i915_gem.c 45.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42 43
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"

44 45
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
46
#include "gem/i915_gem_ioctls.h"
47 48
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
49
#include "gt/intel_gt.h"
50
#include "gt/intel_gt_pm.h"
51 52
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
53
#include "gt/intel_renderstate.h"
54 55
#include "gt/intel_workarounds.h"

56
#include "i915_drv.h"
57
#include "i915_scatterlist.h"
58 59 60 61
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
62
#include "intel_pm.h"
63

64
static int
65
insert_mappable_node(struct i915_ggtt *ggtt,
66 67 68
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
69
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 71 72
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
73 74 75 76 77 78 79 80
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

81 82
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83
			    struct drm_file *file)
84
{
85
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86
	struct drm_i915_gem_get_aperture *args = data;
87
	struct i915_vma *vma;
88
	u64 pinned;
89

90 91
	mutex_lock(&ggtt->vm.mutex);

92
	pinned = ggtt->vm.reserved;
93
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94
		if (i915_vma_is_pinned(vma))
95
			pinned += vma->node.size;
96 97

	mutex_unlock(&ggtt->vm.mutex);
98

99
	args->aper_size = ggtt->vm.total;
100
	args->aper_available_size = args->aper_size - pinned;
101

102 103 104
	return 0;
}

105 106
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
			   unsigned long flags)
107 108 109
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
110
	int ret = 0;
111 112

	lockdep_assert_held(&obj->base.dev->struct_mutex);
113

114 115 116 117
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
118
		list_move_tail(&vma->obj_link, &still_in_list);
119 120
		spin_unlock(&obj->vma.lock);

121 122 123 124
		ret = -EBUSY;
		if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
		    !i915_vma_is_active(vma))
			ret = i915_vma_unbind(vma);
125 126

		spin_lock(&obj->vma.lock);
127
	}
128 129
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
130 131 132 133

	return ret;
}

134 135 136
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
137
		     struct drm_file *file)
138 139
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
140
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
141 142 143 144

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
145
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
146 147
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
148

149
	drm_clflush_virt_range(vaddr, args->size);
150
	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
151

152
	intel_fb_obj_flush(obj, ORIGIN_CPU);
153
	return 0;
154 155
}

156 157
static int
i915_gem_create(struct drm_file *file,
158
		struct drm_i915_private *dev_priv,
159
		u64 *size_p,
160
		u32 *handle_p)
161
{
162
	struct drm_i915_gem_object *obj;
163
	u32 handle;
164 165
	u64 size;
	int ret;
166

167
	size = round_up(*size_p, PAGE_SIZE);
168 169
	if (size == 0)
		return -EINVAL;
170 171

	/* Allocate the new object */
172
	obj = i915_gem_object_create_shmem(dev_priv, size);
173 174
	if (IS_ERR(obj))
		return PTR_ERR(obj);
175

176
	ret = drm_gem_handle_create(file, &obj->base, &handle);
177
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
178
	i915_gem_object_put(obj);
179 180
	if (ret)
		return ret;
181

182
	*handle_p = handle;
183
	*size_p = size;
184 185 186
	return 0;
}

187 188 189 190 191
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

209
	/* have to work out size/pitch and return them */
210 211 212 213 214 215 216
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

217
	args->size = args->pitch * args->height;
218
	return i915_gem_create(file, to_i915(dev),
219
			       &args->size, &args->handle);
220 221 222 223
}

/**
 * Creates a new mm object and returns a handle to it.
224 225 226
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
227 228 229 230 231
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
232
	struct drm_i915_private *dev_priv = to_i915(dev);
233
	struct drm_i915_gem_create *args = data;
234

235
	i915_gem_flush_free_objects(dev_priv);
236

237
	return i915_gem_create(file, dev_priv,
238
			       &args->size, &args->handle);
239 240
}

241
static int
242 243
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
244 245 246 247 248 249
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

250 251
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
252

253
	ret = __copy_to_user(user_data, vaddr + offset, len);
254

255
	kunmap(page);
256

257
	return ret ? -EFAULT : 0;
258 259 260 261 262 263 264 265
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
266 267 268
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
269 270
	int ret;

271
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
272 273 274
	if (ret)
		return ret;

275 276 277 278 279
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

280 281 282 283 284
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
285
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
286 287 288 289 290 291 292 293 294 295 296

