scrub.c 113.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_PAGES_PER_BIO	32	/* 128KiB per bio for x86 */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for x86 */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90
	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
91
	int			page_count;
A
Arne Jansen 已提交
92 93 94 95
	int			next_free;
	struct btrfs_work	work;
};

96
struct scrub_block {
97
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
98 99
	int			page_count;
	atomic_t		outstanding_pages;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct btrfs_work	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

146
	unsigned long		bitmap[];
147 148
};

149
struct scrub_ctx {
150
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
152 153
	int			first_free;
	int			curr;
154 155
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
156 157 158 159
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
160
	int			readonly;
161
	int			pages_per_bio;
162

163 164 165 166
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

167
	int			is_dev_replace;
168
	u64			write_pointer;
169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191 192 193 194
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
195
	u64			physical;
196 197 198 199
	u64			logical;
	struct btrfs_device	*dev;
};

200 201 202 203 204 205 206
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

207
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208
				     struct scrub_block *sblocks_for_recheck);
209
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 211
				struct scrub_block *sblock,
				int retry_failed_mirror);
212
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214
					     struct scrub_block *sblock_good);
215 216 217
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
218 219 220
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
227 228
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
229
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
230
		       u64 physical, struct btrfs_device *dev, u64 flags,
231
		       u64 gen, int mirror_num, u8 *csum,
232
		       u64 physical_for_dev_replace);
233
static void scrub_bio_end_io(struct bio *bio);
234 235
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
236
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237
			       u64 extent_logical, u32 extent_len,
238 239 240 241 242 243
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
244
static void scrub_wr_bio_end_io(struct bio *bio);
245
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
247

248
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
249
{
250
	return spage->recover &&
251
	       (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252
}
S
Stefan Behrens 已提交
253

254 255
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
256
	refcount_inc(&sctx->refs);
257 258 259 260 261 262 263
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
264
	scrub_put_ctx(sctx);
265 266
}

267
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 269 270 271 272 273 274 275 276
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

277
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 279 280
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
281
}
282

283 284
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
285 286 287 288 289 290 291 292
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

293 294 295 296 297 298
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

318
	lockdep_assert_held(&locks_root->lock);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

334 335 336
	/*
	 * Insert new lock.
	 */
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

362
	lockdep_assert_held(&locks_root->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
382
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 384 385 386 387 388 389 390 391 392 393 394 395
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
396 397
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
415
	struct btrfs_block_group *bg_cache;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
462
	struct btrfs_block_group *bg_cache;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

516
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
517
{
518
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
519
		struct btrfs_ordered_sum *sum;
520
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
521 522 523 524 525 526
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

527
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528 529 530
{
	int i;

531
	if (!sctx)
A
Arne Jansen 已提交
532 533
		return;

534
	/* this can happen when scrub is cancelled */
535 536
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537 538

		for (i = 0; i < sbio->page_count; i++) {
539
			WARN_ON(!sbio->pagev[i]->page);
540 541 542 543 544
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

545
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
547 548 549 550 551 552

		if (!sbio)
			break;
		kfree(sbio);
	}

553
	kfree(sctx->wr_curr_bio);
554 555
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
556 557
}

558 559
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
560
	if (refcount_dec_and_test(&sctx->refs))
561 562 563
		scrub_free_ctx(sctx);
}

564 565
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
566
{
567
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
568 569
	int		i;

570
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571
	if (!sctx)
A
Arne Jansen 已提交
572
		goto nomem;
573
	refcount_set(&sctx->refs, 1);
574
	sctx->is_dev_replace = is_dev_replace;
575
	sctx->pages_per_bio = SCRUB_PAGES_PER_BIO;
576
	sctx->curr = -1;
577
	sctx->fs_info = fs_info;
578
	INIT_LIST_HEAD(&sctx->csum_list);
579
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
580 581
		struct scrub_bio *sbio;

582
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
583 584
		if (!sbio)
			goto nomem;
585
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
586 587

		sbio->index = i;
588
		sbio->sctx = sctx;
589
		sbio->page_count = 0;
590 591
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
592

593
		if (i != SCRUB_BIOS_PER_SCTX - 1)
594
			sctx->bios[i]->next_free = i + 1;
595
		else
596 597 598
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
599 600
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
601 602 603 604 605
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
606
	sctx->throttle_deadline = 0;
607

608 609 610
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
611
	if (is_dev_replace) {
612 613
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
614
		sctx->flush_all_writes = false;
615
	}
616

617
	return sctx;
A
Arne Jansen 已提交
618 619

nomem:
620
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
621 622 623
	return ERR_PTR(-ENOMEM);
}

624 625
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
626 627 628 629
{
	u32 nlink;
	int ret;
	int i;
630
	unsigned nofs_flag;
631 632
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
633
	struct scrub_warning *swarn = warn_ctx;
634
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
635 636
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
637
	struct btrfs_key key;
638

D
David Sterba 已提交
639
	local_root = btrfs_get_fs_root(fs_info, root, true);
640 641 642 643 644
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

645 646 647
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
648 649 650 651 652
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
653
	if (ret) {
654
		btrfs_put_root(local_root);
655 656 657 658 659 660 661 662 663 664
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

665 666 667 668 669 670
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
671
	ipath = init_ipath(4096, local_root, swarn->path);
672
	memalloc_nofs_restore(nofs_flag);
673
	if (IS_ERR(ipath)) {
674
		btrfs_put_root(local_root);
675 676 677 678
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
679 680 681 682 683 684 685 686 687 688
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
689
		btrfs_warn_in_rcu(fs_info,
690
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
691 692
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
693
				  swarn->physical,
J
Jeff Mahoney 已提交
694
				  root, inum, offset,
695
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
696
				  (char *)(unsigned long)ipath->fspath->val[i]);
697

698
	btrfs_put_root(local_root);
699 700 701 702
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
703
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
704
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
705 706
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
707
			  swarn->physical,
J
Jeff Mahoney 已提交
708
			  root, inum, offset, ret);
709 710 711 712 713

	free_ipath(ipath);
	return 0;
}

714
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
715
{
716 717
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
718 719 720 721 722
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
723 724 725
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
726
	u64 ref_root;
727
	u32 item_size;
728
	u8 ref_level = 0;
729
	int ret;
730

731
	WARN_ON(sblock->page_count < 1);
732
	dev = sblock->pagev[0]->dev;
733
	fs_info = sblock->sctx->fs_info;
734

735
	path = btrfs_alloc_path();
736 737
	if (!path)
		return;
738

D
David Sterba 已提交
739
	swarn.physical = sblock->pagev[0]->physical;
740
	swarn.logical = sblock->pagev[0]->logical;
741
	swarn.errstr = errstr;
742
	swarn.dev = NULL;
743

744 745
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
746 747 748
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
749
	extent_item_pos = swarn.logical - found_key.objectid;
750 751 752 753
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
754
	item_size = btrfs_item_size(eb, path->slots[0]);
755

756
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
757
		do {
758 759 760
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
761
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
762
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
763
				errstr, swarn.logical,
764
				rcu_str_deref(dev->name),
D
David Sterba 已提交
765
				swarn.physical,
766 767 768 769
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
770
		btrfs_release_path(path);
771
	} else {
772
		btrfs_release_path(path);
773
		swarn.path = path;
774
		swarn.dev = dev;
775 776
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
777
					scrub_print_warning_inode, &swarn, false);
778 779 780 781 782 783
	}

out:
	btrfs_free_path(path);
}

784 785
static inline void scrub_get_recover(struct scrub_recover *recover)
{
786
	refcount_inc(&recover->refs);
787 788
}

