scrub.c 124.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57 58
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

59
struct scrub_recover {
60
	refcount_t		refs;
61
	struct btrfs_io_context	*bioc;
62 63 64
	u64			map_length;
};

65
struct scrub_sector {
66
	struct scrub_block	*sblock;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	/* Offset in bytes to @sblock. */
	u32			offset;
72
	atomic_t		refs;
73 74
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
75
	u8			csum[BTRFS_CSUM_SIZE];
76 77

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
78 79 80 81
};

struct scrub_bio {
	int			index;
82
	struct scrub_ctx	*sctx;
83
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
84
	struct bio		*bio;
85
	blk_status_t		status;
A
Arne Jansen 已提交
86 87
	u64			logical;
	u64			physical;
88 89
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
90
	int			next_free;
91
	struct work_struct	work;
A
Arne Jansen 已提交
92 93
};

94
struct scrub_block {
95 96 97 98 99
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
100
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
101
	struct btrfs_device	*dev;
102 103
	/* Logical bytenr of the sblock */
	u64			logical;
104 105
	u64			physical;
	u64			physical_for_dev_replace;
106 107
	/* Length of sblock in bytes */
	u32			len;
108
	int			sector_count;
109
	int			mirror_num;
110

111
	atomic_t		outstanding_sectors;
112
	refcount_t		refs; /* free mem on transition to zero */
113
	struct scrub_ctx	*sctx;
114
	struct scrub_parity	*sparity;
115 116 117 118
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
119
		unsigned int	generation_error:1; /* also sets header_error */
120 121 122 123

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
124
	};
125
	struct work_struct	work;
126 127
};

128 129 130 131 132 133 134 135 136 137 138 139
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

140
	u32			stripe_len;
141

142
	refcount_t		refs;
143

144
	struct list_head	sectors_list;
145 146

	/* Work of parity check and repair */
147
	struct work_struct	work;
148 149

	/* Mark the parity blocks which have data */
150
	unsigned long		dbitmap;
151 152 153 154 155

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
156
	unsigned long		ebitmap;
157 158
};

159
struct scrub_ctx {
160
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
161
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
162 163
	int			first_free;
	int			curr;
164 165
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
166 167 168 169
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
170
	int			readonly;
171
	int			sectors_per_bio;
172

173 174 175 176
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

177
	int			is_dev_replace;
178
	u64			write_pointer;
179 180 181 182

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
183
	bool                    flush_all_writes;
184

A
Arne Jansen 已提交
185 186 187 188 189
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
190 191 192 193 194 195 196 197

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
198
	refcount_t              refs;
A
Arne Jansen 已提交
199 200
};

201 202 203 204
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
205
	u64			physical;
206 207 208 209
	u64			logical;
	struct btrfs_device	*dev;
};

210 211 212 213 214 215 216
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifndef CONFIG_64BIT
/* This structure is for archtectures whose (void *) is smaller than u64 */
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

255 256 257 258 259
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
260 261 262 263 264 265 266 267
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
268
	sblock->logical = logical;
269 270 271 272
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
273
	sblock->no_io_error_seen = 1;
274 275 276 277
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
278 279 280
	return sblock;
}

281 282 283 284 285 286 287
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
					       u64 logical, gfp_t gfp)
288
{
289
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
290 291
	struct scrub_sector *ssector;

292 293 294
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

295 296 297
	ssector = kzalloc(sizeof(*ssector), gfp);
	if (!ssector)
		return NULL;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

		sblock->pages[page_index] = alloc_page(gfp);
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
316
	}
317

318 319 320 321
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
322
	ssector->offset = logical - sblock->logical;
323

324 325 326 327 328
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
329
	sblock->len += sblock->sctx->fs_info->sectorsize;
330 331 332 333

	return ssector;
}

334 335 336
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
337
	pgoff_t index;
338 339 340 341 342 343 344
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
345
	ASSERT(ssector->offset < sblock->len);
346

347
	index = ssector->offset >> PAGE_SHIFT;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
365
	ASSERT(ssector->offset < sblock->len);
366

367
	return offset_in_page(ssector->offset);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

383
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
384
				     struct scrub_block *sblocks_for_recheck[]);
385
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
386 387
				struct scrub_block *sblock,
				int retry_failed_mirror);
388
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
389
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
390
					     struct scrub_block *sblock_good);
391
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
392
					    struct scrub_block *sblock_good,
393
					    int sector_num, int force_write);
394
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
395 396
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
397 398 399 400
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
401 402
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
403 404
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
405 406 407 408
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
409
static void scrub_bio_end_io(struct bio *bio);
410
static void scrub_bio_end_io_worker(struct work_struct *work);
411
static void scrub_block_complete(struct scrub_block *sblock);
412 413 414 415 416
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
417 418
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
419
static void scrub_wr_submit(struct scrub_ctx *sctx);
420
static void scrub_wr_bio_end_io(struct bio *bio);
421
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
422
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
423

424
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
425
{
426 427
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
428
}
S
Stefan Behrens 已提交
429

430 431
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
432
	refcount_inc(&sctx->refs);
433 434 435 436 437 438 439
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
440
	scrub_put_ctx(sctx);
441 442
}

443
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
444 445 446 447 448 449 450 451 452
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

453
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
454 455 456
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
457
}
458

459 460
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
461 462 463 464 465 466 467 468
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

469 470 471 472 473 474
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

494
	lockdep_assert_held(&locks_root->lock);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

510 511 512
	/*
	 * Insert new lock.
	 */
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

538
	lockdep_assert_held(&locks_root->lock);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
558
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
559 560 561 562 563 564 565 566 567 568 569 570 571
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
572 573
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
591
	struct btrfs_block_group *bg_cache;
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
638
	struct btrfs_block_group *bg_cache;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

692
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
693
{
694
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
695
		struct btrfs_ordered_sum *sum;
696
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
697 698 699 700 701 702
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

703
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
704 705 706
{
	int i;

707
	if (!sctx)
A
Arne Jansen 已提交
708 709
		return;

710
	/* this can happen when scrub is cancelled */
711 712
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
713

714
		for (i = 0; i < sbio->sector_count; i++)
715
			scrub_block_put(sbio->sectors[i]->sblock);
716 717 718
		bio_put(sbio->bio);
	}

719
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
720
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
721 722 723 724 725 726

		if (!sbio)
			break;
		kfree(sbio);
	}

727
	kfree(sctx->wr_curr_bio);
728 729
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
730 731
}

732 733
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
734
	if (refcount_dec_and_test(&sctx->refs))
735 736 737
		scrub_free_ctx(sctx);
}

738 739
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
740
{
741
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
742 743
	int		i;

744
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
745
	if (!sctx)
A
Arne Jansen 已提交
746
		goto nomem;
747
	refcount_set(&sctx->refs, 1);
748
	sctx->is_dev_replace = is_dev_replace;
749
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
750
	sctx->curr = -1;
751
	sctx->fs_info = fs_info;
752
	INIT_LIST_HEAD(&sctx->csum_list);
753
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
754 755
		struct scrub_bio *sbio;

756
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
757 758
		if (!sbio)
			goto nomem;
759
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
760 761

		sbio->index = i;
762
		sbio->sctx = sctx;
763
		sbio->sector_count = 0;
764
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
765

766
		if (i != SCRUB_BIOS_PER_SCTX - 1)
767
			sctx->bios[i]->next_free = i + 1;
768
		else
769 770 771
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
772 773
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
774 775 776 777 778
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
779
	sctx->throttle_deadline = 0;
780

781 782 783
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
784
	if (is_dev_replace) {
785 786
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
787
		sctx->flush_all_writes = false;
788
	}
789

790
	return sctx;
A
Arne Jansen 已提交
791 792

nomem:
793
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
794 795 796
	return ERR_PTR(-ENOMEM);
}

797 798
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
799 800 801 802
{
	u32 nlink;
	int ret;
	int i;
803
	unsigned nofs_flag;
804 805
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
806
	struct scrub_warning *swarn = warn_ctx;
807
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
808 809
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
810
	struct btrfs_key key;
811