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

297
	i915_gem_object_unlock_fence(obj, fence);
298 299 300 301 302 303 304
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
305
{
306
	void __iomem *vaddr;
307
	unsigned long unwritten;
308 309

	/* We can use the cpu mem copy function because this is X86. */
310 311 312 313
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
314 315
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
316 317 318 319
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
320 321
		io_mapping_unmap(vaddr);
	}
322 323 324 325
	return unwritten;
}

static int
326 327
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
328
{
329 330
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
331
	intel_wakeref_t wakeref;
332
	struct drm_mm_node node;
333
	struct dma_fence *fence;
334
	void __user *user_data;
335
	struct i915_vma *vma;
336
	u64 remain, offset;
337 338
	int ret;

339 340 341 342
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

343
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
344
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
345 346 347
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
348 349 350
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
351
		ret = i915_vma_put_fence(vma);
352 353 354 355 356
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
357
	if (IS_ERR(vma)) {
358
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
359
		if (ret)
360 361
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
362 363
	}

364 365 366
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
367 368 369
	if (ret)
		goto out_unpin;

370 371 372 373 374 375 376 377 378 379 380 381
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
382

383 384 385
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
386 387 388 389 390 391 392 393 394 395 396 397 398

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
399 400 401
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
402 403 404
		} else {
			page_base += offset & PAGE_MASK;
		}
405

406
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
407
				  user_data, page_length)) {
408 409 410 411 412 413 414 415 416
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

417
	i915_gem_object_unlock_fence(obj, fence);
418
out_unpin:
419
	mutex_lock(&i915->drm.struct_mutex);
420
	if (node.allocated) {
421
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
422 423
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
424
		i915_vma_unpin(vma);
425
	}
426
out_unlock:
427
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
428
	mutex_unlock(&i915->drm.struct_mutex);
429

430 431 432
	return ret;
}

433 434
/**
 * Reads data from the object referenced by handle.
435 436 437
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
438 439 440 441 442
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443
		     struct drm_file *file)
444 445
{
	struct drm_i915_gem_pread *args = data;
446
	struct drm_i915_gem_object *obj;
447
	int ret;
448

449 450 451
	if (args->size == 0)
		return 0;

452
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
453 454 455
		       args->size))
		return -EFAULT;

456
	obj = i915_gem_object_lookup(file, args->handle);
457 458
	if (!obj)
		return -ENOENT;
459

460
	/* Bounds check source.  */
461
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
462
		ret = -EINVAL;
463
		goto out;
C
Chris Wilson 已提交
464 465
	}

C
Chris Wilson 已提交
466 467
	trace_i915_gem_object_pread(obj, args->offset, args->size);

468 469
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
470
				   MAX_SCHEDULE_TIMEOUT);
471
	if (ret)
472
		goto out;
473

474
	ret = i915_gem_object_pin_pages(obj);
475
	if (ret)
476
		goto out;
477

478
	ret = i915_gem_shmem_pread(obj, args);
479
	if (ret == -EFAULT || ret == -ENODEV)
480
		ret = i915_gem_gtt_pread(obj, args);
481

482 483
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
484
	i915_gem_object_put(obj);
485
	return ret;
486 487
}

488 489
/* This is the fast write path which cannot handle
 * page faults in the source data
490
 */
491

492 493 494 495
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
496
{
497
	void __iomem *vaddr;
498
	unsigned long unwritten;
499

500
	/* We can use the cpu mem copy function because this is X86. */
501 502
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
503
						      user_data, length);
504 505
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
506 507 508
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
509 510
		io_mapping_unmap(vaddr);
	}
511 512 513 514

	return unwritten;
}

515 516 517
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
518
 * @obj: i915 GEM object
519
 * @args: pwrite arguments structure
520
 */
521
static int
522 523
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
524
{
525
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
526
	struct i915_ggtt *ggtt = &i915->ggtt;
527
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
528
	intel_wakeref_t wakeref;
529
	struct drm_mm_node node;
530
	struct dma_fence *fence;
531 532 533
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
534
	int ret;
535

536 537 538
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
539

540 541 542 543 544 545 546 547
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
548
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
549
		if (!wakeref) {
550 551 552 553 554
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
555
		wakeref = intel_runtime_pm_get(rpm);
556 557
	}

