scrub.c 107.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10 11 12 13
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
14
#include "transaction.h"
15
#include "backref.h"
16
#include "extent_io.h"
17
#include "dev-replace.h"
18
#include "check-integrity.h"
19
#include "rcu-string.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
A
Arne Jansen 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

36
struct scrub_block;
37
struct scrub_ctx;
A
Arne Jansen 已提交
38

39 40 41 42 43 44 45 46 47
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
48 49 50 51 52 53

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
54
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
55

56
struct scrub_recover {
57
	refcount_t		refs;
58 59 60 61
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
62
struct scrub_page {
63 64
	struct scrub_block	*sblock;
	struct page		*page;
65
	struct btrfs_device	*dev;
66
	struct list_head	list;
A
Arne Jansen 已提交
67 68
	u64			flags;  /* extent flags */
	u64			generation;
69 70
	u64			logical;
	u64			physical;
71
	u64			physical_for_dev_replace;
72
	atomic_t		refs;
73 74 75 76 77
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u64			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164 165
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
166
	int			readonly;
167
	int			pages_per_rd_bio;
168 169

	int			is_dev_replace;
170 171 172 173 174

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
175
	bool                    flush_all_writes;
176

A
Arne Jansen 已提交
177 178 179 180 181
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
182 183 184 185 186 187 188 189

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
190
	refcount_t              refs;
A
Arne Jansen 已提交
191 192
};

193 194 195 196
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
197
	u64			physical;
198 199 200 201
	u64			logical;
	struct btrfs_device	*dev;
};

202 203 204 205 206 207 208
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

209 210
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213
				     struct scrub_block *sblocks_for_recheck);
214
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 216
				struct scrub_block *sblock,
				int retry_failed_mirror);
217
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219
					     struct scrub_block *sblock_good);
220 221 222
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
223 224 225
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
226 227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235 236
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
237
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
238
		       u64 physical, struct btrfs_device *dev, u64 flags,
239 240
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
241
static void scrub_bio_end_io(struct bio *bio);
242 243
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
244 245 246 247 248 249 250 251
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
252
static void scrub_wr_bio_end_io(struct bio *bio);
253
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
257

258 259 260 261 262
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
263

264 265
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
266
	refcount_inc(&sctx->refs);
267 268 269 270 271 272 273
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
274
	scrub_put_ctx(sctx);
275 276
}

277
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 279 280 281 282 283 284 285 286
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

287
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 289 290
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
291
}
292

293 294
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
295 296 297 298 299 300 301 302
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

303 304 305 306 307 308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

328
	lockdep_assert_held(&locks_root->lock);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

344 345 346
	/*
	 * Insert new lock.
	 */
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

372
	lockdep_assert_held(&locks_root->lock);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

527
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528
{
529
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
530
		struct btrfs_ordered_sum *sum;
531
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
532 533 534 535 536 537
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

538
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
539 540 541
{
	int i;

542
	if (!sctx)
A
Arne Jansen 已提交
543 544
		return;

545
	/* this can happen when scrub is cancelled */
546 547
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 549

		for (i = 0; i < sbio->page_count; i++) {
550
			WARN_ON(!sbio->pagev[i]->page);
551 552 553 554 555
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

556
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
558 559 560 561 562 563

		if (!sbio)
			break;
		kfree(sbio);
	}

564
	kfree(sctx->wr_curr_bio);
565 566
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
567 568
}

569 570
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
571
	if (refcount_dec_and_test(&sctx->refs))
572 573 574
		scrub_free_ctx(sctx);
}

575 576
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
577
{
578
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
579 580
	int		i;

581
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582
	if (!sctx)
A
Arne Jansen 已提交
583
		goto nomem;
584
	refcount_set(&sctx->refs, 1);
585
	sctx->is_dev_replace = is_dev_replace;
586
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587
	sctx->curr = -1;
588
	sctx->fs_info = fs_info;
589
	INIT_LIST_HEAD(&sctx->csum_list);
590
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
591 592
		struct scrub_bio *sbio;

593
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
594 595
		if (!sbio)
			goto nomem;
596
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
597 598

		sbio->index = i;
599
		sbio->sctx = sctx;
600
		sbio->page_count = 0;
601 602
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
603

604
		if (i != SCRUB_BIOS_PER_SCTX - 1)
605
			sctx->bios[i]->next_free = i + 1;
606
		else
607 608 609
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
610 611
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
612 613 614 615 616 617
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
618