D
David Sterba 已提交
812
	local_root = btrfs_get_fs_root(fs_info, root, true);
813 814 815 816 817
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

818 819 820
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
821 822 823 824 825
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
826
	if (ret) {
827
		btrfs_put_root(local_root);
828 829 830 831 832 833 834 835 836 837
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

838 839 840 841 842 843
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
844
	ipath = init_ipath(4096, local_root, swarn->path);
845
	memalloc_nofs_restore(nofs_flag);
846
	if (IS_ERR(ipath)) {
847
		btrfs_put_root(local_root);
848 849 850 851
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
852 853 854 855 856 857 858 859 860 861
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
862
		btrfs_warn_in_rcu(fs_info,
863
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
864 865
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
866
				  swarn->physical,
J
Jeff Mahoney 已提交
867
				  root, inum, offset,
868
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
869
				  (char *)(unsigned long)ipath->fspath->val[i]);
870

871
	btrfs_put_root(local_root);
872 873 874 875
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
876
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
877
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
878 879
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
880
			  swarn->physical,
J
Jeff Mahoney 已提交
881
			  root, inum, offset, ret);
882 883 884 885 886

	free_ipath(ipath);
	return 0;
}

887
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
888
{
889 890
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
891 892 893 894 895
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
896 897 898
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
899
	u64 ref_root;
900
	u32 item_size;
901
	u8 ref_level = 0;
902
	int ret;
903

904
	WARN_ON(sblock->sector_count < 1);
905
	dev = sblock->dev;
906
	fs_info = sblock->sctx->fs_info;
907

908 909 910 911
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
			errstr, rcu_str_deref(dev->name),
912
			sblock->physical);
913 914
		return;
	}
915
	path = btrfs_alloc_path();
916 917
	if (!path)
		return;
918

919 920
	swarn.physical = sblock->physical;
	swarn.logical = sblock->logical;
921
	swarn.errstr = errstr;
922
	swarn.dev = NULL;
923

924 925
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
926 927 928
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
929
	extent_item_pos = swarn.logical - found_key.objectid;
930 931 932 933
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
934
	item_size = btrfs_item_size(eb, path->slots[0]);
935

936
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
937
		do {
938 939 940
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
941
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
942
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
943
				errstr, swarn.logical,
944
				rcu_str_deref(dev->name),
D
David Sterba 已提交
945
				swarn.physical,
946 947 948 949
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
950
		btrfs_release_path(path);
951
	} else {
952
		btrfs_release_path(path);
953
		swarn.path = path;
954
		swarn.dev = dev;
955 956
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
957
					scrub_print_warning_inode, &swarn, false);
958 959 960 961 962 963
	}

out:
	btrfs_free_path(path);
}

964 965
static inline void scrub_get_recover(struct scrub_recover *recover)
{
966
	refcount_inc(&recover->refs);
967 968
}

969 970
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
971
{
972
	if (refcount_dec_and_test(&recover->refs)) {
973
		btrfs_bio_counter_dec(fs_info);
974
		btrfs_put_bioc(recover->bioc);
975 976 977 978
		kfree(recover);
	}
}

A
Arne Jansen 已提交
979
/*
980
 * scrub_handle_errored_block gets called when either verification of the
981 982
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
983 984 985
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
986
 */
987
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
988
{
989
	struct scrub_ctx *sctx = sblock_to_check->sctx;
990
	struct btrfs_device *dev = sblock_to_check->dev;
991 992 993 994 995
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
996 997
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
998 999 1000
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1001
	int sector_num;
1002
	int success;
1003
	bool full_stripe_locked;
1004
	unsigned int nofs_flag;
1005
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1006 1007
				      DEFAULT_RATELIMIT_BURST);

1008
	BUG_ON(sblock_to_check->sector_count < 1);
1009
	fs_info = sctx->fs_info;
1010
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1011
		/*
1012
		 * If we find an error in a super block, we just report it.
1013 1014 1015
		 * They will get written with the next transaction commit
		 * anyway
		 */
1016
		scrub_print_warning("super block error", sblock_to_check);
1017 1018 1019
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1020
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1021 1022
		return 0;
	}
1023 1024 1025
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1026
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1027
			BTRFS_EXTENT_FLAG_DATA);
1028
	have_csum = sblock_to_check->sectors[0]->have_csum;
1029

1030 1031
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1032

1033 1034 1035 1036 1037 1038
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1039
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1040 1041 1042
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1052
		memalloc_nofs_restore(nofs_flag);
1053 1054 1055 1056 1057 1058 1059 1060 1061
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1062 1063 1064 1065
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1066
	 * sector by sector this time in order to know which sectors
1067 1068 1069 1070
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1081 1082 1083
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1084
	 * Only if this is not possible, the sectors are picked from
1085 1086 1087 1088 1089
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1090
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1091 1092 1093 1094 1095 1096
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1097 1098 1099
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1100
		 */
1101 1102
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1112 1113
	}

1114
	/* Setup the context, map the logical blocks and alloc the sectors */
1115
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1116
	if (ret) {
1117 1118 1119 1120
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1121
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1122 1123 1124
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1125
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1126

1127
	/* build and submit the bios for the failed mirror, check checksums */
1128
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1129

1130 1131 1132
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1133
		 * The error disappeared after reading sector by sector, or
1134 1135 1136 1137 1138 1139
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1140 1141
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1142
		sblock_to_check->data_corrected = 1;
1143
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1144

1145 1146
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1147
		goto out;
A
Arne Jansen 已提交
1148 1149
	}

1150
	if (!sblock_bad->no_io_error_seen) {
1151 1152 1153
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1154
		if (__ratelimit(&rs))
1155
			scrub_print_warning("i/o error", sblock_to_check);
1156
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1157
	} else if (sblock_bad->checksum_error) {
1158 1159 1160
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1161
		if (__ratelimit(&rs))
1162
			scrub_print_warning("checksum error", sblock_to_check);
1163
		btrfs_dev_stat_inc_and_print(dev,
1164
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1165
	} else if (sblock_bad->header_error) {
1166 1167 1168
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1169
		if (__ratelimit(&rs))
1170 1171
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1172
		if (sblock_bad->generation_error)
1173
			btrfs_dev_stat_inc_and_print(dev,
1174 1175
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1176
			btrfs_dev_stat_inc_and_print(dev,
1177
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1178
	}
A
Arne Jansen 已提交
1179

1180 1181 1182 1183
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1184

1185 1186
	/*
	 * now build and submit the bios for the other mirrors, check
1187 1188
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1189 1190 1191 1192 1193
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1194
	 * checksum is present, only those sectors are rewritten that had
1195
	 * an I/O error in the block to be repaired, since it cannot be
1196 1197
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1198 1199
	 * overwritten by a bad one).
	 */
1200
	for (mirror_index = 0; ;mirror_index++) {
1201
		struct scrub_block *sblock_other;
1202

1203 1204
		if (mirror_index == failed_mirror_index)
			continue;
1205 1206

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1207
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1208 1209
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1210
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1211 1212
				break;

1213
			sblock_other = sblocks_for_recheck[mirror_index];
1214
		} else {
1215
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1216
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1217 1218 1219

			if (mirror_index >= max_allowed)
				break;
1220
			if (!sblocks_for_recheck[1]->sector_count)
1221 1222 1223
				break;

			ASSERT(failed_mirror_index == 0);
1224
			sblock_other = sblocks_for_recheck[1];
1225
			sblock_other->mirror_num = 1 + mirror_index;
1226
		}
1227 1228

		/* build and submit the bios, check checksums */
1229
		scrub_recheck_block(fs_info, sblock_other, 0);
1230 1231

		if (!sblock_other->header_error &&
1232 1233
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1234 1235
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1236
				goto corrected_error;
1237 1238
			} else {
				ret = scrub_repair_block_from_good_copy(
1239 1240 1241
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1242
			}
1243 1244
		}
	}
A
Arne Jansen 已提交
1245

