i915_gem.c 48.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
43
#include "gem/i915_gem_ioctls.h"
44 45
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
46 47
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt_pm.h"
48 49 50 51
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"

52
#include "i915_drv.h"
53
#include "i915_scatterlist.h"
54 55 56
#include "i915_trace.h"
#include "i915_vgpu.h"

57
#include "intel_display.h"
58 59
#include "intel_drv.h"
#include "intel_frontbuffer.h"
60
#include "intel_pm.h"
61

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
68 69 70
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
81
			    struct drm_file *file)
82
{
83
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
84
	struct drm_i915_gem_get_aperture *args = data;
85
	struct i915_vma *vma;
86
	u64 pinned;
87

88 89
	mutex_lock(&ggtt->vm.mutex);

90
	pinned = ggtt->vm.reserved;
91
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
92
		if (i915_vma_is_pinned(vma))
93
			pinned += vma->node.size;
94 95

	mutex_unlock(&ggtt->vm.mutex);
96

97
	args->aper_size = ggtt->vm.total;
98
	args->aper_available_size = args->aper_size - pinned;
99

100 101 102
	return 0;
}

103
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
104 105 106
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
107
	int ret = 0;
108 109

	lockdep_assert_held(&obj->base.dev->struct_mutex);
110

111 112 113 114
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
115
		list_move_tail(&vma->obj_link, &still_in_list);
116 117
		spin_unlock(&obj->vma.lock);

118
		ret = i915_vma_unbind(vma);
119 120

		spin_lock(&obj->vma.lock);
121
	}
122 123
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
124 125 126 127

	return ret;
}

128 129 130
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
131
		     struct drm_file *file)
132 133
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
134
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
135 136 137 138

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
139
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
140 141
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
142

143
	drm_clflush_virt_range(vaddr, args->size);
144
	i915_gem_chipset_flush(to_i915(obj->base.dev));
145

146
	intel_fb_obj_flush(obj, ORIGIN_CPU);
147
	return 0;
148 149
}

150 151
static int
i915_gem_create(struct drm_file *file,
152
		struct drm_i915_private *dev_priv,
153
		u64 *size_p,
154
		u32 *handle_p)
155
{
156
	struct drm_i915_gem_object *obj;
157
	u32 handle;
158 159
	u64 size;
	int ret;
160

161
	size = round_up(*size_p, PAGE_SIZE);
162 163
	if (size == 0)
		return -EINVAL;
164 165

	/* Allocate the new object */
166
	obj = i915_gem_object_create_shmem(dev_priv, size);
167 168
	if (IS_ERR(obj))
		return PTR_ERR(obj);
169

170
	ret = drm_gem_handle_create(file, &obj->base, &handle);
171
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
172
	i915_gem_object_put(obj);
173 174
	if (ret)
		return ret;
175

176
	*handle_p = handle;
177
	*size_p = size;
178 179 180
	return 0;
}

181 182 183 184 185
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

203
	/* have to work out size/pitch and return them */
204 205 206 207 208 209 210
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

211
	args->size = args->pitch * args->height;
212
	return i915_gem_create(file, to_i915(dev),
213
			       &args->size, &args->handle);
214 215 216 217
}

/**
 * Creates a new mm object and returns a handle to it.
218 219 220
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
221 222 223 224 225
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
226
	struct drm_i915_private *dev_priv = to_i915(dev);
227
	struct drm_i915_gem_create *args = data;
228

229
	i915_gem_flush_free_objects(dev_priv);
230

231
	return i915_gem_create(file, dev_priv,
232
			       &args->size, &args->handle);
233 234
}

235
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
236
{
237 238
	intel_wakeref_t wakeref;

239 240 241 242 243
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
244 245 246 247 248 249 250 251 252 253
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
254 255
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
256
	 */
257

258 259 260 261 262
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

263
	i915_gem_chipset_flush(dev_priv);
264

265
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
266
		struct intel_uncore *uncore = &dev_priv->uncore;
267

268 269 270 271
		spin_lock_irq(&uncore->lock);
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
		spin_unlock_irq(&uncore->lock);
272
	}
273 274
}

275
static int
276 277
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
278 279 280 281 282 283
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

284 285
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
286

287
	ret = __copy_to_user(user_data, vaddr + offset, len);
288

289
	kunmap(page);
290

291
	return ret ? -EFAULT : 0;
292 293 294 295 296 297 298 299
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
300 301 302
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
303 304
	int ret;