C
Chris Wilson 已提交
558
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
559 560 561
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
562 563 564
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
565
		ret = i915_vma_put_fence(vma);
566 567 568 569 570
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
571
	if (IS_ERR(vma)) {
572
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
573
		if (ret)
574
			goto out_rpm;
575
		GEM_BUG_ON(!node.allocated);
576
	}
D
Daniel Vetter 已提交
577

578 579 580
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
581 582 583
	if (ret)
		goto out_unpin;

584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
596

597
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
598

599 600 601 602
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
603 604
		/* Operation in this page
		 *
605 606 607
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
608
		 */
609
		u32 page_base = node.start;
610 611
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
612 613
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
614 615
			/* flush the write before we modify the GGTT */
			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616 617 618
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
619 620 621 622
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
623
		/* If we get a fault while copying data, then (presumably) our
624 625
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
626 627
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
628
		 */
629
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
630 631 632
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
633
		}
634

635 636 637
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
638
	}
639
	intel_fb_obj_flush(obj, ORIGIN_CPU);
640

641
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
642
out_unpin:
643
	mutex_lock(&i915->drm.struct_mutex);
644
	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
645
	if (node.allocated) {
646
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
647 648
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
649
		i915_vma_unpin(vma);
650
	}
651
out_rpm:
652
	intel_runtime_pm_put(rpm, wakeref);
653
out_unlock:
654
	mutex_unlock(&i915->drm.struct_mutex);
655
	return ret;
656 657
}

658 659 660 661 662
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
663
static int
664 665 666
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
667
{
668
	char *vaddr;
669 670
	int ret;

671
	vaddr = kmap(page);
672

673 674
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
675

676 677 678
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
679

680 681 682
	kunmap(page);

	return ret ? -EFAULT : 0;
683 684 685 686 687 688 689
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
690
	unsigned int needs_clflush;
691
	unsigned int offset, idx;
692 693 694
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
695
	int ret;
696

697
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
698 699
	if (ret)
		return ret;
700

701 702 703 704 705
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

706 707 708 709 710 711 712
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
713

714 715 716 717 718
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
719
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
720

721 722 723
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
724
		if (ret)
725
			break;
726

727 728 729
		remain -= length;
		user_data += length;
		offset = 0;
730
	}
731

732
	intel_fb_obj_flush(obj, ORIGIN_CPU);
733 734
	i915_gem_object_unlock_fence(obj, fence);

735
	return ret;
736 737 738 739
}

/**
 * Writes data to the object referenced by handle.
740 741 742
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
743 744 745 746 747
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
748
		      struct drm_file *file)
749 750
{
	struct drm_i915_gem_pwrite *args = data;
751
	struct drm_i915_gem_object *obj;
752 753 754 755 756
	int ret;

	if (args->size == 0)
		return 0;

757
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
758 759
		return -EFAULT;

760
	obj = i915_gem_object_lookup(file, args->handle);
761 762
	if (!obj)
		return -ENOENT;
763

764
	/* Bounds check destination. */
765
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
766
		ret = -EINVAL;
767
		goto err;
C
Chris Wilson 已提交
768 769
	}

770 771 772 773 774 775
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
776 777
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

778 779 780 781 782 783
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

784 785 786
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
787
				   MAX_SCHEDULE_TIMEOUT);
788 789 790
	if (ret)
		goto err;

791
	ret = i915_gem_object_pin_pages(obj);
792
	if (ret)
793
		goto err;
794

D
Daniel Vetter 已提交
795
	ret = -EFAULT;
796 797 798 799 800 801
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
802
	if (!i915_gem_object_has_struct_page(obj) ||
803
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
804 805
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
806 807
		 * textures). Fallback to the shmem path in that case.
		 */
808
		ret = i915_gem_gtt_pwrite_fast(obj, args);
809

810
	if (ret == -EFAULT || ret == -ENOSPC) {
811 812
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
813
		else
814
			ret = i915_gem_shmem_pwrite(obj, args);
815
	}
816

817
	i915_gem_object_unpin_pages(obj);
818
err:
C
Chris Wilson 已提交
819
	i915_gem_object_put(obj);
820
	return ret;
821 822 823 824
}

/**
 * Called when user space has done writes to this buffer
825 826 827
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
828 829 830
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
831
			 struct drm_file *file)
832 833
{
	struct drm_i915_gem_sw_finish *args = data;
834
	struct drm_i915_gem_object *obj;
835

836
	obj = i915_gem_object_lookup(file, args->handle);
837 838
	if (!obj)
		return -ENOENT;
839