1246 1247
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1248 1249 1250

	/*
	 * In case of I/O errors in the area that is supposed to be
1251 1252
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1253 1254 1255 1256 1257
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1258
	 * all possible combinations of sectors from the different mirrors
1259
	 * until the checksum verification succeeds. For example, when
1260
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1261
	 * of mirror #2 is readable but the final checksum test fails,
1262
	 * then the 2nd sector of mirror #3 could be tried, whether now
1263
	 * the final checksum succeeds. But this would be a rare
1264 1265 1266 1267
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1268
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1269
	 * mirror could be repaired by taking 512 byte of a different
1270
	 * mirror, even if other 512 byte sectors in the same sectorsize
1271
	 * area are unreadable.
A
Arne Jansen 已提交
1272
	 */
1273
	success = 1;
1274 1275
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1276
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1277
		struct scrub_block *sblock_other = NULL;
1278

1279 1280
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1281
			continue;
1282

1283
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1284 1285 1286 1287 1288 1289 1290 1291
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1292 1293
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1294 1295
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1296
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1297
			     mirror_index++) {
1298
				if (!sblocks_for_recheck[mirror_index]->
1299
				    sectors[sector_num]->io_error) {
1300
					sblock_other = sblocks_for_recheck[mirror_index];
1301
					break;
1302 1303
				}
			}
1304 1305
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1306
		}
A
Arne Jansen 已提交
1307

1308 1309
		if (sctx->is_dev_replace) {
			/*
1310 1311 1312 1313
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1314 1315 1316 1317
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1318 1319
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1320
				atomic64_inc(
1321
					&fs_info->dev_replace.num_write_errors);
1322 1323 1324
				success = 0;
			}
		} else if (sblock_other) {
1325 1326 1327
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1328
			if (0 == ret)
1329
				sector_bad->io_error = 0;
1330 1331
			else
				success = 0;
1332
		}
A
Arne Jansen 已提交
1333 1334
	}

1335
	if (success && !sctx->is_dev_replace) {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1346
			scrub_recheck_block(fs_info, sblock_bad, 1);
1347
			if (!sblock_bad->header_error &&
1348 1349 1350 1351 1352 1353 1354
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1355 1356
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1357
			sblock_to_check->data_corrected = 1;
1358
			spin_unlock(&sctx->stat_lock);
1359 1360
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1361
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1362
		}
1363 1364
	} else {
did_not_correct_error:
1365 1366 1367
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1368 1369
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1370
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1371
	}
A
Arne Jansen 已提交
1372

1373
out:
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1393
			}
1394
		}
1395
		scrub_block_put(sblock);
1396
	}
A
Arne Jansen 已提交
1397

1398
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1399
	memalloc_nofs_restore(nofs_flag);
1400 1401
	if (ret < 0)
		return ret;
1402 1403
	return 0;
}
A
Arne Jansen 已提交
1404

1405
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1406
{
1407
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1408
		return 2;
1409
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1410 1411
		return 3;
	else
1412
		return (int)bioc->num_stripes;
1413 1414
}

Z
Zhao Lei 已提交
1415 1416
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1417 1418 1419 1420 1421 1422
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1423
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1424 1425 1426 1427 1428 1429 1430
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1431
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1444
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1445
				     struct scrub_block *sblocks_for_recheck[])
1446
{
1447
	struct scrub_ctx *sctx = original_sblock->sctx;
1448
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1449
	u64 logical = original_sblock->logical;
1450 1451 1452 1453
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1454
	struct scrub_recover *recover;
1455
	struct btrfs_io_context *bioc;
1456 1457 1458 1459
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1460
	int sector_index = 0;
1461
	int mirror_index;
1462
	int nmirrors;
1463 1464 1465
	int ret;

	while (length > 0) {
1466
		sublen = min_t(u64, length, fs_info->sectorsize);
1467
		mapped_length = sublen;
1468
		bioc = NULL;
A
Arne Jansen 已提交
1469

1470
		/*
1471 1472
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1473
		 */
1474
		btrfs_bio_counter_inc_blocked(fs_info);
1475
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1476 1477 1478
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1479
			btrfs_bio_counter_dec(fs_info);
1480 1481
			return -EIO;
		}
A
Arne Jansen 已提交
1482

1483 1484
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1485
			btrfs_put_bioc(bioc);
1486
			btrfs_bio_counter_dec(fs_info);
1487 1488 1489
			return -ENOMEM;
		}

1490
		refcount_set(&recover->refs, 1);
1491
		recover->bioc = bioc;
1492 1493
		recover->map_length = mapped_length;

1494
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1495

1496
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1497

1498
		for (mirror_index = 0; mirror_index < nmirrors;
1499 1500
		     mirror_index++) {
			struct scrub_block *sblock;
1501
			struct scrub_sector *sector;
1502

1503
			sblock = sblocks_for_recheck[mirror_index];
1504
			sblock->sctx = sctx;
1505

1506
			sector = alloc_scrub_sector(sblock, logical, GFP_NOFS);
1507
			if (!sector) {
1508 1509 1510
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1511
				scrub_put_recover(fs_info, recover);
1512 1513
				return -ENOMEM;
			}
1514 1515 1516
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1517
			if (have_csum)
1518
				memcpy(sector->csum,
1519
				       original_sblock->sectors[0]->csum,
1520
				       sctx->fs_info->csum_size);
1521

Z
Zhao Lei 已提交
1522
			scrub_stripe_index_and_offset(logical,
1523 1524 1525 1526
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1527 1528 1529
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1542

1543
			BUG_ON(sector_index >= original_sblock->sector_count);
1544
			scrub_get_recover(recover);
1545
			sector->recover = recover;
1546
		}
1547
		scrub_put_recover(fs_info, recover);
1548 1549
		length -= sublen;
		logical += sublen;
1550
		sector_index++;
1551 1552 1553
	}

	return 0;
I
Ilya Dryomov 已提交
1554 1555
}

1556
static void scrub_bio_wait_endio(struct bio *bio)
1557
{
1558
	complete(bio->bi_private);
1559 1560 1561 1562
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1563
					struct scrub_sector *sector)
1564
{
1565
	DECLARE_COMPLETION_ONSTACK(done);
1566

1567 1568
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1569 1570
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1571
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1572

1573 1574
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1575 1576
}

L
Liu Bo 已提交
1577 1578 1579
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1580
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1581
	struct bio *bio;
1582
	int i;
L
Liu Bo 已提交
1583

1584
	/* All sectors in sblock belong to the same stripe on the same device. */
1585 1586
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1587 1588
		goto out;

1589
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1590

1591
	for (i = 0; i < sblock->sector_count; i++) {
1592
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1593

1594
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1595 1596
	}

1597
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1608 1609
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1610 1611 1612 1613

	sblock->no_io_error_seen = 0;
}

1614
/*
1615 1616 1617 1618 1619
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1620
 */
1621
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1622 1623
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1624
{
1625
	int i;
I
Ilya Dryomov 已提交
1626

1627
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1628

L
Liu Bo 已提交
1629
	/* short cut for raid56 */
1630
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1631 1632
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1633
	for (i = 0; i < sblock->sector_count; i++) {
1634
		struct scrub_sector *sector = sblock->sectors[i];
1635 1636
		struct bio bio;
		struct bio_vec bvec;
1637

1638
		if (sblock->dev->bdev == NULL) {
1639
			sector->io_error = 1;
1640 1641 1642 1643
			sblock->no_io_error_seen = 0;
			continue;
		}

1644
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1645
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1646 1647
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1648

1649 1650
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1651
			sector->io_error = 1;
L
Liu Bo 已提交
1652
			sblock->no_io_error_seen = 0;
1653
		}
1654

1655
		bio_uninit(&bio);
1656
	}
I
Ilya Dryomov 已提交
1657

1658
	if (sblock->no_io_error_seen)
1659
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1660 1661
}

