ENGINES] = {};
1240 1241
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1242
	int err = 0;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, i915, id) {
1254
		struct intel_context *ce;
1255
		struct i915_request *rq;
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);
		engine->serial++; /* force the kernel context switch */

		ce = intel_context_create(i915->kernel_context, engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

1267
		rq = intel_context_create_request(ce);
1268 1269
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1270 1271
			intel_context_put(ce);
			goto out;
1272 1273
		}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		/*
		 * Failing to program the MOCS is non-fatal.The system will not
		 * run at peak performance. So warn the user and carry on.
		 */
		err = intel_mocs_emit(rq);
		if (err)
			dev_notice(i915->drm.dev,
				   "Failed to program MOCS registers; expect performance issues.\n");

		err = intel_renderstate_emit(rq);
		if (err)
			goto err_rq;
1290

1291
err_rq:
1292
		requests[id] = i915_request_get(rq);
1293
		i915_request_add(rq);
1294
		if (err)
1295
			goto out;
1296 1297
	}

1298
	/* Flush the default context image to memory, and enable powersaving. */
1299
	if (!i915_gem_load_power_context(i915)) {
1300
		err = -EIO;
1301
		goto out;
1302
	}
1303

1304 1305 1306
	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
		struct i915_vma *state;
1307
		void *vaddr;
1308

1309 1310
		rq = requests[id];
		if (!rq)
1311 1312
			continue;

1313 1314 1315 1316 1317 1318
		/* We want to be able to unbind the state from the GGTT */
		GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));

		state = rq->hw_context->state;
		if (!state)
			continue;
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
1330
			goto out;
1331

1332
		i915_gem_object_lock(state->obj);
1333
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1334
		i915_gem_object_unlock(state->obj);
1335
		if (err)
1336
			goto out;
1337

1338
		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1339 1340

		/* Check we can acquire the image of the context state */
1341
		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1342 1343
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
1344
			goto out;
1345 1346
		}

1347 1348
		rq->engine->default_state = i915_gem_object_get(state->obj);
		i915_gem_object_unpin_map(state->obj);
1349 1350
	}

1351
out:
1352 1353
	/*
	 * If we have to abandon now, we expect the engines to be idle
1354 1355
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1356
	 */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	if (err)
		intel_gt_set_wedged(&i915->gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->hw_context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
1373 1374
}

1375 1376 1377
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
1378
	return intel_gt_init_scratch(&i915->gt, size);
1379 1380 1381 1382
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
1383
	intel_gt_fini_scratch(&i915->gt);
1384 1385
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1403
int i915_gem_init(struct drm_i915_private *dev_priv)
1404 1405 1406
{
	int ret;

1407 1408
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1409 1410 1411
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1412
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1413

1414
	intel_timelines_init(dev_priv);
1415

1416 1417 1418 1419
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1420
	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1421
	intel_wopcm_init(&dev_priv->wopcm);
1422

1423 1424 1425 1426 1427 1428
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1429
	mutex_lock(&dev_priv->drm.struct_mutex);
1430
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1431

1432
	ret = i915_init_ggtt(dev_priv);
1433 1434 1435 1436
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1437

1438
	ret = i915_gem_init_scratch(dev_priv,
1439
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1440 1441 1442 1443
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1444

1445 1446 1447 1448 1449 1450
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1451 1452 1453 1454 1455 1456
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1457
	ret = intel_engines_init(dev_priv);
1458 1459 1460 1461
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1462

1463 1464
	intel_init_gt_powersave(dev_priv);

1465
	ret = intel_uc_init(&dev_priv->gt.uc);
1466 1467
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
1468
		goto err_pm;
1469
	}
1470

1471 1472 1473 1474
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1475 1476 1477 1478 1479
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = intel_gt_resume(&dev_priv->gt);
	if (ret)
		goto err_init_hw;

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1491 1492
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
1493
		goto err_gt;
1494

1495
	ret = __intel_engines_record_defaults(dev_priv);
1496
	if (ret)
1497
		goto err_gt;
1498

1499 1500
	ret = i915_inject_load_error(dev_priv, -ENODEV);
	if (ret)
1501
		goto err_gt;
1502

1503 1504
	ret = i915_inject_load_error(dev_priv, -EIO);
	if (ret)
1505
		goto err_gt;
1506

1507
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
1518
err_gt:
1519 1520
	mutex_unlock(&dev_priv->drm.struct_mutex);

1521
	intel_gt_set_wedged(&dev_priv->gt);
1522
	i915_gem_suspend(dev_priv);
1523 1524
	i915_gem_suspend_late(dev_priv);

1525 1526
	i915_gem_drain_workqueue(dev_priv);

1527
	mutex_lock(&dev_priv->drm.struct_mutex);
1528
err_init_hw:
1529
	intel_uc_fini_hw(&dev_priv->gt.uc);
1530
err_uc_init:
1531 1532
	if (ret != -EIO)
		intel_uc_fini(&dev_priv->gt.uc);
1533 1534 1535
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1536
		intel_engines_cleanup(dev_priv);
1537 1538 1539 1540
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1541 1542
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1543 1544
err_ggtt:
err_unlock:
1545
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1546 1547
	mutex_unlock(&dev_priv->drm.struct_mutex);

1548
	if (ret != -EIO) {
1549
		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1550
		i915_gem_cleanup_userptr(dev_priv);
1551
		intel_timelines_fini(dev_priv);
1552
	}
1553