T
Tina Zhang 已提交
840 841 842 843 844
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

845
	/* Pinned buffers may be scanout, so flush the cache */
846
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
847
	i915_gem_object_put(obj);
848 849

	return 0;
850 851
}

852
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
853
{
854
	struct drm_i915_gem_object *obj, *on;
855
	int i;
856

857 858 859 860 861 862
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
863

864
	list_for_each_entry_safe(obj, on,
865
				 &i915->ggtt.userfault_list, userfault_link)
866
		__i915_gem_object_release_mmap(obj);
867

868 869
	/*
	 * The fence will be lost when the device powers down. If any were
870 871 872
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
873 874
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
875

876 877
		/*
		 * Ideally we want to assert that the fence register is not
878 879 880 881 882 883 884 885 886
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
887 888 889 890

		if (!reg->vma)
			continue;

891
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
892 893
		reg->dirty = true;
	}
894 895
}

896
static int wait_for_engines(struct intel_gt *gt)
897
{
898 899
	if (wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT)) {
		dev_err(gt->i915->drm.dev,
900
			"Failed to idle engines, declaring wedged!\n");
901
		GEM_TRACE_DUMP();
902
		intel_gt_set_wedged(gt);
903
		return -EIO;
904 905 906 907 908
	}

	return 0;
}

909 910 911 912
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
913
	struct intel_gt_timelines *gt = &i915->gt.timelines;
914
	struct intel_timeline *tl;
915 916

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
917
	list_for_each_entry(tl, &gt->active_list, link) {
918 919
		struct i915_request *rq;

920
		rq = i915_active_request_get_unlocked(&tl->last_request);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
936
			gen6_rps_boost(rq);
937 938 939 940 941 942 943 944

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
945
		tl = list_entry(&gt->active_list, typeof(*tl), link);
946 947 948 949 950 951
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

952 953
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
954
{
955 956 957 958
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

959
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
960
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
961 962
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
963

964 965 966 967
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

968
	if (flags & I915_WAIT_LOCKED) {
969
		int err;
970 971 972

		lockdep_assert_held(&i915->drm.struct_mutex);

973
		err = wait_for_engines(&i915->gt);
974 975 976
		if (err)
			return err;

977
		i915_retire_requests(i915);
978
	}
979 980

	return 0;
981 982
}

C
Chris Wilson 已提交
983
struct i915_vma *
984 985
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
986
			 u64 size,
987 988
			 u64 alignment,
			 u64 flags)
989
{
990
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
991
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
992 993
	struct i915_vma *vma;
	int ret;
994

995 996
	lockdep_assert_held(&obj->base.dev->struct_mutex);

997 998
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1029
	vma = i915_vma_instance(obj, vm, view);
1030
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1031
		return vma;
1032 1033

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1034 1035 1036
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1037

1038
			if (flags & PIN_MAPPABLE &&
1039
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1040 1041 1042
				return ERR_PTR(-ENOSPC);
		}

1043 1044
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1045 1046 1047
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1048
		     !!(flags & PIN_MAPPABLE),
1049
		     i915_vma_is_map_and_fenceable(vma));
1050 1051
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1052
			return ERR_PTR(ret);
1053 1054
	}

C
Chris Wilson 已提交
1055 1056 1057
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1058

C
Chris Wilson 已提交
1059
	return vma;
1060 1061
}

1062 1063 1064 1065
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1066
	struct drm_i915_private *i915 = to_i915(dev);
1067
	struct drm_i915_gem_madvise *args = data;
1068
	struct drm_i915_gem_object *obj;
1069
	int err;
1070 1071 1072 1073 1074 1075 1076 1077 1078

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1079
	obj = i915_gem_object_lookup(file_priv, args->handle);
1080 1081 1082 1083 1084 1085
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1086

1087
	if (i915_gem_object_has_pages(obj) &&
1088
	    i915_gem_object_is_tiled(obj) &&
1089
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1090 1091
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1092
			__i915_gem_object_unpin_pages(obj);
1093 1094 1095
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1096
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1097
			__i915_gem_object_pin_pages(obj);
1098 1099
			obj->mm.quirked = true;
		}
1100 1101
	}

C
Chris Wilson 已提交
1102 1103
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1104

1105 1106 1107
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1108
		if (i915_gem_object_is_shrinkable(obj)) {
1109 1110 1111 1112
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1113 1114 1115
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1116
				list = &i915->mm.shrink_list;
1117
			list_move_tail(&obj->mm.link, list);
1118 1119