619 620 621
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
622
	if (is_dev_replace) {
623
		WARN_ON(!fs_info->dev_replace.tgtdev);
624
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626
		sctx->flush_all_writes = false;
627
	}
628

629
	return sctx;
A
Arne Jansen 已提交
630 631

nomem:
632
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
633 634 635
	return ERR_PTR(-ENOMEM);
}

636 637
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
638 639 640 641 642
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
643
	unsigned nofs_flag;
644 645
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
646
	struct scrub_warning *swarn = warn_ctx;
647
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 649 650
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
651
	struct btrfs_key key;
652 653 654 655 656 657 658 659 660 661

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

662 663 664
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
665 666 667 668 669
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
670 671 672 673 674 675 676 677 678 679 680 681
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

682 683 684 685 686 687
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
688
	ipath = init_ipath(4096, local_root, swarn->path);
689
	memalloc_nofs_restore(nofs_flag);
690 691 692 693 694
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
695 696 697 698 699 700 701 702 703 704
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
705
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
706
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
707 708
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
709
				  swarn->physical,
J
Jeff Mahoney 已提交
710 711 712
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
713 714 715 716 717

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
718
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
719
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
720 721
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
722
			  swarn->physical,
J
Jeff Mahoney 已提交
723
			  root, inum, offset, ret);
724 725 726 727 728

	free_ipath(ipath);
	return 0;
}

729
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
730
{
731 732
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
733 734 735 736 737
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
738 739 740
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
741
	u64 ref_root;
742
	u32 item_size;
743
	u8 ref_level = 0;
744
	int ret;
745

746
	WARN_ON(sblock->page_count < 1);
747
	dev = sblock->pagev[0]->dev;
748
	fs_info = sblock->sctx->fs_info;
749

750
	path = btrfs_alloc_path();
751 752
	if (!path)
		return;
753

D
David Sterba 已提交
754
	swarn.physical = sblock->pagev[0]->physical;
755
	swarn.logical = sblock->pagev[0]->logical;
756
	swarn.errstr = errstr;
757
	swarn.dev = NULL;
758

759 760
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
761 762 763
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
764
	extent_item_pos = swarn.logical - found_key.objectid;
765 766 767 768 769 770
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

771
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
772
		do {
773 774 775
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
776
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
777
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
778
				errstr, swarn.logical,
779
				rcu_str_deref(dev->name),
D
David Sterba 已提交
780
				swarn.physical,
781 782 783 784
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
785
		btrfs_release_path(path);
786
	} else {
787
		btrfs_release_path(path);
788
		swarn.path = path;
789
		swarn.dev = dev;
790 791
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
792
					scrub_print_warning_inode, &swarn, false);
793 794 795 796 797 798
	}

out:
	btrfs_free_path(path);
}

799 800
static inline void scrub_get_recover(struct scrub_recover *recover)
{
801
	refcount_inc(&recover->refs);
802 803
}

804 805
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
806
{
807
	if (refcount_dec_and_test(&recover->refs)) {
808
		btrfs_bio_counter_dec(fs_info);
809
		btrfs_put_bbio(recover->bbio);
810 811 812 813
		kfree(recover);
	}
}

A
Arne Jansen 已提交
814
/*
815 816 817 818 819 820
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
821
 */
822
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
823
{
824
	struct scrub_ctx *sctx = sblock_to_check->sctx;
825
	struct btrfs_device *dev;
826 827 828 829 830 831 832 833 834 835 836
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
837
	bool full_stripe_locked;
838
	unsigned int nofs_flag;
839
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
840 841 842
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
843
	fs_info = sctx->fs_info;
844 845 846 847 848 849 850 851 852 853 854
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
855 856 857 858
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
859
			BTRFS_EXTENT_FLAG_DATA);
860 861
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
862

863 864 865 866 867 868 869 870 871 872
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
873 874 875 876 877 878 879 880 881
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
882
		memalloc_nofs_restore(nofs_flag);
883 884 885 886 887 888 889 890 891
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

921
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
922
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
923
	if (!sblocks_for_recheck) {
924 925 926 927 928
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
929
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
930
		goto out;
A
Arne Jansen 已提交
931 932
	}

933
	/* setup the context, map the logical blocks and alloc the pages */
934
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
935
	if (ret) {
936 937 938 939
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
940
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 942 943 944
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
945

946
	/* build and submit the bios for the failed mirror, check checksums */
947
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
948