789 790
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
791
{
792
	if (refcount_dec_and_test(&recover->refs)) {
793
		btrfs_bio_counter_dec(fs_info);
794
		btrfs_put_bioc(recover->bioc);
795 796 797 798
		kfree(recover);
	}
}

A
Arne Jansen 已提交
799
/*
800 801 802 803 804 805
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
806
 */
807
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
808
{
809
	struct scrub_ctx *sctx = sblock_to_check->sctx;
810
	struct btrfs_device *dev;
811 812 813 814 815 816 817 818 819 820 821
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
822
	bool full_stripe_locked;
823
	unsigned int nofs_flag;
824
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
825 826 827
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
828
	fs_info = sctx->fs_info;
829 830 831 832 833 834 835 836 837 838 839
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
840 841 842 843
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
844
			BTRFS_EXTENT_FLAG_DATA);
845 846
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
847

848 849
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
850

851 852 853 854 855 856 857 858 859 860
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
861 862 863 864 865 866 867 868 869
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
870
		memalloc_nofs_restore(nofs_flag);
871 872 873 874 875 876 877 878 879
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

880 881 882 883
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
884
	 * sector by sector this time in order to know which sectors
885 886 887 888
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
889 890 891 892 893 894 895 896 897 898
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
899 900 901
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
902
	 * Only if this is not possible, the sectors are picked from
903 904 905 906 907 908
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

909
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
910
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
911
	if (!sblocks_for_recheck) {
912 913 914 915 916
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
917
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918
		goto out;
A
Arne Jansen 已提交
919 920
	}

921
	/* setup the context, map the logical blocks and alloc the pages */
922
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
923
	if (ret) {
924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929 930 931 932
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
933

934
	/* build and submit the bios for the failed mirror, check checksums */
935
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
936

937 938 939 940 941 942 943 944 945 946
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
947 948
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
949
		sblock_to_check->data_corrected = 1;
950
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
951

952 953
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
954
		goto out;
A
Arne Jansen 已提交
955 956
	}

957
	if (!sblock_bad->no_io_error_seen) {
958 959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
961
		if (__ratelimit(&rs))
962
			scrub_print_warning("i/o error", sblock_to_check);
963
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964
	} else if (sblock_bad->checksum_error) {
965 966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
968
		if (__ratelimit(&rs))
969
			scrub_print_warning("checksum error", sblock_to_check);
970
		btrfs_dev_stat_inc_and_print(dev,
971
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
972
	} else if (sblock_bad->header_error) {
973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
976
		if (__ratelimit(&rs))
977 978
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
979
		if (sblock_bad->generation_error)
980
			btrfs_dev_stat_inc_and_print(dev,
981 982
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
983
			btrfs_dev_stat_inc_and_print(dev,
984
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
985
	}
A
Arne Jansen 已提交
986

987 988 989 990
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
991

992 993
	/*
	 * now build and submit the bios for the other mirrors, check
994 995
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1007
	for (mirror_index = 0; ;mirror_index++) {
1008
		struct scrub_block *sblock_other;
1009

1010 1011
		if (mirror_index == failed_mirror_index)
			continue;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1023
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1034 1035

		/* build and submit the bios, check checksums */
1036
		scrub_recheck_block(fs_info, sblock_other, 0);
1037 1038

		if (!sblock_other->header_error &&
1039 1040
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1041 1042
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1043
				goto corrected_error;
1044 1045
			} else {
				ret = scrub_repair_block_from_good_copy(
1046 1047 1048
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1049
			}
1050 1051
		}
	}
A
Arne Jansen 已提交
1052

1053 1054
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1055 1056 1057

	/*
	 * In case of I/O errors in the area that is supposed to be
1058 1059
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1060 1061 1062 1063 1064
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1065
	 * all possible combinations of sectors from the different mirrors
1066
	 * until the checksum verification succeeds. For example, when
1067
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1068
	 * of mirror #2 is readable but the final checksum test fails,
1069
	 * then the 2nd sector of mirror #3 could be tried, whether now
1070
	 * the final checksum succeeds. But this would be a rare
1071 1072 1073 1074
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1075
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1076
	 * mirror could be repaired by taking 512 byte of a different
1077
	 * mirror, even if other 512 byte sectors in the same sectorsize
1078
	 * area are unreadable.
A
Arne Jansen 已提交
1079
	 */
1080
	success = 1;
1081 1082
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1083
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1084
		struct scrub_block *sblock_other = NULL;
1085

1086
		/* skip no-io-error page in scrub */
1087
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1088
			continue;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1099
		} else if (spage_bad->io_error) {
1100
			/* try to find no-io-error page in mirrors */
1101 1102 1103 1104 1105 1106 1107 1108 1109
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1110 1111
				}
			}
1112 1113
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1114
		}
A
Arne Jansen 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1129
				atomic64_inc(
1130
					&fs_info->dev_replace.num_write_errors);
1131 1132 1133 1134 1135 1136 1137
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1138
				spage_bad->io_error = 0;
1139 1140
			else
				success = 0;
1141
		}
A
Arne Jansen 已提交
1142 1143
	}

1144
	if (success && !sctx->is_dev_replace) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1155
			scrub_recheck_block(fs_info, sblock_bad, 1);
1156
			if (!sblock_bad->header_error &&
1157 1158 1159 1160 1161 1162 1163
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1164 1165
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1166
			sblock_to_check->data_corrected = 1;
1167
			spin_unlock(&sctx->stat_lock);
1168 1169
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1170
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1171
		}
1172 1173
	} else {
did_not_correct_error:
1174 1175 1176
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1177 1178
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1179
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1180
	}
A
Arne Jansen 已提交
1181

1182 1183 1184 1185 1186 1187
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1188
			struct scrub_recover *recover;
1189 1190
			int page_index;

1191 1192 1193
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1194 1195
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1196
					scrub_put_recover(fs_info, recover);
1197 1198 1199
					sblock->pagev[page_index]->recover =
									NULL;
				}
1200 1201
				scrub_page_put(sblock->pagev[page_index]);
			}
1202 1203 1204
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1205

1206
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1207
	memalloc_nofs_restore(nofs_flag);
1208 1209
	if (ret < 0)
		return ret;
1210 1211
	return 0;
}
A
Arne Jansen 已提交
1212

1213
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1214
{
1215
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1216
		return 2;
1217
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1218 1219
		return 3;
	else
1220
		return (int)bioc->num_stripes;
1221 1222
}

Z
Zhao Lei 已提交
1223 1224
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1225 1226 1227 1228 1229 1230 1231
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1232
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1253
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1254 1255
				     struct scrub_block *sblocks_for_recheck)
{
1256
	struct scrub_ctx *sctx = original_sblock->sctx;
1257
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1258
	u64 length = original_sblock->page_count * fs_info->sectorsize;
1259
	u64 logical = original_sblock->pagev[0]->logical;
1260 1261 1262
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1263
	struct scrub_recover *recover;
1264
	struct btrfs_io_context *bioc;
1265 1266 1267 1268
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1269
	int page_index = 0;
1270
	int mirror_index;
1271
	int nmirrors;
1272 1273 1274
	int ret;