1662
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1663
{
1664
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1665 1666
	int ret;

1667
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1668 1669 1670
	return !ret;
}

1671
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1672
{
1673 1674 1675
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1676

1677
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1678 1679 1680
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1681 1682
}

1683
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1684
					     struct scrub_block *sblock_good)
1685
{
1686
	int i;
1687
	int ret = 0;
I
Ilya Dryomov 已提交
1688

1689
	for (i = 0; i < sblock_bad->sector_count; i++) {
1690
		int ret_sub;
I
Ilya Dryomov 已提交
1691

1692 1693
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1694 1695
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1696
	}
1697 1698 1699 1700

	return ret;
}

1701 1702 1703
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1704
{
1705 1706
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1707
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1708
	const u32 sectorsize = fs_info->sectorsize;
1709 1710

	if (force_write || sblock_bad->header_error ||
1711
	    sblock_bad->checksum_error || sector_bad->io_error) {
1712 1713
		struct bio bio;
		struct bio_vec bvec;
1714 1715
		int ret;

1716
		if (!sblock_bad->dev->bdev) {
1717
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1718
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1719 1720 1721
			return -EIO;
		}

1722 1723 1724
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1725
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1726

1727 1728 1729
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1730

1731
		if (ret) {
1732
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1733
				BTRFS_DEV_STAT_WRITE_ERRS);
1734
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1735 1736
			return -EIO;
		}
A
Arne Jansen 已提交
1737 1738
	}

1739 1740 1741
	return 0;
}

1742 1743
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1744
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1745
	int i;
1746

1747 1748 1749 1750 1751 1752 1753
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1754
	for (i = 0; i < sblock->sector_count; i++) {
1755 1756
		int ret;

1757
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1758
		if (ret)
1759
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1760 1761 1762
	}
}

1763
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1764
{
1765
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1766
	struct scrub_sector *sector = sblock->sectors[sector_num];
1767

1768
	if (sector->io_error)
1769
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1770

1771
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1782 1783 1784
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1796 1797 1798 1799 1800
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1801 1802
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1803
{
1804
	struct scrub_block *sblock = sector->sblock;
1805 1806
	struct scrub_bio *sbio;
	int ret;
1807
	const u32 sectorsize = sctx->fs_info->sectorsize;
1808

1809
	mutex_lock(&sctx->wr_lock);
1810
again:
1811 1812
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1813
					      GFP_KERNEL);
1814 1815
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1816 1817
			return -ENOMEM;
		}
1818
		sctx->wr_curr_bio->sctx = sctx;
1819
		sctx->wr_curr_bio->sector_count = 0;
1820
	}
1821
	sbio = sctx->wr_curr_bio;
1822
	if (sbio->sector_count == 0) {
1823 1824
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
1825 1826 1827 1828 1829
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1830 1831
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
1832
		sbio->dev = sctx->wr_tgtdev;
1833 1834 1835
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1836
		}
1837 1838 1839
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1840
		sbio->status = 0;
1841
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1842
		   sblock->physical_for_dev_replace + sector->offset ||
1843
		   sbio->logical + sbio->sector_count * sectorsize !=
1844
		   sblock->logical + sector->offset) {
1845 1846 1847 1848
		scrub_wr_submit(sctx);
		goto again;
	}

1849
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1850
	if (ret != sectorsize) {
1851
		if (sbio->sector_count < 1) {
1852 1853
			bio_put(sbio->bio);
			sbio->bio = NULL;
1854
			mutex_unlock(&sctx->wr_lock);
1855 1856 1857 1858 1859 1860
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1861
	sbio->sectors[sbio->sector_count] = sector;
1862
	scrub_sector_get(sector);
1863 1864 1865 1866 1867 1868 1869
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

1870 1871
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1872
		scrub_wr_submit(sctx);
1873
	mutex_unlock(&sctx->wr_lock);
1874 1875 1876 1877 1878 1879 1880 1881

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1882
	if (!sctx->wr_curr_bio)
1883 1884
		return;

1885 1886
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1887 1888 1889 1890 1891
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1892 1893
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1894 1895

	if (btrfs_is_zoned(sctx->fs_info))
1896
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1897
			sctx->fs_info->sectorsize;
1898 1899
}

1900
static void scrub_wr_bio_end_io(struct bio *bio)
1901 1902
{
	struct scrub_bio *sbio = bio->bi_private;
1903
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1904

1905
	sbio->status = bio->bi_status;
1906 1907
	sbio->bio = bio;

1908 1909
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1910 1911
}

1912
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1913 1914 1915 1916 1917
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1918
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1919
	if (sbio->status) {
1920
		struct btrfs_dev_replace *dev_replace =
1921
			&sbio->sctx->fs_info->dev_replace;
1922

1923 1924
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1925

1926
			sector->io_error = 1;
1927
			atomic64_inc(&dev_replace->num_write_errors);
1928 1929 1930
		}
	}

1931 1932 1933 1934 1935 1936
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
1937
		scrub_sector_put(sbio->sectors[i]);
1938
	}
1939 1940 1941 1942 1943 1944 1945

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1946 1947 1948 1949
{
	u64 flags;
	int ret;

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1962 1963
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1964 1965 1966 1967 1968 1969
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1970
		ret = scrub_checksum_super(sblock);
1971 1972 1973 1974
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1975 1976

	return ret;
A
Arne Jansen 已提交
1977 1978
}

1979
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1980
{
1981
	struct scrub_ctx *sctx = sblock->sctx;
1982 1983
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1984
	u8 csum[BTRFS_CSUM_SIZE];
1985
	struct scrub_sector *sector;
1986
	char *kaddr;
A
Arne Jansen 已提交
1987

1988
	BUG_ON(sblock->sector_count < 1);
1989 1990
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1991 1992
		return 0;

1993
	kaddr = scrub_sector_get_kaddr(sector);
1994

1995 1996
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1997

1998
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1999

2000
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2001
		sblock->checksum_error = 1;
2002
	return sblock->checksum_error;
A
Arne Jansen 已提交
2003 2004
}

2005
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2006
{
2007
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2008
	struct btrfs_header *h;
2009
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2010
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2011 2012
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2013 2014 2015 2016 2017 2018 2019
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2020
	int i;
2021
	struct scrub_sector *sector;
2022
	char *kaddr;
2023

2024
	BUG_ON(sblock->sector_count < 1);
2025

2026
	/* Each member in sectors is just one sector */
2027
	ASSERT(sblock->sector_count == num_sectors);
2028

2029
	sector = sblock->sectors[0];
2030
	kaddr = scrub_sector_get_kaddr(sector);
2031
	h = (struct btrfs_header *)kaddr;
2032
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2033 2034 2035 2036 2037 2038

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2039
	if (sblock->logical != btrfs_stack_header_bytenr(h))
2040
		sblock->header_error = 1;
A
Arne Jansen 已提交
2041

2042
	if (sector->generation != btrfs_stack_header_generation(h)) {
2043 2044 2045
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2046

2047
	if (!scrub_check_fsid(h->fsid, sector))
2048
		sblock->header_error = 1;
A
Arne Jansen 已提交
2049 2050 2051

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2052
		sblock->header_error = 1;
A
Arne Jansen 已提交
2053

2054 2055 2056
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2057
			    sectorsize - BTRFS_CSUM_SIZE);
2058

2059
	for (i = 1; i < num_sectors; i++) {
2060
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2061
		crypto_shash_update(shash, kaddr, sectorsize);
2062 2063
	}

2064
	crypto_shash_final(shash, calculated_csum);
2065
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2066
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2067

2068
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2069 2070
}

2071
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2072 2073
{
	struct btrfs_super_block *s;
2074
	struct scrub_ctx *sctx = sblock->sctx;
2075 2076
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2077
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2078
	struct scrub_sector *sector;
2079
	char *kaddr;
2080 2081
	int fail_gen = 0;
	int fail_cor = 0;
2082