305
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
306 307 308
	if (ret)
		return ret;

309 310 311 312 313
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

314 315 316 317 318
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
319
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
320 321 322 323 324 325 326 327 328 329 330

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

331
	i915_gem_object_unlock_fence(obj, fence);
332 333 334 335 336 337 338
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
339
{
340
	void __iomem *vaddr;
341
	unsigned long unwritten;
342 343

	/* We can use the cpu mem copy function because this is X86. */
344 345 346 347
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
348 349
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
350 351 352 353
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
354 355
		io_mapping_unmap(vaddr);
	}
356 357 358 359
	return unwritten;
}

static int
360 361
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
362
{
363 364
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
365
	intel_wakeref_t wakeref;
366
	struct drm_mm_node node;
367
	struct dma_fence *fence;
368
	void __user *user_data;
369
	struct i915_vma *vma;
370
	u64 remain, offset;
371 372
	int ret;

373 374 375 376
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

377
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
378
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
379 380 381
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
382 383 384
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
385
		ret = i915_vma_put_fence(vma);
386 387 388 389 390
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
391
	if (IS_ERR(vma)) {
392
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
393
		if (ret)
394 395
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
396 397
	}

398 399 400
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
401 402 403
	if (ret)
		goto out_unpin;

404 405 406 407 408 409 410 411 412 413 414 415
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
416

417 418 419
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
420 421 422 423 424 425 426 427 428 429 430 431 432 433

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
434 435 436
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
437 438 439 440
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
441

442
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
443
				  user_data, page_length)) {
444 445 446 447 448 449 450 451 452
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

453
	i915_gem_object_unlock_fence(obj, fence);
454
out_unpin:
455
	mutex_lock(&i915->drm.struct_mutex);
456 457
	if (node.allocated) {
		wmb();
458
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
459 460
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
461
		i915_vma_unpin(vma);
462
	}
463
out_unlock:
464
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
465
	mutex_unlock(&i915->drm.struct_mutex);
466

467 468 469
	return ret;
}

470 471
/**
 * Reads data from the object referenced by handle.
472 473 474
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
475 476 477 478 479
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
480
		     struct drm_file *file)
481 482
{
	struct drm_i915_gem_pread *args = data;
483
	struct drm_i915_gem_object *obj;
484
	int ret;
485

486 487 488
	if (args->size == 0)
		return 0;

489
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
490 491 492
		       args->size))
		return -EFAULT;

493
	obj = i915_gem_object_lookup(file, args->handle);
494 495
	if (!obj)
		return -ENOENT;
496

497
	/* Bounds check source.  */
498
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
499
		ret = -EINVAL;
500
		goto out;
C
Chris Wilson 已提交
501 502
	}

C
Chris Wilson 已提交
503 504
	trace_i915_gem_object_pread(obj, args->offset, args->size);

505 506
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
507
				   MAX_SCHEDULE_TIMEOUT);
508
	if (ret)
509
		goto out;
510

511
	ret = i915_gem_object_pin_pages(obj);
512
	if (ret)
513
		goto out;
514

515
	ret = i915_gem_shmem_pread(obj, args);
516
	if (ret == -EFAULT || ret == -ENODEV)
517
		ret = i915_gem_gtt_pread(obj, args);
518

519 520
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
521
	i915_gem_object_put(obj);
522
	return ret;
523 524
}

525 526
/* This is the fast write path which cannot handle
 * page faults in the source data
527
 */
528

529 530 531 532
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
533
{
534
	void __iomem *vaddr;
535
	unsigned long unwritten;
536

537
	/* We can use the cpu mem copy function because this is X86. */
538 539
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
540
						      user_data, length);
541 542
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
543 544 545
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
546 547
		io_mapping_unmap(vaddr);
	}
548 549 550 551

	return unwritten;
}

552 553 554
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
555
 * @obj: i915 GEM object
556
 * @args: pwrite arguments structure
557
 */
558
static int
559 560
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
561
{
562
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
563
	struct i915_ggtt *ggtt = &i915->ggtt;
564
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
565
	intel_wakeref_t wakeref;
566
	struct drm_mm_node node;
567
	struct dma_fence *fence;
568 569 570
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
571
	int ret;
572