	/*
1275
	 * note: the two members refs and outstanding_pages
1276 1277 1278 1279 1280
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1281
		sublen = min_t(u64, length, fs_info->sectorsize);
1282
		mapped_length = sublen;
1283
		bioc = NULL;
A
Arne Jansen 已提交
1284

1285
		/*
1286 1287
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1288
		 */
1289
		btrfs_bio_counter_inc_blocked(fs_info);
1290
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1291 1292 1293
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1294
			btrfs_bio_counter_dec(fs_info);
1295 1296
			return -EIO;
		}
A
Arne Jansen 已提交
1297

1298 1299
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1300
			btrfs_put_bioc(bioc);
1301
			btrfs_bio_counter_dec(fs_info);
1302 1303 1304
			return -ENOMEM;
		}

1305
		refcount_set(&recover->refs, 1);
1306
		recover->bioc = bioc;
1307 1308
		recover->map_length = mapped_length;

1309
		ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK);
1310

1311
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1312

1313
		for (mirror_index = 0; mirror_index < nmirrors;
1314 1315
		     mirror_index++) {
			struct scrub_block *sblock;
1316
			struct scrub_page *spage;
1317 1318

			sblock = sblocks_for_recheck + mirror_index;
1319
			sblock->sctx = sctx;
1320

1321 1322
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1323
leave_nomem:
1324 1325 1326
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1327
				scrub_put_recover(fs_info, recover);
1328 1329
				return -ENOMEM;
			}
1330 1331 1332 1333 1334 1335 1336
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1337
			if (have_csum)
1338
				memcpy(spage->csum,
1339
				       original_sblock->pagev[0]->csum,
1340
				       sctx->fs_info->csum_size);
1341

Z
Zhao Lei 已提交
1342
			scrub_stripe_index_and_offset(logical,
1343 1344
						      bioc->map_type,
						      bioc->raid_map,
1345
						      mapped_length,
1346 1347
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1348 1349 1350
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1351
			spage->physical = bioc->stripes[stripe_index].physical +
1352
					 stripe_offset;
1353
			spage->dev = bioc->stripes[stripe_index].dev;
1354

1355
			BUG_ON(page_index >= original_sblock->page_count);
1356
			spage->physical_for_dev_replace =
1357 1358
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1359
			/* for missing devices, dev->bdev is NULL */
1360
			spage->mirror_num = mirror_index + 1;
1361
			sblock->page_count++;
1362 1363
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1364
				goto leave_nomem;
1365 1366

			scrub_get_recover(recover);
1367
			spage->recover = recover;
1368
		}
1369
		scrub_put_recover(fs_info, recover);
1370 1371 1372 1373 1374 1375
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1376 1377
}

1378
static void scrub_bio_wait_endio(struct bio *bio)
1379
{
1380
	complete(bio->bi_private);
1381 1382 1383 1384
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1385
					struct scrub_page *spage)
1386
{
1387
	DECLARE_COMPLETION_ONSTACK(done);
1388
	int ret;
1389
	int mirror_num;
1390

1391
	bio->bi_iter.bi_sector = spage->logical >> 9;
1392 1393 1394
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1395
	mirror_num = spage->sblock->pagev[0]->mirror_num;
1396
	ret = raid56_parity_recover(bio, spage->recover->bioc,
1397
				    spage->recover->map_length,
1398
				    mirror_num, 0);
1399 1400 1401
	if (ret)
		return ret;

1402 1403
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1404 1405
}

L
Liu Bo 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1418
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1419 1420 1421
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1422
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1423

1424 1425
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1445 1446 1447 1448 1449 1450 1451
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1452
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1453 1454
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1455
{
1456
	int page_num;
I
Ilya Dryomov 已提交
1457

1458
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1459

L
Liu Bo 已提交
1460 1461 1462 1463
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1464 1465
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1466
		struct scrub_page *spage = sblock->pagev[page_num];
1467

1468 1469
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1470 1471 1472 1473
			sblock->no_io_error_seen = 0;
			continue;
		}

1474
		WARN_ON(!spage->page);
1475
		bio = btrfs_bio_alloc(1);
1476
		bio_set_dev(bio, spage->dev->bdev);
1477

1478
		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1479
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1480
		bio->bi_opf = REQ_OP_READ;
1481

L
Liu Bo 已提交
1482
		if (btrfsic_submit_bio_wait(bio)) {
1483
			spage->io_error = 1;
L
Liu Bo 已提交
1484
			sblock->no_io_error_seen = 0;
1485
		}
1486

1487 1488
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1489

1490
	if (sblock->no_io_error_seen)
1491
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1492 1493
}

M
Miao Xie 已提交
1494 1495 1496 1497 1498 1499
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1500
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1501 1502 1503
	return !ret;
}

1504
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1505
{
1506 1507 1508
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1509

1510 1511 1512 1513
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1514 1515
}

1516
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1517
					     struct scrub_block *sblock_good)
1518 1519 1520
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1521

1522 1523
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1524

1525 1526
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1527
							   page_num, 1);
1528 1529
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1530
	}
1531 1532 1533 1534 1535 1536 1537 1538

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1539 1540
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1541
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1542
	const u32 sectorsize = fs_info->sectorsize;
1543

1544 1545
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1546
	if (force_write || sblock_bad->header_error ||
1547
	    sblock_bad->checksum_error || spage_bad->io_error) {
1548 1549 1550
		struct bio *bio;
		int ret;

1551
		if (!spage_bad->dev->bdev) {
1552
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1553
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1554 1555 1556
			return -EIO;
		}

1557
		bio = btrfs_bio_alloc(1);
1558 1559
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1560
		bio->bi_opf = REQ_OP_WRITE;
1561

1562 1563
		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
		if (ret != sectorsize) {
1564 1565
			bio_put(bio);
			return -EIO;
1566
		}
1567

1568
		if (btrfsic_submit_bio_wait(bio)) {
1569
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1570
				BTRFS_DEV_STAT_WRITE_ERRS);
1571
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1572 1573 1574
			bio_put(bio);
			return -EIO;
		}
1575
		bio_put(bio);
A
Arne Jansen 已提交
1576 1577
	}

1578 1579 1580
	return 0;
}

1581 1582
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1583
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1584 1585
	int page_num;

1586 1587 1588 1589 1590 1591 1592
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1593 1594 1595 1596 1597
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1598
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1599 1600 1601 1602 1603 1604 1605 1606 1607
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1608 1609
	if (spage->io_error)
		clear_page(page_address(spage->page));
1610 1611 1612 1613

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1614 1615 1616 1617 1618 1619 1620 1621
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1622 1623 1624
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1636 1637 1638 1639 1640
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;
1641
	const u32 sectorsize = sctx->fs_info->sectorsize;
1642

1643
	mutex_lock(&sctx->wr_lock);
1644
again:
1645 1646
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1647
					      GFP_KERNEL);
1648 1649
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1650 1651
			return -ENOMEM;
		}
1652 1653
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1654
	}
1655
	sbio = sctx->wr_curr_bio;
1656 1657 1658
	if (sbio->page_count == 0) {
		struct bio *bio;