1554
	if (ret == -EIO) {
1555 1556
		mutex_lock(&dev_priv->drm.struct_mutex);

1557
		/*
1558 1559
		 * Allow engines or uC initialisation to fail by marking the GPU
		 * as wedged. But we only want to do this when the GPU is angry,
1560 1561
		 * for all other failure, such as an allocation failure, bail.
		 */
1562
		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1563 1564
			i915_probe_error(dev_priv,
					 "Failed to initialize GPU, declaring it wedged!\n");
1565
			intel_gt_set_wedged(&dev_priv->gt);
1566
		}
1567 1568 1569 1570 1571 1572 1573 1574

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1575 1576
	}

1577
	i915_gem_drain_freed_objects(dev_priv);
1578
	return ret;
1579 1580
}

1581 1582 1583
void i915_gem_driver_register(struct drm_i915_private *i915)
{
	i915_gem_driver_register__shrinker(i915);
1584 1585

	intel_engines_driver_register(i915);
1586 1587 1588 1589 1590 1591 1592
}

void i915_gem_driver_unregister(struct drm_i915_private *i915)
{
	i915_gem_driver_unregister__shrinker(i915);
}

1593
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1594
{
1595 1596
	GEM_BUG_ON(dev_priv->gt.awake);

1597
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1598

1599
	i915_gem_suspend_late(dev_priv);
1600
	intel_disable_gt_powersave(dev_priv);
1601 1602 1603 1604 1605

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
1606 1607
	intel_uc_fini_hw(&dev_priv->gt.uc);
	intel_uc_fini(&dev_priv->gt.uc);
1608 1609 1610 1611 1612
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

1613
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1614 1615
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1616
	intel_engines_cleanup(dev_priv);
1617
	i915_gem_contexts_fini(dev_priv);
1618
	i915_gem_fini_scratch(dev_priv);
1619 1620
	mutex_unlock(&dev_priv->drm.struct_mutex);

1621 1622
	intel_wa_list_free(&dev_priv->gt_wa_list);

1623 1624
	intel_cleanup_gt_powersave(dev_priv);

1625
	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1626
	i915_gem_cleanup_userptr(dev_priv);
1627
	intel_timelines_fini(dev_priv);
1628 1629 1630 1631 1632 1633

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1634 1635 1636 1637 1638
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1639 1640 1641 1642 1643 1644
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);

	init_llist_head(&i915->mm.free_list);

1645
	INIT_LIST_HEAD(&i915->mm.purge_list);
1646
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1647

1648
	i915_gem_init__objects(i915);
1649 1650
}

1651
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1652
{
1653
	int err;
1654

1655
	i915_gem_init__mm(dev_priv);
1656
	i915_gem_init__pm(dev_priv);
1657

1658
	spin_lock_init(&dev_priv->fb_tracking.lock);
1659

M
Matthew Auld 已提交
1660 1661 1662 1663
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1664
	return 0;
1665
}
1666

1667
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1668
{
1669
	i915_gem_drain_freed_objects(dev_priv);
1670 1671
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1672
	WARN_ON(dev_priv->mm.shrink_count);
1673

M
Matthew Auld 已提交
1674
	i915_gemfs_fini(dev_priv);
1675 1676
}

1677 1678
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1679 1680 1681
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1682 1683 1684 1685 1686
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1687
int i915_gem_freeze_late(struct drm_i915_private *i915)
1688 1689
{
	struct drm_i915_gem_object *obj;
1690
	intel_wakeref_t wakeref;
1691

1692 1693
	/*
	 * Called just before we write the hibernation image.
1694 1695 1696 1697 1698 1699 1700 1701
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1702 1703
	 *
	 * To try and reduce the hibernation image, we manually shrink
1704
	 * the objects as well, see i915_gem_freeze()
1705 1706
	 */

1707
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1708 1709

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1710
	i915_gem_drain_freed_objects(i915);
1711

1712 1713 1714 1715
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1716
	}
1717

1718
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1719 1720 1721 1722

	return 0;
}

1723
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1724
{
1725
	struct drm_i915_file_private *file_priv = file->driver_priv;
1726
	struct i915_request *request;
1727 1728 1729 1730 1731

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1732
	spin_lock(&file_priv->mm.lock);
1733
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1734
		request->file_priv = NULL;
1735
	spin_unlock(&file_priv->mm.lock);
1736 1737
}

1738
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1739 1740
{
	struct drm_i915_file_private *file_priv;
1741
	int ret;
1742

1743
	DRM_DEBUG("\n");
1744 1745 1746 1747 1748 1749

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1750
	file_priv->dev_priv = i915;
1751
	file_priv->file = file;
1752 1753 1754 1755

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1756
	file_priv->bsd_engine = -1;
1757
	file_priv->hang_timestamp = jiffies;
1758

1759
	ret = i915_gem_context_open(i915, file);
1760 1761
	if (ret)
		kfree(file_priv);
1762

1763
	return ret;
1764 1765
}

1766 1767
/**
 * i915_gem_track_fb - update frontbuffer tracking
1768 1769 1770
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1771 1772 1773 1774
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1775 1776 1777 1778
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1779 1780 1781 1782 1783 1784 1785
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1786
		     BITS_PER_TYPE(atomic_t));
1787

1788
	if (old) {
1789 1790
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1791 1792 1793
	}

	if (new) {
1794 1795
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1796 1797 1798
	}
}

1799
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1800
#include "selftests/mock_gem_device.c"
1801
#include "selftests/i915_gem.c"
1802
#endif