573 574 575
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
576

577 578 579 580 581 582 583 584
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
585
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
586
		if (!wakeref) {
587 588 589 590 591
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
592
		wakeref = intel_runtime_pm_get(rpm);
593 594
	}

C
Chris Wilson 已提交
595
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
596 597 598
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
599 600 601
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
602
		ret = i915_vma_put_fence(vma);
603 604 605 606 607
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
608
	if (IS_ERR(vma)) {
609
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
610
		if (ret)
611
			goto out_rpm;
612
		GEM_BUG_ON(!node.allocated);
613
	}
D
Daniel Vetter 已提交
614

615 616 617
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
618 619 620
	if (ret)
		goto out_unpin;

621 622 623 624 625 626 627 628 629 630 631 632
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
633

634
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
635

636 637 638 639
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
640 641
		/* Operation in this page
		 *
642 643 644
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
645
		 */
646
		u32 page_base = node.start;
647 648
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
649 650 651
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
652 653 654
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
655 656 657 658
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
659
		/* If we get a fault while copying data, then (presumably) our
660 661
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
662 663
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
664
		 */
665
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
666 667 668
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
669
		}
670

671 672 673
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
674
	}
675
	intel_fb_obj_flush(obj, ORIGIN_CPU);
676

677
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
678
out_unpin:
679
	mutex_lock(&i915->drm.struct_mutex);
680 681
	if (node.allocated) {
		wmb();
682
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
683 684
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
685
		i915_vma_unpin(vma);
686
	}
687
out_rpm:
688
	intel_runtime_pm_put(rpm, wakeref);
689
out_unlock:
690
	mutex_unlock(&i915->drm.struct_mutex);
691
	return ret;
692 693
}

694 695 696 697 698
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
699
static int
700 701 702
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
703
{
704
	char *vaddr;
705 706
	int ret;

707
	vaddr = kmap(page);
708

709 710
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
711

712 713 714
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
715

716 717 718
	kunmap(page);

	return ret ? -EFAULT : 0;
719 720 721 722 723 724 725
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
726
	unsigned int needs_clflush;
727
	unsigned int offset, idx;
728 729 730
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
731
	int ret;
732

733
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
734 735
	if (ret)
		return ret;
736

737 738 739 740 741
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

742 743 744 745 746 747 748
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
749

750 751 752 753 754
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
755
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
756

757 758 759
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
760
		if (ret)
761
			break;
762

763 764 765
		remain -= length;
		user_data += length;
		offset = 0;
766
	}
767

768
	intel_fb_obj_flush(obj, ORIGIN_CPU);
769 770
	i915_gem_object_unlock_fence(obj, fence);

771
	return ret;
772 773 774 775
}

/**
 * Writes data to the object referenced by handle.
776 777 778
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
779 780 781 782 783
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
784
		      struct drm_file *file)
785 786
{
	struct drm_i915_gem_pwrite *args = data;
787
	struct drm_i915_gem_object *obj;
788 789 790 791 792
	int ret;

	if (args->size == 0)
		return 0;

793
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
794 795
		return -EFAULT;

796
	obj = i915_gem_object_lookup(file, args->handle);
797 798
	if (!obj)
		return -ENOENT;
799

800
	/* Bounds check destination. */
801
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
802
		ret = -EINVAL;
803
		goto err;
C
Chris Wilson 已提交
804 805
	}

806 807 808 809 810 811
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
812 813
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

814 815 816 817 818 819
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

820 821 822
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
823
				   MAX_SCHEDULE_TIMEOUT);
824 825 826
	if (ret)
		goto err;

827
	ret = i915_gem_object_pin_pages(obj);
828
	if (ret)
829
		goto err;
830

D
Daniel Vetter 已提交
831
	ret = -EFAULT;
832 833 834 835 836 837
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
838
	if (!i915_gem_object_has_struct_page(obj) ||
839
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
840 841
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
842 843
		 * textures). Fallback to the shmem path in that case.
		 */
844
		ret = i915_gem_gtt_pwrite_fast(obj, args);
845

846
	if (ret == -EFAULT || ret == -ENOSPC) {
847 848
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
849
		else
850
			ret = i915_gem_shmem_pwrite(obj, args);
851
	}
852

853
	i915_gem_object_unpin_pages(obj);
854
err:
C
Chris Wilson 已提交
855
	i915_gem_object_put(obj);
856
	return ret;
857 858 859 860
}