2083
	BUG_ON(sblock->sector_count < 1);
2084
	sector = sblock->sectors[0];
2085
	kaddr = scrub_sector_get_kaddr(sector);
2086
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2087

2088
	if (sblock->logical != btrfs_super_bytenr(s))
2089
		++fail_cor;
A
Arne Jansen 已提交
2090

2091
	if (sector->generation != btrfs_super_generation(s))
2092
		++fail_gen;
A
Arne Jansen 已提交
2093

2094
	if (!scrub_check_fsid(s->fsid, sector))
2095
		++fail_cor;
A
Arne Jansen 已提交
2096

2097 2098 2099 2100
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2101

2102
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2103
		++fail_cor;
A
Arne Jansen 已提交
2104

2105
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2106 2107
}

2108 2109
static void scrub_block_put(struct scrub_block *sblock)
{
2110
	if (refcount_dec_and_test(&sblock->refs)) {
2111 2112
		int i;

2113 2114 2115
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2116
		for (i = 0; i < sblock->sector_count; i++)
2117
			scrub_sector_put(sblock->sectors[i]);
2118 2119 2120 2121 2122 2123
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2124 2125 2126 2127
		kfree(sblock);
	}
}

2128
static void scrub_sector_get(struct scrub_sector *sector)
2129
{
2130
	atomic_inc(&sector->refs);
2131 2132
}

2133
static void scrub_sector_put(struct scrub_sector *sector)
2134
{
2135
	if (atomic_dec_and_test(&sector->refs))
2136
		kfree(sector);
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2198
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2199 2200 2201
{
	struct scrub_bio *sbio;

2202
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2203
		return;
A
Arne Jansen 已提交
2204

2205 2206
	scrub_throttle(sctx);

2207 2208
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2209
	scrub_pending_bio_inc(sctx);
2210 2211
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2212 2213
}

2214 2215
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2216
{
2217
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2218
	struct scrub_bio *sbio;
2219
	const u32 sectorsize = sctx->fs_info->sectorsize;
2220
	int ret;
A
Arne Jansen 已提交
2221 2222 2223 2224 2225

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2226 2227 2228 2229 2230 2231
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2232
			sctx->bios[sctx->curr]->sector_count = 0;
2233
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2234
		} else {
2235 2236
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2237 2238
		}
	}
2239
	sbio = sctx->bios[sctx->curr];
2240
	if (sbio->sector_count == 0) {
2241 2242 2243
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
2244 2245 2246
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2247
		}
2248 2249 2250
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2251
		sbio->status = 0;
2252
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2253
		   sblock->physical + sector->offset ||
2254
		   sbio->logical + sbio->sector_count * sectorsize !=
2255 2256
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
2257
		scrub_submit(sctx);
A
Arne Jansen 已提交
2258 2259
		goto again;
	}
2260

2261
	sbio->sectors[sbio->sector_count] = sector;
2262
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2263
	if (ret != sectorsize) {
2264
		if (sbio->sector_count < 1) {
2265 2266 2267 2268
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2269
		scrub_submit(sctx);
2270 2271 2272
		goto again;
	}

2273
	scrub_block_get(sblock); /* one for the page added to the bio */
2274
	atomic_inc(&sblock->outstanding_sectors);
2275 2276
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2277
		scrub_submit(sctx);
2278 2279 2280 2281

	return 0;
}

2282
static void scrub_missing_raid56_end_io(struct bio *bio)
2283 2284
{
	struct scrub_block *sblock = bio->bi_private;
2285
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2286

2287
	btrfs_bio_counter_dec(fs_info);
2288
	if (bio->bi_status)
2289 2290
		sblock->no_io_error_seen = 0;

2291 2292
	bio_put(bio);

2293
	queue_work(fs_info->scrub_workers, &sblock->work);
2294 2295
}

2296
static void scrub_missing_raid56_worker(struct work_struct *work)
2297 2298 2299
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2300
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2301 2302 2303
	u64 logical;
	struct btrfs_device *dev;

2304 2305
	logical = sblock->logical;
	dev = sblock->dev;
2306

2307
	if (sblock->no_io_error_seen)
2308
		scrub_recheck_block_checksum(sblock);
2309 2310 2311 2312 2313

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2314
		btrfs_err_rl_in_rcu(fs_info,
2315
			"IO error rebuilding logical %llu for dev %s",
2316 2317 2318 2319 2320
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2321
		btrfs_err_rl_in_rcu(fs_info,
2322
			"failed to rebuild valid logical %llu for dev %s",
2323 2324 2325 2326 2327
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2328
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2329
		mutex_lock(&sctx->wr_lock);
2330
		scrub_wr_submit(sctx);
2331
		mutex_unlock(&sctx->wr_lock);
2332 2333
	}

2334
	scrub_block_put(sblock);
2335 2336 2337 2338 2339 2340
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2341
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2342
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2343
	u64 logical = sblock->logical;
2344
	struct btrfs_io_context *bioc = NULL;
2345 2346 2347 2348 2349
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2350
	btrfs_bio_counter_inc_blocked(fs_info);
2351
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2352 2353 2354
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2355 2356

	if (WARN_ON(!sctx->is_dev_replace ||
2357
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2358 2359 2360 2361
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2362
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2363
		 */
2364
		goto bioc_out;
2365 2366
	}

2367
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2368 2369 2370 2371
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2372
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2373 2374 2375
	if (!rbio)
		goto rbio_out;

2376
	for (i = 0; i < sblock->sector_count; i++) {
2377
		struct scrub_sector *sector = sblock->sectors[i];
2378

2379 2380
		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
				       scrub_sector_get_page_offset(sector),
2381
				       sector->offset + sector->sblock->logical);
2382 2383
	}

2384
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2385 2386 2387
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
2388
	btrfs_put_bioc(bioc);
2389 2390 2391 2392
	return;

rbio_out:
	bio_put(bio);
2393
bioc_out:
2394
	btrfs_bio_counter_dec(fs_info);
2395
	btrfs_put_bioc(bioc);
2396 2397 2398 2399 2400
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2401
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2402
		       u64 physical, struct btrfs_device *dev, u64 flags,
2403
		       u64 gen, int mirror_num, u8 *csum,
2404
		       u64 physical_for_dev_replace)
2405 2406
{
	struct scrub_block *sblock;
2407
	const u32 sectorsize = sctx->fs_info->sectorsize;
2408 2409
	int index;

2410 2411
	sblock = alloc_scrub_block(sctx, dev, logical, physical,
				   physical_for_dev_replace, mirror_num);
2412
	if (!sblock) {
2413 2414 2415
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2416
		return -ENOMEM;
A
Arne Jansen 已提交
2417
	}
2418 2419

	for (index = 0; len > 0; index++) {
2420
		struct scrub_sector *sector;
2421 2422 2423 2424 2425 2426
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2427

2428
		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2429
		if (!sector) {
2430 2431 2432
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2433
			scrub_block_put(sblock);
2434 2435
			return -ENOMEM;
		}
2436 2437
		sector->flags = flags;
		sector->generation = gen;
2438
		if (csum) {
2439 2440
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2441
		} else {
2442
			sector->have_csum = 0;
2443 2444 2445 2446
		}
		len -= l;
		logical += l;
		physical += l;
2447
		physical_for_dev_replace += l;
2448 2449
	}

2450
	WARN_ON(sblock->sector_count == 0);
2451
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2452 2453 2454 2455 2456 2457
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2458
		for (index = 0; index < sblock->sector_count; index++) {
2459
			struct scrub_sector *sector = sblock->sectors[index];
2460
			int ret;
2461

2462
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2463 2464 2465 2466
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2467
		}
A
Arne Jansen 已提交
2468

2469
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2470 2471
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2472

2473 2474
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2475 2476 2477
	return 0;
}

2478
static void scrub_bio_end_io(struct bio *bio)
2479 2480
{
	struct scrub_bio *sbio = bio->bi_private;
2481
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2482