1659 1660 1661 1662 1663 1664 1665
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1666 1667
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1668
		sbio->dev = sctx->wr_tgtdev;
1669 1670
		bio = sbio->bio;
		if (!bio) {
1671
			bio = btrfs_bio_alloc(sctx->pages_per_bio);
1672 1673 1674 1675 1676
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1677
		bio_set_dev(bio, sbio->dev->bdev);
1678
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1679
		bio->bi_opf = REQ_OP_WRITE;
1680
		sbio->status = 0;
1681
	} else if (sbio->physical + sbio->page_count * sectorsize !=
1682
		   spage->physical_for_dev_replace ||
1683
		   sbio->logical + sbio->page_count * sectorsize !=
1684 1685 1686 1687 1688
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

1689 1690
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
1691 1692 1693
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1694
			mutex_unlock(&sctx->wr_lock);
1695 1696 1697 1698 1699 1700 1701 1702 1703
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1704
	if (sbio->page_count == sctx->pages_per_bio)
1705
		scrub_wr_submit(sctx);
1706
	mutex_unlock(&sctx->wr_lock);
1707 1708 1709 1710 1711 1712 1713 1714

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1715
	if (!sctx->wr_curr_bio)
1716 1717
		return;

1718 1719
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1720
	WARN_ON(!sbio->bio->bi_bdev);
1721 1722 1723 1724 1725
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1726
	btrfsic_submit_bio(sbio->bio);
1727 1728

	if (btrfs_is_zoned(sctx->fs_info))
1729 1730
		sctx->write_pointer = sbio->physical + sbio->page_count *
			sctx->fs_info->sectorsize;
1731 1732
}

1733
static void scrub_wr_bio_end_io(struct bio *bio)
1734 1735
{
	struct scrub_bio *sbio = bio->bi_private;
1736
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1737

1738
	sbio->status = bio->bi_status;
1739 1740
	sbio->bio = bio;

1741
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1742
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1743 1744 1745 1746 1747 1748 1749 1750
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1751
	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
1752
	if (sbio->status) {
1753
		struct btrfs_dev_replace *dev_replace =
1754
			&sbio->sctx->fs_info->dev_replace;
1755 1756 1757 1758 1759

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1760
			atomic64_inc(&dev_replace->num_write_errors);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1773 1774 1775 1776
{
	u64 flags;
	int ret;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1789 1790
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1802 1803

	return ret;
A
Arne Jansen 已提交
1804 1805
}

1806
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1807
{
1808
	struct scrub_ctx *sctx = sblock->sctx;
1809 1810
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1811
	u8 csum[BTRFS_CSUM_SIZE];
1812
	struct scrub_page *spage;
1813
	char *kaddr;
A
Arne Jansen 已提交
1814

1815
	BUG_ON(sblock->page_count < 1);
1816 1817
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1818 1819
		return 0;

1820
	kaddr = page_address(spage->page);
1821

1822 1823
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1824

1825 1826 1827 1828 1829
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1830

1831 1832
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1833
	return sblock->checksum_error;
A
Arne Jansen 已提交
1834 1835
}

1836
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1837
{
1838
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1839
	struct btrfs_header *h;
1840
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842 1843
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844 1845 1846 1847 1848 1849 1850
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1851
	int i;
1852
	struct scrub_page *spage;
1853
	char *kaddr;
1854

1855
	BUG_ON(sblock->page_count < 1);
1856 1857 1858 1859

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1860 1861
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1862
	h = (struct btrfs_header *)kaddr;
1863
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1864 1865 1866 1867 1868 1869

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1870
	if (spage->logical != btrfs_stack_header_bytenr(h))
1871
		sblock->header_error = 1;
A
Arne Jansen 已提交
1872

1873
	if (spage->generation != btrfs_stack_header_generation(h)) {
1874 1875 1876
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1877

1878
	if (!scrub_check_fsid(h->fsid, spage))
1879
		sblock->header_error = 1;
A
Arne Jansen 已提交
1880 1881 1882

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1883
		sblock->header_error = 1;
A
Arne Jansen 已提交
1884

1885 1886 1887
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1888
			    sectorsize - BTRFS_CSUM_SIZE);
1889

1890
	for (i = 1; i < num_sectors; i++) {
1891
		kaddr = page_address(sblock->pagev[i]->page);
1892
		crypto_shash_update(shash, kaddr, sectorsize);
1893 1894
	}

1895
	crypto_shash_final(shash, calculated_csum);
1896
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1897
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1898

1899
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1900 1901
}

1902
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1903 1904
{
	struct btrfs_super_block *s;
1905
	struct scrub_ctx *sctx = sblock->sctx;
1906 1907
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1908
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1909
	struct scrub_page *spage;
1910
	char *kaddr;
1911 1912
	int fail_gen = 0;
	int fail_cor = 0;
1913

1914
	BUG_ON(sblock->page_count < 1);
1915 1916
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1917
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1918

1919
	if (spage->logical != btrfs_super_bytenr(s))
1920
		++fail_cor;
A
Arne Jansen 已提交
1921

1922
	if (spage->generation != btrfs_super_generation(s))
1923
		++fail_gen;
A
Arne Jansen 已提交
1924

1925
	if (!scrub_check_fsid(s->fsid, spage))
1926
		++fail_cor;
A
Arne Jansen 已提交
1927

1928 1929 1930 1931
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1932

1933
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1934
		++fail_cor;
A
Arne Jansen 已提交
1935

1936
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1937 1938 1939 1940 1941
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1942 1943 1944
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1945
		if (fail_cor)
1946
			btrfs_dev_stat_inc_and_print(spage->dev,
1947 1948
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1949
			btrfs_dev_stat_inc_and_print(spage->dev,
1950
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1951 1952
	}

1953
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1954 1955
}

1956 1957
static void scrub_block_get(struct scrub_block *sblock)
{
1958
	refcount_inc(&sblock->refs);
1959 1960 1961 1962
}

static void scrub_block_put(struct scrub_block *sblock)
{
1963
	if (refcount_dec_and_test(&sblock->refs)) {
1964 1965
		int i;

1966 1967 1968
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1969
		for (i = 0; i < sblock->page_count; i++)
1970
			scrub_page_put(sblock->pagev[i]);
1971 1972 1973 1974
		kfree(sblock);
	}
}

1975 1976
static void scrub_page_get(struct scrub_page *spage)
{
1977
	atomic_inc(&spage->refs);
1978 1979 1980 1981
}

static void scrub_page_put(struct scrub_page *spage)
{
1982
	if (atomic_dec_and_test(&spage->refs)) {
1983 1984 1985 1986 1987 1988
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2048
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2049 2050 2051
{
	struct scrub_bio *sbio;

2052
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2053
		return;
A
Arne Jansen 已提交
2054

2055 2056
	scrub_throttle(sctx);

2057 2058
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2059
	scrub_pending_bio_inc(sctx);
2060
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2061 2062
}

2063 2064
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2065
{
2066
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2067
	struct scrub_bio *sbio;
2068
	const u32 sectorsize = sctx->fs_info->sectorsize;
2069
	int ret;
A
Arne Jansen 已提交
2070 2071 2072 2073 2074

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2075 2076 2077 2078 2079 2080 2081 2082
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2083
		} else {
2084 2085
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2086 2087
		}
	}
2088
	sbio = sctx->bios[sctx->curr];
2089
	if (sbio->page_count == 0) {
2090 2091
		struct bio *bio;

2092 2093
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2094
		sbio->dev = spage->dev;
2095 2096
		bio = sbio->bio;
		if (!bio) {
2097
			bio = btrfs_bio_alloc(sctx->pages_per_bio);
2098 2099
			sbio->bio = bio;
		}
2100 2101 2102