/**
 * Called when user space has done writes to this buffer
861 862 863
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
864 865 866
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
867
			 struct drm_file *file)
868 869
{
	struct drm_i915_gem_sw_finish *args = data;
870
	struct drm_i915_gem_object *obj;
871

872
	obj = i915_gem_object_lookup(file, args->handle);
873 874
	if (!obj)
		return -ENOENT;
875

T
Tina Zhang 已提交
876 877 878 879 880
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

881
	/* Pinned buffers may be scanout, so flush the cache */
882
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
883
	i915_gem_object_put(obj);
884 885

	return 0;
886 887
}

888
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
889
{
890
	struct drm_i915_gem_object *obj, *on;
891
	int i;
892

893 894 895 896 897 898
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
899

900
	list_for_each_entry_safe(obj, on,
901
				 &i915->ggtt.userfault_list, userfault_link)
902
		__i915_gem_object_release_mmap(obj);
903

904 905
	/*
	 * The fence will be lost when the device powers down. If any were
906 907 908
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
909 910
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
911

912 913
		/*
		 * Ideally we want to assert that the fence register is not
914 915 916 917 918 919 920 921 922
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
923 924 925 926

		if (!reg->vma)
			continue;

927
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
928 929
		reg->dirty = true;
	}
930 931
}

932 933
static int wait_for_engines(struct drm_i915_private *i915)
{
934
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
935 936
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
937
		GEM_TRACE_DUMP();
938 939
		i915_gem_set_wedged(i915);
		return -EIO;
940 941 942 943 944
	}

	return 0;
}

945 946 947 948 949 950 951 952
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
953
	list_for_each_entry(tl, &gt->active_list, link) {
954 955
		struct i915_request *rq;

956
		rq = i915_active_request_get_unlocked(&tl->last_request);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
972
			gen6_rps_boost(rq);
973 974 975 976 977 978 979 980

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
981
		tl = list_entry(&gt->active_list, typeof(*tl), link);
982 983 984 985 986 987
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

988 989
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
990
{
991
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
992
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
993 994
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
995

996 997 998 999
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

1000 1001 1002 1003
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

1004
	if (flags & I915_WAIT_LOCKED) {
1005
		int err;
1006 1007 1008

		lockdep_assert_held(&i915->drm.struct_mutex);

1009 1010 1011 1012
		err = wait_for_engines(i915);
		if (err)
			return err;

1013
		i915_retire_requests(i915);
1014
	}
1015 1016

	return 0;
1017 1018
}

C
Chris Wilson 已提交
1019
struct i915_vma *
1020 1021
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
1022
			 u64 size,
1023 1024
			 u64 alignment,
			 u64 flags)
1025
{
1026
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1027
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
1028 1029
	struct i915_vma *vma;
	int ret;
1030

1031 1032
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1033 1034
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1065
	vma = i915_vma_instance(obj, vm, view);
1066
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1067
		return vma;
1068 1069

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1070 1071 1072
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1073

1074
			if (flags & PIN_MAPPABLE &&
1075
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1076 1077 1078
				return ERR_PTR(-ENOSPC);
		}

1079 1080
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1081 1082 1083
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1084
		     !!(flags & PIN_MAPPABLE),
1085
		     i915_vma_is_map_and_fenceable(vma));
1086 1087
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1088
			return ERR_PTR(ret);
1089 1090
	}

C
Chris Wilson 已提交
1091 1092 1093
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1094

C
Chris Wilson 已提交
1095
	return vma;
1096 1097
}

1098 1099 1100 1101
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1102
	struct drm_i915_private *i915 = to_i915(dev);
1103
	struct drm_i915_gem_madvise *args = data;
1104
	struct drm_i915_gem_object *obj;
1105
	int err;
1106 1107 1108 1109 1110 1111 1112 1113 1114

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1115
	obj = i915_gem_object_lookup(file_priv, args->handle);
1116 1117 1118 1119 1120 1121
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1122

1123
	if (i915_gem_object_has_pages(obj) &&
1124
	    i915_gem_object_is_tiled(obj) &&
1125
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1126 1127
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1128
			__i915_gem_object_unpin_pages(obj);
1129 1130 1131
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1132
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1133
			__i915_gem_object_pin_pages(obj);
1134 1135
			obj->mm.quirked = true;
		}
1136 1137
	}