2483
	sbio->status = bio->bi_status;
2484 2485
	sbio->bio = bio;

2486
	queue_work(fs_info->scrub_workers, &sbio->work);
2487 2488
}

2489
static void scrub_bio_end_io_worker(struct work_struct *work)
2490 2491
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2492
	struct scrub_ctx *sctx = sbio->sctx;
2493 2494
	int i;

2495
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2496
	if (sbio->status) {
2497 2498
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2499

2500 2501
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2502 2503 2504
		}
	}

2505
	/* Now complete the scrub_block items that have all pages completed */
2506 2507
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2508
		struct scrub_block *sblock = sector->sblock;
2509

2510
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2511 2512 2513 2514 2515 2516
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2517 2518 2519 2520
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2521

2522
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2523
		mutex_lock(&sctx->wr_lock);
2524
		scrub_wr_submit(sctx);
2525
		mutex_unlock(&sctx->wr_lock);
2526 2527
	}

2528
	scrub_pending_bio_dec(sctx);
2529 2530
}

2531 2532
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2533
				       u64 start, u32 len)
2534
{
2535
	u64 offset;
2536
	u32 nsectors;
2537
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2538 2539 2540 2541 2542 2543 2544

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2545
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2546
	offset = offset >> sectorsize_bits;
2547
	nsectors = len >> sectorsize_bits;
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2559
						   u64 start, u32 len)
2560
{
2561
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2562 2563 2564
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2565
						  u64 start, u32 len)
2566
{
2567
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2568 2569
}

2570 2571
static void scrub_block_complete(struct scrub_block *sblock)
{
2572 2573
	int corrupted = 0;

2574
	if (!sblock->no_io_error_seen) {
2575
		corrupted = 1;
2576
		scrub_handle_errored_block(sblock);
2577 2578 2579 2580 2581 2582
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2583 2584
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2585 2586
			scrub_write_block_to_dev_replace(sblock);
	}
2587 2588

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2589 2590 2591
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
2592
			  sblock->sctx->fs_info->sectorsize;
2593

2594
		ASSERT(end - start <= U32_MAX);
2595 2596 2597
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2612
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2613 2614 2615 2616 2617
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2618
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2619
{
2620
	bool found = false;
A
Arne Jansen 已提交
2621

2622
	while (!list_empty(&sctx->csum_list)) {
2623 2624 2625 2626
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2627
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2628
				       struct btrfs_ordered_sum, list);
2629
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2630 2631 2632
		if (sum->bytenr > logical)
			break;

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2643

2644 2645 2646 2647
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2648

2649 2650 2651 2652 2653 2654 2655
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2656
	}
2657 2658
	if (!found)
		return 0;
2659
	return 1;
A
Arne Jansen 已提交
2660 2661 2662
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2663
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2664
			u64 logical, u32 len,
2665
			u64 physical, struct btrfs_device *dev, u64 flags,
2666
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2667
{
2668 2669 2670
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2671 2672
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2673 2674
	u32 blocksize;

2675 2676 2677 2678 2679 2680
	/*
	 * Block size determines how many scrub_block will be allocated.  Here
	 * we use BTRFS_STRIPE_LEN (64KiB) as default limit, so we won't
	 * allocate too many scrub_block, while still won't cause too large
	 * bios for large extents.
	 */
2681
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2682 2683 2684
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
2685
			blocksize = BTRFS_STRIPE_LEN;
2686 2687 2688 2689
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2690
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2691 2692 2693 2694
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2695 2696 2697 2698
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2699
	} else {
2700
		blocksize = sctx->fs_info->sectorsize;
2701
		WARN_ON(1);
2702
	}
A
Arne Jansen 已提交
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2716
	while (len) {
2717
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2718 2719 2720 2721
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2722
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2723
			if (have_csum == 0)
2724
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2725
		}
2726 2727 2728
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2729 2730 2731 2732 2733
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2734
		src_physical += l;
A
Arne Jansen 已提交
2735 2736 2737 2738
	}
	return 0;
}

2739
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2740
				  u64 logical, u32 len,
2741 2742 2743 2744 2745
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2746
	const u32 sectorsize = sctx->fs_info->sectorsize;
2747 2748
	int index;

2749 2750
	ASSERT(IS_ALIGNED(len, sectorsize));

2751
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2763
		struct scrub_sector *sector;
2764

2765
		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2766
		if (!sector) {
2767 2768 2769 2770 2771 2772
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2773
		sblock->sectors[index] = sector;
2774
		/* For scrub parity */
2775 2776 2777 2778
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
2779
		if (csum) {
2780 2781
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2782
		} else {
2783
			sector->have_csum = 0;
2784
		}
2785 2786 2787 2788 2789

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2790 2791
	}

2792 2793
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2794
		struct scrub_sector *sector = sblock->sectors[index];
2795 2796
		int ret;

2797
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2798 2799 2800 2801 2802 2803
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2804
	/* Last one frees, either here or in bio completion for last sector */
2805 2806 2807 2808 2809
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2810
				   u64 logical, u32 len,
2811 2812 2813 2814 2815 2816 2817 2818
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2819
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2820 2821 2822 2823
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2824
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2825
		blocksize = sparity->stripe_len;
2826
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2827
		blocksize = sparity->stripe_len;
2828
	} else {
2829
		blocksize = sctx->fs_info->sectorsize;
2830 2831 2832 2833
		WARN_ON(1);
	}

	while (len) {
2834
		u32 l = min(len, blocksize);
2835 2836 2837 2838
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2839
			have_csum = scrub_find_csum(sctx, logical, csum);
2840 2841 2842
			if (have_csum == 0)
				goto skip;
		}
2843
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2844 2845 2846 2847
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2848
skip:
2849 2850 2851 2852 2853 2854 2855
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2856 2857 2858 2859 2860 2861 2862 2863
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2864 2865
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2866 2867 2868 2869 2870
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2871 2872
	u32 stripe_index;
	u32 rot;
2873
	const int data_stripes = nr_data_stripes(map);
2874

2875
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2876 2877 2878
	if (stripe_start)
		*stripe_start = last_offset;

2879
	*offset = last_offset;
2880
	for (i = 0; i < data_stripes; i++) {
2881 2882
		*offset = last_offset + i * map->stripe_len;

2883
		stripe_nr = div64_u64(*offset, map->stripe_len);
2884
		stripe_nr = div_u64(stripe_nr, data_stripes);
2885 2886

		/* Work out the disk rotation on this stripe-set */
2887
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2888 2889
		/* calculate which stripe this data locates */
		rot += i;
2890
		stripe_index = rot % map->num_stripes;
2891 2892 2893 2894 2895 2896 2897 2898 2899
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2900 2901 2902
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2903
	struct scrub_sector *curr, *next;
2904 2905
	int nbits;

2906
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2907 2908 2909 2910 2911 2912 2913
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2914
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2915
		list_del_init(&curr->list);
2916
		scrub_sector_put(curr);
2917 2918 2919 2920 2921
	}

	kfree(sparity);
}

2922
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2923 2924 2925 2926 2927
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

2928
	btrfs_bio_counter_dec(sctx->fs_info);
2929 2930 2931 2932
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2933
static void scrub_parity_bio_endio(struct bio *bio)
2934
{
Y
Yu Zhe 已提交
2935
	struct scrub_parity *sparity = bio->bi_private;
2936
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2937

2938
	if (bio->bi_status)
2939 2940
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2941 2942

	bio_put(bio);
2943

2944 2945
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2946 2947 2948 2949 2950
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2951
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2952 2953
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2954
	struct btrfs_io_context *bioc = NULL;
2955 2956 2957
	u64 length;
	int ret;

2958 2959
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
2960 2961
		goto out;

2962
	length = sparity->logic_end - sparity->logic_start;
2963 2964

	btrfs_bio_counter_inc_blocked(fs_info);
2965
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2966 2967 2968
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2969