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2103
		bio_set_dev(bio, sbio->dev->bdev);
2104
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2105
		bio->bi_opf = REQ_OP_READ;
2106
		sbio->status = 0;
2107
	} else if (sbio->physical + sbio->page_count * sectorsize !=
2108
		   spage->physical ||
2109
		   sbio->logical + sbio->page_count * sectorsize !=
2110 2111
		   spage->logical ||
		   sbio->dev != spage->dev) {
2112
		scrub_submit(sctx);
A
Arne Jansen 已提交
2113 2114
		goto again;
	}
2115

2116
	sbio->pagev[sbio->page_count] = spage;
2117 2118
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
2119 2120 2121 2122 2123
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2124
		scrub_submit(sctx);
2125 2126 2127
		goto again;
	}

2128
	scrub_block_get(sblock); /* one for the page added to the bio */
2129 2130
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2131
	if (sbio->page_count == sctx->pages_per_bio)
2132
		scrub_submit(sctx);
2133 2134 2135 2136

	return 0;
}

2137
static void scrub_missing_raid56_end_io(struct bio *bio)
2138 2139
{
	struct scrub_block *sblock = bio->bi_private;
2140
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2141

2142
	if (bio->bi_status)
2143 2144
		sblock->no_io_error_seen = 0;

2145 2146
	bio_put(bio);

2147 2148 2149 2150 2151 2152 2153
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2154
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2155 2156 2157 2158 2159 2160
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2161
	if (sblock->no_io_error_seen)
2162
		scrub_recheck_block_checksum(sblock);
2163 2164 2165 2166 2167

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2168
		btrfs_err_rl_in_rcu(fs_info,
2169
			"IO error rebuilding logical %llu for dev %s",
2170 2171 2172 2173 2174
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2175
		btrfs_err_rl_in_rcu(fs_info,
2176
			"failed to rebuild valid logical %llu for dev %s",
2177 2178 2179 2180 2181
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2182
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2183
		mutex_lock(&sctx->wr_lock);
2184
		scrub_wr_submit(sctx);
2185
		mutex_unlock(&sctx->wr_lock);
2186 2187
	}

2188
	scrub_block_put(sblock);
2189 2190 2191 2192 2193 2194
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2195
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2196 2197
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2198
	struct btrfs_io_context *bioc = NULL;
2199 2200 2201 2202 2203
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2204
	btrfs_bio_counter_inc_blocked(fs_info);
2205
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2206 2207 2208
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2209 2210

	if (WARN_ON(!sctx->is_dev_replace ||
2211
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2212 2213 2214 2215 2216 2217
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
2218
		goto bioc_out;
2219 2220
	}

2221
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2222 2223 2224 2225
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2226
	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2227 2228 2229 2230 2231 2232 2233 2234 2235
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2236
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2237 2238 2239 2240 2241 2242 2243
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2244
bioc_out:
2245
	btrfs_bio_counter_dec(fs_info);
2246
	btrfs_put_bioc(bioc);
2247 2248 2249 2250 2251
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2252
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2253
		       u64 physical, struct btrfs_device *dev, u64 flags,
2254
		       u64 gen, int mirror_num, u8 *csum,
2255
		       u64 physical_for_dev_replace)
2256 2257
{
	struct scrub_block *sblock;
2258
	const u32 sectorsize = sctx->fs_info->sectorsize;
2259 2260
	int index;

2261
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2262
	if (!sblock) {
2263 2264 2265
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2266
		return -ENOMEM;
A
Arne Jansen 已提交
2267
	}
2268

2269 2270
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2271
	refcount_set(&sblock->refs, 1);
2272
	sblock->sctx = sctx;
2273 2274 2275
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2276
		struct scrub_page *spage;
2277 2278 2279 2280 2281 2282
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2283

2284
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2285 2286
		if (!spage) {
leave_nomem:
2287 2288 2289
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2290
			scrub_block_put(sblock);
2291 2292
			return -ENOMEM;
		}
2293
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2294 2295
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2296
		spage->sblock = sblock;
2297
		spage->dev = dev;
2298 2299 2300 2301
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2302
		spage->physical_for_dev_replace = physical_for_dev_replace;
2303 2304 2305
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2306
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2307 2308 2309 2310
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2311
		spage->page = alloc_page(GFP_KERNEL);
2312 2313
		if (!spage->page)
			goto leave_nomem;
2314 2315 2316
		len -= l;
		logical += l;
		physical += l;
2317
		physical_for_dev_replace += l;
2318 2319
	}

2320
	WARN_ON(sblock->page_count == 0);
2321
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2331

2332 2333 2334 2335 2336
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2337
		}
A
Arne Jansen 已提交
2338

2339
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2340 2341
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2342

2343 2344
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2345 2346 2347
	return 0;
}

2348
static void scrub_bio_end_io(struct bio *bio)
2349 2350
{
	struct scrub_bio *sbio = bio->bi_private;
2351
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2352

2353
	sbio->status = bio->bi_status;
2354 2355
	sbio->bio = bio;

2356
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2357 2358 2359 2360 2361
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2362
	struct scrub_ctx *sctx = sbio->sctx;
2363 2364
	int i;

2365
	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
2366
	if (sbio->status) {
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2387 2388 2389 2390
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2391

2392
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2393
		mutex_lock(&sctx->wr_lock);
2394
		scrub_wr_submit(sctx);
2395
		mutex_unlock(&sctx->wr_lock);
2396 2397
	}

2398
	scrub_pending_bio_dec(sctx);
2399 2400
}

2401 2402
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2403
				       u64 start, u32 len)
2404
{
2405
	u64 offset;
2406
	u32 nsectors;
2407
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2408 2409 2410 2411 2412 2413 2414

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2415
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2416
	offset = offset >> sectorsize_bits;
2417
	nsectors = len >> sectorsize_bits;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2429
						   u64 start, u32 len)
2430 2431 2432 2433 2434
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2435
						  u64 start, u32 len)
2436 2437 2438 2439
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2440 2441
static void scrub_block_complete(struct scrub_block *sblock)
{
2442 2443
	int corrupted = 0;

2444
	if (!sblock->no_io_error_seen) {
2445
		corrupted = 1;
2446
		scrub_handle_errored_block(sblock);
2447 2448 2449 2450 2451 2452
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2453 2454
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2455 2456
			scrub_write_block_to_dev_replace(sblock);
	}
2457 2458 2459 2460

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2461
			  sblock->sctx->fs_info->sectorsize;
2462

2463
		ASSERT(end - start <= U32_MAX);
2464 2465 2466
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2481
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2482 2483 2484 2485 2486
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2487
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2488
{
2489
	bool found = false;
A
Arne Jansen 已提交
2490

2491
	while (!list_empty(&sctx->csum_list)) {
2492 2493 2494 2495
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2496
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2497
				       struct btrfs_ordered_sum, list);
2498
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2499 2500 2501
		if (sum->bytenr > logical)
			break;