C
Chris Wilson 已提交
1138 1139
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1140

1141 1142 1143
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1144
		if (i915_gem_object_is_shrinkable(obj)) {
1145 1146 1147 1148
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1149 1150 1151
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1152
				list = &i915->mm.shrink_list;
1153
			list_move_tail(&obj->mm.link, list);
1154 1155

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1156
		}
1157 1158
	}

C
Chris Wilson 已提交
1159
	/* if the object is no longer attached, discard its backing storage */
1160 1161
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1162
		i915_gem_object_truncate(obj);
1163

C
Chris Wilson 已提交
1164
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1165
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1166

1167
out:
1168
	i915_gem_object_put(obj);
1169
	return err;
1170 1171
}

1172 1173
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1174 1175
	intel_wakeref_t wakeref;

1176 1177
	GEM_TRACE("\n");

1178
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1179
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1180 1181 1182 1183 1184 1185 1186

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1187
	if (i915_terminally_wedged(i915))
1188 1189
		i915_gem_unset_wedged(i915);

1190 1191 1192 1193 1194 1195
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1196
	 * of the reset, so this could be applied to even earlier gen.
1197
	 */
1198
	intel_gt_sanitize(i915, false);
1199

1200
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1201
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1202 1203
}

1204
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
1205
{
1206
	if (INTEL_GEN(dev_priv) < 5 ||
1207 1208 1209 1210 1211 1212
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

1213
	if (IS_GEN(dev_priv, 5))
1214 1215
		return;

1216
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
1217
	if (IS_GEN(dev_priv, 6))
1218
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
1219
	else if (IS_GEN(dev_priv, 7))
1220
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
1221
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
1222
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
1223 1224
	else
		BUG();
1225
}
D
Daniel Vetter 已提交
1226

1227
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
1228 1229 1230 1231 1232 1233 1234
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

1235
static void init_unused_rings(struct drm_i915_private *dev_priv)
1236
{
1237 1238 1239 1240 1241 1242
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
1243
	} else if (IS_GEN(dev_priv, 2)) {
1244 1245
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
1246
	} else if (IS_GEN(dev_priv, 3)) {
1247 1248
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
1249 1250 1251
	}
}

1252 1253
int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
1254
	int ret;
1255

1256 1257
	dev_priv->gt.last_init_time = ktime_get();

1258
	/* Double layer security blanket, see i915_gem_init() */
1259
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1260

1261
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
1262
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
1263

1264
	if (IS_HASWELL(dev_priv))
1265
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
1266
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1267

1268
	/* Apply the GT workarounds... */
1269
	intel_gt_apply_workarounds(dev_priv);
1270 1271
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
1272

1273
	i915_gem_init_swizzling(dev_priv);
1274

1275 1276 1277 1278 1279 1280
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1281
	init_unused_rings(dev_priv);
1282

1283
	BUG_ON(!dev_priv->kernel_context);
1284 1285
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
1286
		goto out;
1287

1288
	ret = i915_ppgtt_init_hw(dev_priv);
1289
	if (ret) {
1290
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1291 1292 1293
		goto out;
	}

1294 1295 1296 1297 1298 1299
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

1300 1301
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
1302 1303
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
1304
		goto out;
1305
	}
1306

1307
	intel_mocs_init_l3cc_table(dev_priv);
1308

1309
	/* Only when the HW is re-initialised, can we replay the requests */
1310
	ret = intel_engines_resume(dev_priv);
1311 1312
	if (ret)
		goto cleanup_uc;
1313

1314
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1315

1316
	intel_engines_set_scheduler_caps(dev_priv);
1317
	return 0;
1318 1319 1320

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
1321
out:
1322
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1323 1324

	return ret;
1325 1326
}

1327 1328 1329
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
1330 1331
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
1332
	enum intel_engine_id id;
1333
	int err = 0;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

1348 1349
	e = i915_gem_context_lock_engines(ctx);

1350
	for_each_engine(engine, i915, id) {
1351
		struct intel_context *ce = e->engines[id];
1352
		struct i915_request *rq;
1353

1354
		rq = intel_context_create_request(ce);
1355 1356
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1357
			goto err_active;
1358 1359
		}

1360
		err = 0;
1361 1362
		if (rq->engine->init_context)
			err = rq->engine->init_context(rq);
1363