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1120
		}
1121 1122
	}

C
Chris Wilson 已提交
1123
	/* if the object is no longer attached, discard its backing storage */
1124 1125
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1126
		i915_gem_object_truncate(obj);
1127

C
Chris Wilson 已提交
1128
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1129
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1130

1131
out:
1132
	i915_gem_object_put(obj);
1133
	return err;
1134 1135
}

1136 1137
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1138 1139
	intel_wakeref_t wakeref;

1140 1141
	GEM_TRACE("\n");

1142
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1143
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1144 1145 1146 1147 1148 1149 1150

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1151 1152
	if (intel_gt_is_wedged(&i915->gt))
		intel_gt_unset_wedged(&i915->gt);
1153

1154 1155 1156 1157 1158 1159
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1160
	 * of the reset, so this could be applied to even earlier gen.
1161
	 */
1162
	intel_gt_sanitize(&i915->gt, false);
1163

1164
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1165
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1166 1167
}

1168
static void init_unused_ring(struct intel_gt *gt, u32 base)
1169
{
1170 1171 1172 1173 1174 1175
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
1176 1177
}

1178
static void init_unused_rings(struct intel_gt *gt)
1179
{
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
1194 1195 1196
	}
}

1197
int i915_gem_init_hw(struct drm_i915_private *i915)
1198
{
1199 1200
	struct intel_uncore *uncore = &i915->uncore;
	struct intel_gt *gt = &i915->gt;
C
Chris Wilson 已提交
1201
	int ret;
1202

1203
	BUG_ON(!i915->kernel_context);
1204
	ret = intel_gt_terminally_wedged(gt);
1205 1206 1207
	if (ret)
		return ret;

1208
	gt->last_init_time = ktime_get();
1209

1210
	/* Double layer security blanket, see i915_gem_init() */
1211
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1212

1213 1214
	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1215

1216 1217 1218 1219 1220
	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1221

1222
	/* Apply the GT workarounds... */
1223
	intel_gt_apply_workarounds(gt);
1224
	/* ...and determine whether they are sticking. */
1225
	intel_gt_verify_workarounds(gt, "init");
1226

1227
	intel_gt_init_swizzling(gt);
1228

1229 1230 1231 1232 1233 1234
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
1235
	init_unused_rings(gt);
1236

1237
	ret = i915_ppgtt_init_hw(gt);
1238
	if (ret) {
1239
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1240 1241 1242
		goto out;
	}

1243
	/* We can't enable contexts until all firmware is loaded */
1244
	ret = intel_uc_init_hw(&gt->uc);
1245 1246
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
1247
		goto out;
1248
	}
1249

1250
	intel_mocs_init(gt);
1251

1252 1253
	intel_engines_set_scheduler_caps(i915);

1254
out:
1255
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1256
	return ret;
1257 1258
}

1259 1260 1261
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
1262 1263
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
1264
	enum intel_engine_id id;
1265
	int err = 0;
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

1280 1281
	e = i915_gem_context_lock_engines(ctx);

1282
	for_each_engine(engine, i915, id) {
1283
		struct intel_context *ce = e->engines[id];
1284
		struct i915_request *rq;
1285

1286
		rq = intel_context_create_request(ce);
1287 1288
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1289
			goto err_active;
1290 1291
		}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		/*
		 * Failing to program the MOCS is non-fatal.The system will not
		 * run at peak performance. So warn the user and carry on.
		 */
		err = intel_mocs_emit(rq);
		if (err)
			dev_notice(i915->drm.dev,
				   "Failed to program MOCS registers; expect performance issues.\n");

		err = intel_renderstate_emit(rq);
		if (err)
			goto err_rq;
1308

1309
err_rq:
1310
		i915_request_add(rq);
1311 1312 1313 1314
		if (err)
			goto err_active;
	}

1315
	/* Flush the default context image to memory, and enable powersaving. */
1316
	if (!i915_gem_load_power_context(i915)) {
1317
		err = -EIO;
1318
		goto err_active;
1319
	}
1320 1321

	for_each_engine(engine, i915, id) {
1322 1323
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
1324
		void *vaddr;
1325 1326 1327 1328

		if (!state)
			continue;