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2512

2513 2514 2515 2516
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2517

2518 2519 2520 2521 2522 2523 2524
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2525
	}
2526 2527
	if (!found)
		return 0;
2528
	return 1;
A
Arne Jansen 已提交
2529 2530 2531
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2532
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2533
			u64 logical, u32 len,
2534
			u64 physical, struct btrfs_device *dev, u64 flags,
2535
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2536 2537 2538
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2539 2540 2541
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2542 2543 2544 2545
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2546 2547 2548 2549
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2550
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2551 2552 2553 2554
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2555 2556 2557 2558
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2559
	} else {
2560
		blocksize = sctx->fs_info->sectorsize;
2561
		WARN_ON(1);
2562
	}
A
Arne Jansen 已提交
2563 2564

	while (len) {
2565
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2566 2567 2568 2569
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2570
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2571
			if (have_csum == 0)
2572
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2573
		}
2574
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2575
				  mirror_num, have_csum ? csum : NULL,
2576
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2577 2578 2579 2580 2581
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2582
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2583 2584 2585 2586
	}
	return 0;
}

2587
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2588
				  u64 logical, u32 len,
2589 2590 2591 2592 2593
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2594
	const u32 sectorsize = sctx->fs_info->sectorsize;
2595 2596
	int index;

2597 2598
	ASSERT(IS_ALIGNED(len, sectorsize));

2599
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2600 2601 2602 2603 2604 2605 2606 2607 2608
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2609
	refcount_set(&sblock->refs, 1);
2610 2611 2612 2613 2614 2615 2616 2617
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2618
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2619 2620 2621 2622 2623 2624 2625 2626
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2627
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2643
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2644 2645 2646 2647
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2648
		spage->page = alloc_page(GFP_KERNEL);
2649 2650
		if (!spage->page)
			goto leave_nomem;
2651 2652 2653 2654 2655 2656


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2677
				   u64 logical, u32 len,
2678 2679 2680 2681 2682 2683 2684 2685
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2686
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2687 2688 2689 2690
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2691
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2692
		blocksize = sparity->stripe_len;
2693
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2694
		blocksize = sparity->stripe_len;
2695
	} else {
2696
		blocksize = sctx->fs_info->sectorsize;
2697 2698 2699 2700
		WARN_ON(1);
	}

	while (len) {
2701
		u32 l = min(len, blocksize);
2702 2703 2704 2705
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2706
			have_csum = scrub_find_csum(sctx, logical, csum);
2707 2708 2709 2710 2711 2712 2713 2714
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2715
skip:
2716 2717 2718 2719 2720 2721 2722
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2731 2732
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2733 2734 2735 2736 2737
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2738 2739
	u32 stripe_index;
	u32 rot;
2740
	const int data_stripes = nr_data_stripes(map);
2741

2742
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2743 2744 2745
	if (stripe_start)
		*stripe_start = last_offset;

2746
	*offset = last_offset;
2747
	for (i = 0; i < data_stripes; i++) {
2748 2749
		*offset = last_offset + i * map->stripe_len;

2750
		stripe_nr = div64_u64(*offset, map->stripe_len);
2751
		stripe_nr = div_u64(stripe_nr, data_stripes);
2752 2753

		/* Work out the disk rotation on this stripe-set */
2754
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755 2756
		/* calculate which stripe this data locates */
		rot += i;
2757
		stripe_index = rot % map->num_stripes;
2758 2759 2760 2761 2762 2763 2764 2765 2766
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2799
static void scrub_parity_bio_endio(struct bio *bio)
2800 2801
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2802
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2803

2804
	if (bio->bi_status)
2805 2806 2807 2808
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2809

2810 2811
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2812
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2813 2814 2815 2816 2817
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2818
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2819 2820
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2821
	struct btrfs_io_context *bioc = NULL;
2822 2823 2824 2825 2826 2827 2828
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2829
	length = sparity->logic_end - sparity->logic_start;
2830 2831

	btrfs_bio_counter_inc_blocked(fs_info);
2832
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2833 2834 2835
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2836

2837
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2838 2839 2840 2841
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2842 2843
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
					      sparity->scrub_dev,
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2855
bioc_out:
2856
	btrfs_bio_counter_dec(fs_info);
2857
	btrfs_put_bioc(bioc);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2869
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2870 2871 2872 2873
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2874
	refcount_inc(&sparity->refs);
2875 2876 2877 2878
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2879
	if (!refcount_dec_and_test(&sparity->refs))
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
2891
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2892
	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
2893
	struct btrfs_root *csum_root;
2894
	struct btrfs_extent_item *extent;
2895
	struct btrfs_io_context *bioc = NULL;
2896
	struct btrfs_path *path;
2897 2898 2899 2900 2901 2902 2903 2904
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2905 2906
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2907
	u64 mapped_length;
2908 2909 2910 2911 2912 2913 2914
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

2925
	ASSERT(map->stripe_len <= U32_MAX);
2926
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2927 2928 2929 2930 2931 2932 2933
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2934
		btrfs_free_path(path);
2935 2936 2937
		return -ENOMEM;
	}

2938
	ASSERT(map->stripe_len <= U32_MAX);
2939 2940 2941 2942 2943 2944
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2945
	refcount_set(&sparity->refs, 1);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2994 2995 2996 2997
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2998
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2999
				bytes = fs_info->nodesize;
3000 3001 3002 3003 3004 3005
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3006
			if (key.objectid >= logic_end) {
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3019 3020 3021 3022
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3023 3024
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3025
					  key.objectid, logic_start);
3026 3027 3028
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3029 3030 3031 3032
				goto next;
			}
again:
			extent_logical = key.objectid;
3033
			ASSERT(bytes <= U32_MAX);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3049
			mapped_length = extent_len;
3050
			bioc = NULL;
3051
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3052
					extent_logical, &mapped_length, &bioc,
3053
					0);
3054
			if (!ret) {
3055
				if (!bioc || mapped_length < extent_len)
3056 3057 3058
					ret = -EIO;
			}
			if (ret) {
3059
				btrfs_put_bioc(bioc);
3060 3061
				goto out;
			}
3062 3063 3064 3065
			extent_physical = bioc->stripes[0].physical;
			extent_mirror_num = bioc->mirror_num;
			extent_dev = bioc->stripes[0].dev;
			btrfs_put_bioc(bioc);
3066

3067
			csum_root = btrfs_csum_root(fs_info, extent_logical);
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3081 3082 3083

			scrub_free_csums(sctx);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3113 3114
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3115
		scrub_parity_mark_sectors_error(sparity, logic_start,
3116
						logic_end - logic_start);
3117
	}
3118 3119
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3120
	mutex_lock(&sctx->wr_lock);
3121
	scrub_wr_submit(sctx);
3122
	mutex_unlock(&sctx->wr_lock);
3123

3124
	btrfs_free_path(path);
3125 3126 3127
	return ret < 0 ? ret : 0;
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3168
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3169 3170
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3171 3172
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3173
{
3174
	struct btrfs_path *path;
3175
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3176
	struct btrfs_root *root;
3177
	struct btrfs_root *csum_root;
A
Arne Jansen 已提交
3178
	struct btrfs_extent_item *extent;
3179
	struct blk_plug plug;
A
Arne Jansen 已提交
3180 3181 3182 3183 3184 3185 3186
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3187
	u64 logic_end;
3188
	u64 physical_end;
A
Arne Jansen 已提交
3189
	u64 generation;
3190
	int mirror_num;
A
Arne Jansen 已提交
3191 3192
	struct reada_control *reada1;
	struct reada_control *reada2;
3193
	struct btrfs_key key;
A
Arne Jansen 已提交
3194
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3195 3196
	u64 increment = map->stripe_len;
	u64 offset;
3197 3198
	u64 extent_logical;
	u64 extent_physical;
3199 3200 3201 3202 3203
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3204 3205
	u64 stripe_logical;
	u64 stripe_end;
3206 3207
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3208
	int stop_loop = 0;
D
David Woodhouse 已提交
3209