2970
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2971 2972 2973 2974
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2975
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2976
					      sparity->scrub_dev,
2977
					      &sparity->dbitmap,
2978
					      sparity->nsectors);
2979
	btrfs_put_bioc(bioc);
2980 2981 2982 2983 2984 2985 2986 2987 2988
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2989
bioc_out:
2990
	btrfs_bio_counter_dec(fs_info);
2991
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3002
	refcount_inc(&sparity->refs);
3003 3004 3005 3006
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3007
	if (!refcount_dec_and_test(&sparity->refs))
3008 3009 3010 3011 3012
		return;

	scrub_parity_check_and_repair(sparity);
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3139 3140 3141 3142 3143 3144 3145 3146 3147
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3158
	u64 cur_logical = logical;
3159 3160 3161 3162 3163 3164 3165
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3166
	while (cur_logical < logical + map->stripe_len) {
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3177 3178 3179 3180 3181
		ret = find_first_extent_item(extent_root, path, cur_logical,
					     logical + map->stripe_len - cur_logical);
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3182 3183
			break;
		}
3184
		if (ret < 0)
3185
			break;
3186 3187
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3188

3189
		/* Metadata should not cross stripe boundaries */
3190
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3191 3192
		    does_range_cross_boundary(extent_start, extent_size,
					      logical, map->stripe_len)) {
3193
			btrfs_err(fs_info,
3194 3195
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3196 3197 3198
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3199 3200
			cur_logical += extent_size;
			continue;
3201 3202
		}

3203 3204
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3205

3206 3207 3208 3209 3210
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
				  logical + map->stripe_len) - cur_logical;
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

		ret = btrfs_lookup_csums_range(csum_root, extent_start,
					       extent_start + extent_size - 1,
3232
					       &sctx->csum_list, 1, false);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3252
		cur_logical += extent_size;
3253 3254 3255 3256 3257
	}
	btrfs_release_path(path);
	return ret;
}

3258 3259 3260 3261 3262 3263
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3264
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3265
	struct btrfs_path *path;
3266
	u64 cur_logical;
3267 3268 3269 3270
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3281
	ASSERT(map->stripe_len <= U32_MAX);
3282
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3283 3284
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3285 3286 3287 3288
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3289
		btrfs_free_path(path);
3290 3291 3292
		return -ENOMEM;
	}

3293
	ASSERT(map->stripe_len <= U32_MAX);
3294 3295 3296 3297 3298 3299
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3300
	refcount_set(&sparity->refs, 1);
3301
	INIT_LIST_HEAD(&sparity->sectors_list);
3302 3303

	ret = 0;
3304 3305 3306 3307
	for (cur_logical = logic_start; cur_logical < logic_end;
	     cur_logical += map->stripe_len) {
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3308 3309
		if (ret < 0)
			break;
3310
	}
3311

3312 3313
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3314
	mutex_lock(&sctx->wr_lock);
3315
	scrub_wr_submit(sctx);
3316
	mutex_unlock(&sctx->wr_lock);
3317

3318
	btrfs_free_path(path);
3319 3320 3321
	return ret < 0 ? ret : 0;
}

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3421
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
3458
					&sctx->csum_list, 1, false);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3474 3475 3476 3477
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3562
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3563
					   struct btrfs_block_group *bg,
3564
					   struct extent_map *em,
3565
					   struct btrfs_device *scrub_dev,
3566
					   int stripe_index)
A
Arne Jansen 已提交
3567
{
3568
	struct btrfs_path *path;
3569
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3570
	struct btrfs_root *root;
3571
	struct btrfs_root *csum_root;
3572
	struct blk_plug plug;
3573
	struct map_lookup *map = em->map_lookup;
3574
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3575
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3576
	int ret;
3577
	u64 physical = map->stripes[stripe_index].physical;
3578 3579
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3580
	u64 logical;
L
Liu Bo 已提交
3581
	u64 logic_end;
3582
	/* The logical increment after finishing one stripe */
3583
	u64 increment;
3584
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3585
	u64 offset;
3586 3587
	u64 stripe_logical;
	u64 stripe_end;
3588
	int stop_loop = 0;
D
David Woodhouse 已提交
3589

A
Arne Jansen 已提交
3590 3591 3592 3593
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3594 3595 3596 3597 3598
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3599 3600
	path->search_commit_root = 1;
	path->skip_locking = 1;
3601
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3602

3603
	wait_event(sctx->list_wait,
3604
		   atomic_read(&sctx->bios_in_flight) == 0);
3605
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3606

3607 3608
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3609

A
Arne Jansen 已提交
3610 3611 3612 3613
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3614
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3615

3616 3617 3618 3619 3620 3621 3622 3623
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3645
		offset = 0;
3646 3647
		goto out;
	}
3648 3649 3650
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3651
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3652 3653 3654 3655 3656
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3657
	ret = 0;
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3668 3669 3670 3671
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3672
	while (physical < physical_end) {
3673 3674
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3685
			goto next;
3686 3687
		}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3699 3700 3701 3702 3703
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3704
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3705
		if (stop_loop)
3706 3707
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3708 3709
		else
			sctx->stat.last_physical = physical;
3710
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3711 3712
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3713
	}
3714
out:
A
Arne Jansen 已提交
3715
	/* push queued extents */
3716
	scrub_submit(sctx);
3717
	mutex_lock(&sctx->wr_lock);
3718
	scrub_wr_submit(sctx);
3719
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3720

3721
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3722
	btrfs_free_path(path);
3723 3724 3725 3726

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3727 3728 3729 3730
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3731 3732 3733 3734
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3735 3736 3737
	return ret < 0 ? ret : 0;
}

3738
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3739
					  struct btrfs_block_group *bg,
3740
					  struct btrfs_device *scrub_dev,
3741
					  u64 dev_offset,
3742
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3743
{
3744
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3745
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3746 3747 3748
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3749
	int ret = 0;
A
Arne Jansen 已提交
3750

3751
	read_lock(&map_tree->lock);
3752
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3753
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3754

3755 3756 3757 3758 3759
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3760
		spin_lock(&bg->lock);
3761
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3762
			ret = -EINVAL;
3763
		spin_unlock(&bg->lock);
3764 3765 3766

		return ret;
	}
3767
	if (em->start != bg->start)
A
Arne Jansen 已提交
3768
		goto out;
3769
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3770 3771
		goto out;

3772
	map = em->map_lookup;
A
Arne Jansen 已提交
3773
	for (i = 0; i < map->num_stripes; ++i) {
3774
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3775
		    map->stripes[i].physical == dev_offset) {
3776
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3806
static noinline_for_stack
3807
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3808
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3809 3810 3811
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3812 3813
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3814
	u64 chunk_offset;
3815
	int ret = 0;
3816
	int ro_set;
A
Arne Jansen 已提交
3817 3818 3819 3820
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3821
	struct btrfs_block_group *cache;
3822
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3823 3824 3825 3826 3827

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3828
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3829 3830 3831
	path->search_commit_root = 1;
	path->skip_locking = 1;

3832
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3833 3834 3835 3836
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3837 3838
		u64 dev_extent_len;

A
Arne Jansen 已提交
3839 3840
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3841 3842 3843 3844 3845
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3846 3847 3848 3849
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3850
					break;
3851 3852 3853
				}
			} else {
				ret = 0;
3854 3855
			}
		}
A
Arne Jansen 已提交
3856 3857 3858 3859 3860 3861

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3862
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3863 3864
			break;

3865
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3875
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3876

3877
		if (found_key.offset + dev_extent_len <= start)
3878
			goto skip;
A
Arne Jansen 已提交
3879 3880 3881 3882 3883 3884 3885 3886

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3887 3888 3889 3890 3891 3892

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3918
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3919
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3920
				spin_unlock(&cache->lock);
3921 3922
				btrfs_put_block_group(cache);
				goto skip;
3923 3924 3925
			}
		}

3926 3927 3928 3929 3930 3931 3932 3933 3934
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
3935
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3936 3937 3938 3939
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3940
		btrfs_freeze_block_group(cache);
3941 3942
		spin_unlock(&cache->lock);