1329
		GEM_BUG_ON(intel_context_is_pinned(ce));
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

1343
		i915_gem_object_lock(state->obj);
1344
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1345
		i915_gem_object_unlock(state->obj);
1346 1347 1348 1349
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
1350 1351
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
1352 1353 1354

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
1355
						I915_MAP_FORCE_WB);
1356 1357 1358 1359 1360 1361
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
1383
	i915_gem_context_unlock_engines(ctx);
1384 1385 1386 1387 1388 1389 1390
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
1391 1392
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1393
	 */
1394
	intel_gt_set_wedged(&i915->gt);
1395 1396 1397
	goto out_ctx;
}

1398 1399 1400
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
1401
	return intel_gt_init_scratch(&i915->gt, size);
1402 1403 1404 1405
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
1406
	intel_gt_fini_scratch(&i915->gt);
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1426
int i915_gem_init(struct drm_i915_private *dev_priv)
1427 1428 1429
{
	int ret;

1430 1431
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1432 1433 1434
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1435
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
1436

1437
	intel_timelines_init(dev_priv);
1438

1439 1440 1441 1442
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1443
	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1444

1445
	ret = intel_wopcm_init(&dev_priv->wopcm);
1446
	if (ret)
1447
		goto err_uc_fw;
1448

1449 1450 1451 1452 1453 1454
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1455
	mutex_lock(&dev_priv->drm.struct_mutex);
1456
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1457

1458
	ret = i915_init_ggtt(dev_priv);
1459 1460 1461 1462
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1463

1464
	ret = i915_gem_init_scratch(dev_priv,
1465
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1466 1467 1468 1469
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
1470

1471 1472 1473 1474 1475 1476
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1477 1478 1479 1480 1481 1482
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1483
	ret = intel_engines_init(dev_priv);
1484 1485 1486 1487
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1488

1489 1490
	intel_init_gt_powersave(dev_priv);

1491
	ret = intel_uc_init(&dev_priv->gt.uc);
1492
	if (ret)
1493
		goto err_pm;
1494

1495 1496 1497 1498
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

1499 1500 1501 1502 1503
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = intel_gt_resume(&dev_priv->gt);
	if (ret)
		goto err_init_hw;

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1515 1516
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
1517
		goto err_gt;
1518

1519
	ret = __intel_engines_record_defaults(dev_priv);
1520
	if (ret)
1521
		goto err_gt;
1522

1523
	if (i915_inject_probe_failure()) {
1524
		ret = -ENODEV;
1525
		goto err_gt;
1526 1527
	}

1528
	if (i915_inject_probe_failure()) {
1529
		ret = -EIO;
1530
		goto err_gt;
1531 1532
	}

1533
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
1544
err_gt:
1545 1546
	mutex_unlock(&dev_priv->drm.struct_mutex);

1547
	intel_gt_set_wedged(&dev_priv->gt);
1548
	i915_gem_suspend(dev_priv);
1549 1550
	i915_gem_suspend_late(dev_priv);

1551 1552
	i915_gem_drain_workqueue(dev_priv);

1553
	mutex_lock(&dev_priv->drm.struct_mutex);
1554
err_init_hw:
1555
	intel_uc_fini_hw(&dev_priv->gt.uc);
1556
err_uc_init:
1557
	intel_uc_fini(&dev_priv->gt.uc);
1558 1559 1560
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
1561
		intel_engines_cleanup(dev_priv);
1562 1563 1564 1565
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1566 1567
err_scratch:
	i915_gem_fini_scratch(dev_priv);
1568 1569
err_ggtt:
err_unlock:
1570
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1571 1572
	mutex_unlock(&dev_priv->drm.struct_mutex);

1573
err_uc_fw:
1574
	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1575

1576
	if (ret != -EIO) {
1577
		i915_gem_cleanup_userptr(dev_priv);
1578
		intel_timelines_fini(dev_priv);
1579
	}
1580

1581
	if (ret == -EIO) {
1582 1583
		mutex_lock(&dev_priv->drm.struct_mutex);

1584 1585
		/*
		 * Allow engine initialisation to fail by marking the GPU as
1586 1587 1588
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
1589
		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1590 1591
			i915_probe_error(dev_priv,
					 "Failed to initialize GPU, declaring it wedged!\n");
1592
			intel_gt_set_wedged(&dev_priv->gt);
1593
		}
1594 1595 1596 1597 1598 1599 1600 1601