1364
		i915_request_add(rq);
1365 1366 1367 1368
		if (err)
			goto err_active;
	}

1369
	/* Flush the default context image to memory, and enable powersaving. */
1370
	if (!i915_gem_load_power_context(i915)) {
1371
		err = -EIO;
1372
		goto err_active;
1373
	}
1374 1375

	for_each_engine(engine, i915, id) {
1376 1377
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
1378
		void *vaddr;
1379 1380 1381 1382

		if (!state)
			continue;

1383
		GEM_BUG_ON(intel_context_is_pinned(ce));
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

1397
		i915_gem_object_lock(state->obj);
1398
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1399
		i915_gem_object_unlock(state->obj);
1400 1401 1402 1403
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
1404 1405
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
1406 1407 1408

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
1409
						I915_MAP_FORCE_WB);
1410 1411 1412 1413 1414 1415
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
1437
	i915_gem_context_unlock_engines(ctx);
1438 1439 1440 1441 1442 1443 1444
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
1445 1446
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1447
	 */
1448
	i915_gem_set_wedged(i915);
1449 1450 1451
	goto out_ctx;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1507
int i915_gem_init(struct drm_i915_private *dev_priv)
1508 1509 1510
{
	int ret;

1511 1512
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1513 1514 1515
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1516
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1517

1518 1519
	i915_timelines_init(dev_priv);

1520 1521 1522 1523
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1524
	ret = intel_uc_init_misc(dev_priv);
1525 1526 1527
	if (ret)
		return ret;

1528
	ret = intel_wopcm_init(&dev_priv->wopcm);
1529
	if (ret)
1530
		goto err_uc_misc;
1531

1532 1533 1534 1535 1536 1537
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1538
	mutex_lock(&dev_priv->drm.struct_mutex);
1539
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1540

1541
	ret = i915_gem_init_ggtt(dev_priv);
1542 1543 1544 1545
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1546

1547
	ret = i915_gem_init_scratch(dev_priv,
1548
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1549 1550 1551 1552
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1553

1554 1555 1556 1557 1558 1559
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1560 1561 1562 1563 1564 1565
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1566
	ret = intel_engines_init(dev_priv);
1567 1568 1569 1570
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1571

1572 1573
	intel_init_gt_powersave(dev_priv);

1574
	ret = intel_uc_init(dev_priv);
1575
	if (ret)
1576
		goto err_pm;
1577

1578 1579 1580 1581
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1593 1594 1595 1596
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
		goto err_init_hw;

1597
	ret = __intel_engines_record_defaults(dev_priv);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

1611
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
1623 1624
	mutex_unlock(&dev_priv->drm.struct_mutex);

1625
	i915_gem_set_wedged(dev_priv);
1626
	i915_gem_suspend(dev_priv);
1627 1628
	i915_gem_suspend_late(dev_priv);

1629 1630
	i915_gem_drain_workqueue(dev_priv);

1631
	mutex_lock(&dev_priv->drm.struct_mutex);
1632
	intel_uc_fini_hw(dev_priv);
1633 1634
err_uc_init:
	intel_uc_fini(dev_priv);
1635 1636 1637
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1638
		intel_engines_cleanup(dev_priv);
1639 1640 1641 1642
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1643 1644
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1645 1646
err_ggtt:
err_unlock:
1647
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1648 1649
	mutex_unlock(&dev_priv->drm.struct_mutex);

1650
err_uc_misc:
1651
	intel_uc_fini_misc(dev_priv);
1652

1653
	if (ret != -EIO) {
1654
		i915_gem_cleanup_userptr(dev_priv);
1655 1656
		i915_timelines_fini(dev_priv);
	}
1657

1658
	if (ret == -EIO) {
1659 1660
		mutex_lock(&dev_priv->drm.struct_mutex);

1661 1662
		/*
		 * Allow engine initialisation to fail by marking the GPU as
1663 1664 1665
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
1666
		if (!i915_reset_failed(dev_priv)) {
1667 1668
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
1669 1670
			i915_gem_set_wedged(dev_priv);
		}
1671 1672 1673 1674 1675 1676 1677 1678

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1679 1680
	}

1681
	i915_gem_drain_freed_objects(dev_priv);
1682
	return ret;
1683 1684
}

1685
void i915_gem_fini_hw(struct drm_i915_private *dev_priv)
1686
{
1687 1688
	GEM_BUG_ON(dev_priv->gt.awake);