3943 3944 3945 3946 3947 3948 3949 3950 3951
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3982
		 */
3983
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3994 3995
		if (ret == 0) {
			ro_set = 1;
3996
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3997 3998 3999
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4000
			 * It is not a problem for scrub, because
4001 4002 4003 4004
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4005 4006 4007 4008 4009 4010 4011
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4012
		} else {
J
Jeff Mahoney 已提交
4013
			btrfs_warn(fs_info,
4014
				   "failed setting block group ro: %d", ret);
4015
			btrfs_unfreeze_block_group(cache);
4016
			btrfs_put_block_group(cache);
4017
			scrub_pause_off(fs_info);
4018 4019 4020
			break;
		}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4033
		down_write(&dev_replace->rwsem);
4034
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4035 4036
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4037 4038
		up_write(&dev_replace->rwsem);

4039 4040
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
4052
		sctx->flush_all_writes = true;
4053
		scrub_submit(sctx);
4054
		mutex_lock(&sctx->wr_lock);
4055
		scrub_wr_submit(sctx);
4056
		mutex_unlock(&sctx->wr_lock);
4057 4058 4059

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
4060 4061

		scrub_pause_on(fs_info);
4062 4063 4064 4065 4066 4067

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4068 4069
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4070
		sctx->flush_all_writes = false;
4071

4072
		scrub_pause_off(fs_info);
4073

4074 4075 4076 4077 4078
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4079
		down_write(&dev_replace->rwsem);
4080 4081
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4082
		up_write(&dev_replace->rwsem);
4083

4084
		if (ro_set)
4085
			btrfs_dec_block_group_ro(cache);
4086

4087 4088 4089 4090 4091 4092 4093 4094
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4095 4096
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4097
			spin_unlock(&cache->lock);
4098 4099 4100 4101 4102
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4103 4104 4105
		} else {
			spin_unlock(&cache->lock);
		}
4106
skip_unfreeze:
4107
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4108 4109 4110
		btrfs_put_block_group(cache);
		if (ret)
			break;
4111
		if (sctx->is_dev_replace &&
4112
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4113 4114 4115 4116 4117 4118 4119
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4120
skip:
4121
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4122
		btrfs_release_path(path);
A
Arne Jansen 已提交
4123 4124 4125
	}

	btrfs_free_path(path);
4126

4127
	return ret;
A
Arne Jansen 已提交
4128 4129
}

4130 4131
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4132 4133 4134 4135 4136
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4137
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4138

J
Josef Bacik 已提交
4139
	if (BTRFS_FS_ERROR(fs_info))
4140
		return -EROFS;
4141

4142
	/* Seed devices of a new filesystem has their own generation. */
4143
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4144 4145
		gen = scrub_dev->generation;
	else
4146
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4147 4148 4149

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4150 4151
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4152
			break;
4153 4154
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4155

4156 4157 4158
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4159 4160 4161
		if (ret)
			return ret;
	}
4162
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4163 4164 4165 4166

	return 0;
}

4167 4168 4169 4170
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4171 4172 4173 4174 4175
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4176 4177 4178 4179 4180 4181

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4182 4183 4184 4185 4186 4187
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4188 4189 4190
	}
}

A
Arne Jansen 已提交
4191 4192 4193
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4194 4195
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4196
{
4197 4198 4199
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4200
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4201
	int max_active = fs_info->thread_pool_size;
4202
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4203

4204 4205
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4206

4207 4208
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4209 4210
	if (!scrub_workers)
		goto fail_scrub_workers;
4211

4212
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4213 4214
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4215

4216
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4228
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4229 4230
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4231
	}
4232 4233 4234
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4235

4236
	ret = 0;
4237
	destroy_workqueue(scrub_parity);
4238
fail_scrub_parity_workers:
4239
	destroy_workqueue(scrub_wr_comp);
4240
fail_scrub_wr_completion_workers:
4241
	destroy_workqueue(scrub_workers);
4242
fail_scrub_workers:
4243
	return ret;
A
Arne Jansen 已提交
4244 4245
}

4246 4247
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4248
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4249
{
4250
	struct btrfs_dev_lookup_args args = { .devid = devid };
4251
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4252 4253
	int ret;
	struct btrfs_device *dev;
4254
	unsigned int nofs_flag;
4255
	bool need_commit = false;
A
Arne Jansen 已提交
4256

4257
	if (btrfs_fs_closing(fs_info))
4258
		return -EAGAIN;
A
Arne Jansen 已提交
4259

4260 4261
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4262

4263 4264 4265 4266 4267 4268 4269
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4270

4271 4272 4273 4274
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4275

4276 4277 4278 4279
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4280
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4281
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4282 4283
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4284
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4285
		ret = -ENODEV;
4286
		goto out;
A
Arne Jansen 已提交
4287 4288
	}

4289 4290
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4291
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4292 4293 4294
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4295
		ret = -EROFS;
4296
		goto out;
4297 4298
	}

4299
	mutex_lock(&fs_info->scrub_lock);
4300
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4301
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4302
		mutex_unlock(&fs_info->scrub_lock);
4303
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4304
		ret = -EIO;
4305
		goto out;
A
Arne Jansen 已提交
4306 4307
	}

4308
	down_read(&fs_info->dev_replace.rwsem);
4309
	if (dev->scrub_ctx ||
4310 4311
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4312
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4313
		mutex_unlock(&fs_info->scrub_lock);
4314
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4315
		ret = -EINPROGRESS;
4316
		goto out;
A
Arne Jansen 已提交
4317
	}
4318
	up_read(&fs_info->dev_replace.rwsem);
4319

4320
	sctx->readonly = readonly;
4321
	dev->scrub_ctx = sctx;
4322
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4323

4324 4325 4326 4327
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4328
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4329 4330 4331
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4332 4333 4334
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4335
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4336 4337 4338 4339 4340 4341
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4342
	if (!is_dev_replace) {
4343 4344 4345 4346 4347 4348
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4349
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4350 4351 4352 4353
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4354
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4355
		ret = scrub_supers(sctx, dev);
4356
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4367
	}
A
Arne Jansen 已提交
4368 4369

	if (!ret)
4370
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4371
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4372

4373
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4374 4375 4376
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4377
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4378

A
Arne Jansen 已提交
4379
	if (progress)
4380
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4381

4382 4383 4384 4385
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4386
	mutex_lock(&fs_info->scrub_lock);
4387
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4388 4389
	mutex_unlock(&fs_info->scrub_lock);

4390
	scrub_workers_put(fs_info);
4391
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4392

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4412
	return ret;
4413 4414
out:
	scrub_workers_put(fs_info);
4415 4416 4417
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4418 4419 4420
	return ret;
}

4421
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4436
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4437 4438 4439 4440 4441
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4442
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4463
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4464
{
4465
	struct btrfs_fs_info *fs_info = dev->fs_info;
4466
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4467 4468

	mutex_lock(&fs_info->scrub_lock);
4469
	sctx = dev->scrub_ctx;
4470
	if (!sctx) {
A
Arne Jansen 已提交
4471 4472 4473
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4474
	atomic_inc(&sctx->cancel_req);
4475
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4476 4477
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4478
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4479 4480 4481 4482 4483 4484
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4485

4486
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4487 4488
			 struct btrfs_scrub_progress *progress)
{
4489
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4490
	struct btrfs_device *dev;
4491
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4492

4493
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4494
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4495
	if (dev)
4496
		sctx = dev->scrub_ctx;
4497 4498
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4499
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4500

4501
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4502
}
4503

4504 4505 4506 4507 4508
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4509 4510
{
	u64 mapped_length;
4511
	struct btrfs_io_context *bioc = NULL;
4512 4513 4514
	int ret;

	mapped_length = extent_len;
4515
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4516 4517 4518 4519
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4520 4521 4522
		return;
	}

4523 4524 4525 4526
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4527
}