3210
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3211
	offset = 0;
3212
	nstripes = div64_u64(length, map->stripe_len);
3213 3214
	mirror_num = 1;
	increment = map->stripe_len;
A
Arne Jansen 已提交
3215 3216 3217 3218 3219 3220 3221
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3222
		mirror_num = num % map->sub_stripes + 1;
3223
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3224
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3225
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3226
		mirror_num = num % map->num_stripes + 1;
3227
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3228
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3229
		increment = map->stripe_len * nr_data_stripes(map);
A
Arne Jansen 已提交
3230 3231 3232 3233 3234 3235
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3236 3237 3238 3239 3240
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3241 3242 3243 3244
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3245 3246 3247
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3248 3249
	 */
	logical = base + offset;
3250
	physical_end = physical + nstripes * map->stripe_len;
3251
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3252
		get_raid56_logic_offset(physical_end, num,
3253
					map, &logic_end, NULL);
3254 3255 3256 3257
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3258
	wait_event(sctx->list_wait,
3259
		   atomic_read(&sctx->bios_in_flight) == 0);
3260
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3261

3262 3263
	root = btrfs_extent_root(fs_info, logical);

A
Arne Jansen 已提交
3264
	/* FIXME it might be better to start readahead at commit root */
3265 3266 3267
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3268
	key_end.objectid = logic_end;
3269 3270
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3271
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3272

3273 3274
	csum_root = btrfs_csum_root(fs_info, logical);

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3286 3287 3288

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3289
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3290 3291
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3292 3293 3294 3295 3296

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3297
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3307 3308 3309 3310
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3311
	while (physical < physical_end) {
A
Arne Jansen 已提交
3312 3313 3314 3315
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3316
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3317 3318 3319 3320 3321 3322 3323 3324
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3325
			sctx->flush_all_writes = true;
3326
			scrub_submit(sctx);
3327
			mutex_lock(&sctx->wr_lock);
3328
			scrub_wr_submit(sctx);
3329
			mutex_unlock(&sctx->wr_lock);
3330
			wait_event(sctx->list_wait,
3331
				   atomic_read(&sctx->bios_in_flight) == 0);
3332
			sctx->flush_all_writes = false;
3333
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3334 3335
		}

3336 3337 3338 3339 3340 3341
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3342
				/* it is parity strip */
3343
				stripe_logical += base;
3344
				stripe_end = stripe_logical + increment;
3345
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3346
							  stripe_logical,
3347 3348 3349 3350 3351 3352 3353
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3354 3355 3356 3357
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3358
		key.objectid = logical;
L
Liu Bo 已提交
3359
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3360 3361 3362 3363

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3364

3365
		if (ret > 0) {
3366
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3367 3368
			if (ret < 0)
				goto out;
3369 3370 3371 3372 3373 3374 3375 3376 3377
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3378 3379
		}

L
Liu Bo 已提交
3380
		stop_loop = 0;
A
Arne Jansen 已提交
3381
		while (1) {
3382 3383
			u64 bytes;

A
Arne Jansen 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3393
				stop_loop = 1;
A
Arne Jansen 已提交
3394 3395 3396 3397
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3398 3399 3400 3401
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3402
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3403
				bytes = fs_info->nodesize;
3404 3405 3406 3407
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3408 3409
				goto next;

L
Liu Bo 已提交
3410 3411 3412 3413 3414 3415
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3431 3432 3433 3434 3435
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3436 3437 3438 3439
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3440
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3441
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442
				       key.objectid, logical);
3443 3444 3445
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3446 3447 3448
				goto next;
			}

L
Liu Bo 已提交
3449 3450
again:
			extent_logical = key.objectid;
3451
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3452 3453
			extent_len = bytes;

A
Arne Jansen 已提交
3454 3455 3456
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3457 3458 3459
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3460
			}
L
Liu Bo 已提交
3461
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3462
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3463 3464
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3465 3466
			}

L
Liu Bo 已提交
3467
			extent_physical = extent_logical - logical + physical;
3468 3469
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3470
			if (sctx->is_dev_replace)
3471 3472 3473 3474
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3484

L
Liu Bo 已提交
3485
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486 3487
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3488
					   extent_logical - logical + physical);
3489 3490 3491

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3492 3493 3494
			if (ret)
				goto out;

3495 3496 3497
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3498 3499
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3500
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501 3502 3503 3504
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3515
								increment;
3516
						ret = scrub_raid56_parity(sctx,
3517
							map, scrub_dev,
3518 3519 3520 3521 3522 3523
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3524 3525 3526 3527
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3528 3529 3530 3531 3532
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3533
				if (physical >= physical_end) {
L
Liu Bo 已提交
3534 3535 3536 3537
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3538 3539 3540
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3541
		btrfs_release_path(path);
3542
skip:
A
Arne Jansen 已提交
3543 3544
		logical += increment;
		physical += map->stripe_len;
3545
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3546 3547 3548 3549 3550
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3551
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3552 3553
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3554
	}
3555
out:
A
Arne Jansen 已提交
3556
	/* push queued extents */
3557
	scrub_submit(sctx);
3558
	mutex_lock(&sctx->wr_lock);
3559
	scrub_wr_submit(sctx);
3560
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3561

3562
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3563
	btrfs_free_path(path);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3575 3576 3577
	return ret < 0 ? ret : 0;
}

3578
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3579 3580
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3581
					  u64 dev_offset,
3582
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3583
{
3584
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3585
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3586 3587 3588
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3589
	int ret = 0;
A
Arne Jansen 已提交
3590

3591 3592 3593
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3594

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3607

3608
	map = em->map_lookup;
A
Arne Jansen 已提交
3609 3610 3611 3612 3613 3614 3615
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3616
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3617
		    map->stripes[i].physical == dev_offset) {
3618
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3619
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3649
static noinline_for_stack
3650
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3651
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3652 3653 3654
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3655 3656
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3657 3658
	u64 length;
	u64 chunk_offset;
3659
	int ret = 0;
3660
	int ro_set;
A
Arne Jansen 已提交
3661 3662 3663 3664
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3665
	struct btrfs_block_group *cache;
3666
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3667 3668 3669 3670 3671

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3672
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3673 3674 3675
	path->search_commit_root = 1;
	path->skip_locking = 1;

3676
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3677 3678 3679 3680 3681 3682
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3683 3684 3685 3686 3687
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3688 3689 3690 3691
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3692
					break;
3693 3694 3695
				}
			} else {
				ret = 0;
3696 3697
			}
		}
A
Arne Jansen 已提交
3698 3699 3700 3701 3702 3703

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3704
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3705 3706
			break;

3707
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3719 3720
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3721 3722 3723 3724 3725 3726 3727 3728

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3729 3730 3731 3732 3733 3734

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3735 3736 3737 3738
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3739 3740
				btrfs_put_block_group(cache);
				goto skip;
3741 3742 3743 3744
			}
			spin_unlock(&cache->lock);
		}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3759
		btrfs_freeze_block_group(cache);
3760 3761
		spin_unlock(&cache->lock);