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1602 1603
	}

1604
	i915_gem_drain_freed_objects(dev_priv);
1605
	return ret;
1606 1607
}

1608
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1609
{
1610 1611
	GEM_BUG_ON(dev_priv->gt.awake);

1612
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1613

1614
	i915_gem_suspend_late(dev_priv);
1615
	intel_disable_gt_powersave(dev_priv);
1616 1617 1618 1619 1620

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
1621 1622
	intel_uc_fini_hw(&dev_priv->gt.uc);
	intel_uc_fini(&dev_priv->gt.uc);
1623 1624 1625 1626 1627
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

1628
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1629 1630
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1631
	intel_engines_cleanup(dev_priv);
1632
	i915_gem_contexts_fini(dev_priv);
1633
	i915_gem_fini_scratch(dev_priv);
1634 1635
	mutex_unlock(&dev_priv->drm.struct_mutex);

1636 1637
	intel_wa_list_free(&dev_priv->gt_wa_list);

1638 1639
	intel_cleanup_gt_powersave(dev_priv);

1640
	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1641
	i915_gem_cleanup_userptr(dev_priv);
1642
	intel_timelines_fini(dev_priv);
1643 1644 1645 1646 1647 1648

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1649 1650 1651 1652 1653
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1654 1655 1656 1657 1658 1659 1660
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

1661
	INIT_LIST_HEAD(&i915->mm.purge_list);
1662
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1663

1664
	i915_gem_init__objects(i915);
1665 1666
}

1667
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1668
{
1669
	int err;
1670

1671
	i915_gem_init__mm(dev_priv);
1672
	i915_gem_init__pm(dev_priv);
1673

1674 1675
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

1676
	spin_lock_init(&dev_priv->fb_tracking.lock);
1677

M
Matthew Auld 已提交
1678 1679 1680 1681
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1682
	return 0;
1683
}
1684

1685
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1686
{
1687
	i915_gem_drain_freed_objects(dev_priv);
1688 1689
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1690
	WARN_ON(dev_priv->mm.shrink_count);
1691

M
Matthew Auld 已提交
1692
	i915_gemfs_fini(dev_priv);
1693 1694
}

1695 1696
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1697 1698 1699
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1700 1701 1702 1703 1704
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1705
int i915_gem_freeze_late(struct drm_i915_private *i915)
1706 1707
{
	struct drm_i915_gem_object *obj;
1708
	intel_wakeref_t wakeref;
1709

1710 1711
	/*
	 * Called just before we write the hibernation image.
1712 1713 1714 1715 1716 1717 1718 1719
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1720 1721
	 *
	 * To try and reduce the hibernation image, we manually shrink
1722
	 * the objects as well, see i915_gem_freeze()
1723 1724
	 */

1725
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1726 1727

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1728
	i915_gem_drain_freed_objects(i915);
1729

1730 1731 1732 1733
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1734
	}
1735

1736
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1737 1738 1739 1740

	return 0;
}

1741
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1742
{
1743
	struct drm_i915_file_private *file_priv = file->driver_priv;
1744
	struct i915_request *request;
1745 1746 1747 1748 1749

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1750
	spin_lock(&file_priv->mm.lock);
1751
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1752
		request->file_priv = NULL;
1753
	spin_unlock(&file_priv->mm.lock);
1754 1755
}

1756
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1757 1758
{
	struct drm_i915_file_private *file_priv;
1759
	int ret;
1760

1761
	DRM_DEBUG("\n");
1762 1763 1764 1765 1766 1767

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1768
	file_priv->dev_priv = i915;
1769
	file_priv->file = file;
1770 1771 1772 1773

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1774
	file_priv->bsd_engine = -1;
1775
	file_priv->hang_timestamp = jiffies;
1776

1777
	ret = i915_gem_context_open(i915, file);
1778 1779
	if (ret)
		kfree(file_priv);
1780

1781
	return ret;
1782 1783
}

1784 1785
/**
 * i915_gem_track_fb - update frontbuffer tracking
1786 1787 1788
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
1789 1790 1791 1792
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
1793 1794 1795 1796
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
1797 1798 1799 1800 1801 1802 1803
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
1804
		     BITS_PER_TYPE(atomic_t));
1805

1806
	if (old) {
1807 1808
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
1809 1810 1811
	}

	if (new) {
1812 1813
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
1814 1815 1816
	}
}

1817
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1818
#include "selftests/mock_gem_device.c"
1819
#include "selftests/i915_gem.c"
1820
#endif