1689
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1690

1691
	i915_gem_suspend_late(dev_priv);
1692
	intel_disable_gt_powersave(dev_priv);
1693 1694 1695 1696 1697 1698 1699

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
1700 1701 1702 1703 1704 1705 1706 1707
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1708
	intel_engines_cleanup(dev_priv);
1709
	i915_gem_contexts_fini(dev_priv);
1710
	i915_gem_fini_scratch(dev_priv);
1711 1712
	mutex_unlock(&dev_priv->drm.struct_mutex);

1713 1714
	intel_wa_list_free(&dev_priv->gt_wa_list);

1715 1716
	intel_cleanup_gt_powersave(dev_priv);

1717 1718
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
1719
	i915_timelines_fini(dev_priv);
1720 1721 1722 1723 1724 1725

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1726 1727 1728 1729 1730
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1731 1732 1733 1734 1735 1736 1737
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

1738
	INIT_LIST_HEAD(&i915->mm.purge_list);
1739
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1740

1741
	i915_gem_init__objects(i915);
1742 1743
}

1744
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1745
{
1746
	int err;
1747

1748 1749
	intel_gt_pm_init(dev_priv);

1750
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
1751
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
1752
	spin_lock_init(&dev_priv->gt.closed_lock);
1753

1754
	i915_gem_init__mm(dev_priv);
1755
	i915_gem_init__pm(dev_priv);
1756

1757
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1758
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
1759
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
1760
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
1761

1762 1763
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

1764
	spin_lock_init(&dev_priv->fb_tracking.lock);
1765

M
Matthew Auld 已提交
1766 1767 1768 1769
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1770
	return 0;
1771
}
1772

1773
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1774
{
1775
	i915_gem_drain_freed_objects(dev_priv);
1776 1777
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1778
	WARN_ON(dev_priv->mm.shrink_count);
1779

1780 1781
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
1782
	i915_gemfs_fini(dev_priv);
1783 1784
}

1785 1786
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1787 1788 1789
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1790 1791 1792 1793 1794
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1795
int i915_gem_freeze_late(struct drm_i915_private *i915)
1796 1797
{
	struct drm_i915_gem_object *obj;
1798
	intel_wakeref_t wakeref;
1799

1800 1801
	/*
	 * Called just before we write the hibernation image.
1802 1803 1804 1805 1806 1807 1808 1809
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1810 1811
	 *
	 * To try and reduce the hibernation image, we manually shrink
1812
	 * the objects as well, see i915_gem_freeze()
1813 1814
	 */

1815
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1816 1817

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1818
	i915_gem_drain_freed_objects(i915);
1819

1820 1821 1822 1823
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1824
	}
1825

1826
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1827 1828 1829 1830

	return 0;
}

1831
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1832
{
1833
	struct drm_i915_file_private *file_priv = file->driver_priv;
1834
	struct i915_request *request;
1835 1836 1837 1838 1839

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1840
	spin_lock(&file_priv->mm.lock);
1841
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1842
		request->file_priv = NULL;
1843
	spin_unlock(&file_priv->mm.lock);
1844 1845
}

1846
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1847 1848
{
	struct drm_i915_file_private *file_priv;
1849
	int ret;
1850

1851
	DRM_DEBUG("\n");
1852 1853 1854 1855 1856 1857

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1858
	file_priv->dev_priv = i915;
1859
	file_priv->file = file;
1860 1861 1862 1863

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1864
	file_priv->bsd_engine = -1;
1865
	file_priv->hang_timestamp = jiffies;
1866

1867
	ret = i915_gem_context_open(i915, file);
1868 1869
	if (ret)
		kfree(file_priv);
1870

1871
	return ret;
1872 1873
}

1874 1875
/**
 * i915_gem_track_fb - update frontbuffer tracking
1876 1877 1878
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1879 1880 1881 1882
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1883 1884 1885 1886
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1887 1888 1889 1890 1891 1892 1893
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1894
		     BITS_PER_TYPE(atomic_t));
1895

1896
	if (old) {
1897 1898
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1899 1900 1901
	}

	if (new) {
1902 1903
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1904 1905 1906
	}
}

1907
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1908
#include "selftests/mock_gem_device.c"
1909
#include "selftests/i915_gem.c"
1910
#endif