3762 3763 3764 3765 3766 3767 3768 3769 3770
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3801
		 */
3802
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3813 3814
		if (ret == 0) {
			ro_set = 1;
3815
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3816 3817 3818
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3819
			 * It is not a problem for scrub, because
3820 3821 3822 3823
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3824 3825 3826 3827 3828 3829 3830
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3831
		} else {
J
Jeff Mahoney 已提交
3832
			btrfs_warn(fs_info,
3833
				   "failed setting block group ro: %d", ret);
3834
			btrfs_unfreeze_block_group(cache);
3835
			btrfs_put_block_group(cache);
3836
			scrub_pause_off(fs_info);
3837 3838 3839
			break;
		}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3852
		down_write(&dev_replace->rwsem);
3853 3854 3855
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3856 3857
		up_write(&dev_replace->rwsem);

3858
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3859
				  found_key.offset, cache);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3871
		sctx->flush_all_writes = true;
3872
		scrub_submit(sctx);
3873
		mutex_lock(&sctx->wr_lock);
3874
		scrub_wr_submit(sctx);
3875
		mutex_unlock(&sctx->wr_lock);
3876 3877 3878

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3879 3880

		scrub_pause_on(fs_info);
3881 3882 3883 3884 3885 3886

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3887 3888
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3889
		sctx->flush_all_writes = false;
3890

3891
		scrub_pause_off(fs_info);
3892

3893 3894 3895 3896 3897
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3898
		down_write(&dev_replace->rwsem);
3899 3900
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3901
		up_write(&dev_replace->rwsem);
3902

3903
		if (ro_set)
3904
			btrfs_dec_block_group_ro(cache);
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3915
		    cache->used == 0) {
3916
			spin_unlock(&cache->lock);
3917 3918 3919 3920 3921
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3922 3923 3924
		} else {
			spin_unlock(&cache->lock);
		}
3925
skip_unfreeze:
3926
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3927 3928 3929
		btrfs_put_block_group(cache);
		if (ret)
			break;
3930
		if (sctx->is_dev_replace &&
3931
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3932 3933 3934 3935 3936 3937 3938
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3939
skip:
A
Arne Jansen 已提交
3940
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3941
		btrfs_release_path(path);
A
Arne Jansen 已提交
3942 3943 3944
	}

	btrfs_free_path(path);
3945

3946
	return ret;
A
Arne Jansen 已提交
3947 3948
}

3949 3950
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3951 3952 3953 3954 3955
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3956
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3957

J
Josef Bacik 已提交
3958
	if (BTRFS_FS_ERROR(fs_info))
3959
		return -EROFS;
3960

3961
	/* Seed devices of a new filesystem has their own generation. */
3962
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3963 3964
		gen = scrub_dev->generation;
	else
3965
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3966 3967 3968

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3969 3970
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3971
			break;
3972 3973
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3974

3975
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3976
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3977
				  NULL, bytenr);
A
Arne Jansen 已提交
3978 3979 3980
		if (ret)
			return ret;
	}
3981
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3982 3983 3984 3985

	return 0;
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
4009 4010 4011
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4012 4013
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4014
{
4015 4016 4017
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
4018
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4019
	int max_active = fs_info->thread_pool_size;
4020
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4021

4022 4023
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4024

4025 4026 4027 4028
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
4029

4030
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4031
					      max_active, 2);
4032 4033
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4048
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4049 4050
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4051
	}
4052 4053 4054
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4055

4056 4057
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4058
fail_scrub_parity_workers:
4059
	btrfs_destroy_workqueue(scrub_wr_comp);
4060
fail_scrub_wr_completion_workers:
4061
	btrfs_destroy_workqueue(scrub_workers);
4062
fail_scrub_workers:
4063
	return ret;
A
Arne Jansen 已提交
4064 4065
}

4066 4067
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4068
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4069
{
4070
	struct btrfs_dev_lookup_args args = { .devid = devid };
4071
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4072 4073
	int ret;
	struct btrfs_device *dev;
4074
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4075

4076
	if (btrfs_fs_closing(fs_info))
4077
		return -EAGAIN;
A
Arne Jansen 已提交
4078

4079
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080 4081 4082 4083 4084
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4085 4086
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087 4088
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4089 4090 4091
		return -EINVAL;
	}

4092
	if (fs_info->nodesize >
4093
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095 4096 4097 4098
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4099 4100
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101
		       fs_info->nodesize,
4102
		       SCRUB_MAX_PAGES_PER_BLOCK,
4103
		       fs_info->sectorsize,
4104 4105 4106 4107
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4108 4109 4110 4111
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4112

4113 4114 4115 4116
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4117
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4119 4120
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4121
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122
		ret = -ENODEV;
4123
		goto out;
A
Arne Jansen 已提交
4124 4125
	}

4126 4127
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129 4130 4131
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4132
		ret = -EROFS;
4133
		goto out;
4134 4135
	}

4136
	mutex_lock(&fs_info->scrub_lock);
4137
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4139
		mutex_unlock(&fs_info->scrub_lock);
4140
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141
		ret = -EIO;
4142
		goto out;
A
Arne Jansen 已提交
4143 4144
	}

4145
	down_read(&fs_info->dev_replace.rwsem);
4146
	if (dev->scrub_ctx ||
4147 4148
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4150
		mutex_unlock(&fs_info->scrub_lock);
4151
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152
		ret = -EINPROGRESS;
4153
		goto out;
A
Arne Jansen 已提交
4154
	}
4155
	up_read(&fs_info->dev_replace.rwsem);
4156

4157
	sctx->readonly = readonly;
4158
	dev->scrub_ctx = sctx;
4159
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4160

4161 4162 4163 4164
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4165
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4166 4167 4168
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4179
	if (!is_dev_replace) {
4180
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181 4182 4183 4184
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4185
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186
		ret = scrub_supers(sctx, dev);
4187
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188
	}
A
Arne Jansen 已提交
4189 4190

	if (!ret)
4191
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4193

4194
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4195 4196 4197
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4198
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199

A
Arne Jansen 已提交
4200
	if (progress)
4201
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4202

4203 4204 4205 4206
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4207
	mutex_lock(&fs_info->scrub_lock);
4208
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4209 4210
	mutex_unlock(&fs_info->scrub_lock);

4211
	scrub_workers_put(fs_info);
4212
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4213

4214
	return ret;
4215 4216
out:
	scrub_workers_put(fs_info);
4217 4218 4219
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4220 4221 4222
	return ret;
}

4223
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4238
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4239 4240 4241 4242 4243
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4244
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4265
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266
{
4267
	struct btrfs_fs_info *fs_info = dev->fs_info;
4268
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4269 4270

	mutex_lock(&fs_info->scrub_lock);
4271
	sctx = dev->scrub_ctx;
4272
	if (!sctx) {
A
Arne Jansen 已提交
4273 4274 4275
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4276
	atomic_inc(&sctx->cancel_req);
4277
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4278 4279
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4280
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4281 4282 4283 4284 4285 4286
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4287

4288
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4289 4290
			 struct btrfs_scrub_progress *progress)
{
4291
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4292
	struct btrfs_device *dev;
4293
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4294

4295
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4296
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4297
	if (dev)
4298
		sctx = dev->scrub_ctx;
4299 4300
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4301
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4302

4303
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4304
}
4305 4306

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4307
			       u64 extent_logical, u32 extent_len,
4308 4309 4310 4311 4312
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
4313
	struct btrfs_io_context *bioc = NULL;
4314 4315 4316
	int ret;

	mapped_length = extent_len;
4317
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4318 4319 4320 4321
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4322 4323 4324
		return;
	}

4325 4326 4327 4328
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4329
}