949 950 951 952 953 954 955 956 957 958
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
961
		sblock_to_check->data_corrected = 1;
962
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
963

964 965
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
966
		goto out;
A
Arne Jansen 已提交
967 968
	}

969
	if (!sblock_bad->no_io_error_seen) {
970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
973 974
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
975
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976
	} else if (sblock_bad->checksum_error) {
977 978 979
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
980 981
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
982
		btrfs_dev_stat_inc_and_print(dev,
983
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
984
	} else if (sblock_bad->header_error) {
985 986 987
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
988 989 990
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
991
		if (sblock_bad->generation_error)
992
			btrfs_dev_stat_inc_and_print(dev,
993 994
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
995
			btrfs_dev_stat_inc_and_print(dev,
996
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
997
	}
A
Arne Jansen 已提交
998

999 1000 1001 1002
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1003

1004 1005
	/*
	 * now build and submit the bios for the other mirrors, check
1006 1007
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1019
	for (mirror_index = 0; ;mirror_index++) {
1020
		struct scrub_block *sblock_other;
1021

1022 1023
		if (mirror_index == failed_mirror_index)
			continue;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1047 1048

		/* build and submit the bios, check checksums */
1049
		scrub_recheck_block(fs_info, sblock_other, 0);
1050 1051

		if (!sblock_other->header_error &&
1052 1053
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1054 1055
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1056
				goto corrected_error;
1057 1058
			} else {
				ret = scrub_repair_block_from_good_copy(
1059 1060 1061
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1062
			}
1063 1064
		}
	}
A
Arne Jansen 已提交
1065

1066 1067
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1068 1069 1070

	/*
	 * In case of I/O errors in the area that is supposed to be
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1083
	 * the final checksum succeeds. But this would be a rare
1084 1085 1086 1087 1088 1089 1090 1091
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1092
	 */
1093
	success = 1;
1094 1095
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1096
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097
		struct scrub_block *sblock_other = NULL;
1098

1099 1100
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1101
			continue;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1114 1115 1116 1117 1118 1119 1120 1121 1122
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1123 1124
				}
			}
1125 1126
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1127
		}
A
Arne Jansen 已提交
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1142
				atomic64_inc(
1143
					&fs_info->dev_replace.num_write_errors);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1154
		}
A
Arne Jansen 已提交
1155 1156
	}

1157
	if (success && !sctx->is_dev_replace) {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1168
			scrub_recheck_block(fs_info, sblock_bad, 1);
1169
			if (!sblock_bad->header_error &&
1170 1171 1172 1173 1174 1175 1176
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1177 1178
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1179
			sblock_to_check->data_corrected = 1;
1180
			spin_unlock(&sctx->stat_lock);
1181 1182
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1183
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1184
		}
1185 1186
	} else {
did_not_correct_error:
1187 1188 1189
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1190 1191
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1192
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1193
	}
A
Arne Jansen 已提交
1194

1195 1196 1197 1198 1199 1200
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1201
			struct scrub_recover *recover;
1202 1203
			int page_index;

1204 1205 1206
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1207 1208
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1209
					scrub_put_recover(fs_info, recover);
1210 1211 1212
					sblock->pagev[page_index]->recover =
									NULL;
				}
1213 1214
				scrub_page_put(sblock->pagev[page_index]);
			}
1215 1216 1217
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1218

1219
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220
	memalloc_nofs_restore(nofs_flag);
1221 1222
	if (ret < 0)
		return ret;
1223 1224
	return 0;
}
A
Arne Jansen 已提交
1225

1226
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227
{
Z
Zhao Lei 已提交
1228 1229 1230 1231 1232
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1233 1234 1235
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1236 1237
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1238 1239 1240 1241 1242 1243 1244
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1245
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1266
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267 1268
				     struct scrub_block *sblocks_for_recheck)
{
1269
	struct scrub_ctx *sctx = original_sblock->sctx;
1270
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271 1272
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1273 1274 1275
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276 1277 1278 1279 1280 1281
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1282
	int page_index = 0;
1283
	int mirror_index;
1284
	int nmirrors;
1285 1286 1287
	int ret;

	/*
1288
	 * note: the two members refs and outstanding_pages
1289 1290 1291 1292 1293
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1294 1295 1296
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1297

1298 1299 1300 1301
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1302
		btrfs_bio_counter_inc_blocked(fs_info);
1303
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304
				logical, &mapped_length, &bbio);
1305
		if (ret || !bbio || mapped_length < sublen) {
1306
			btrfs_put_bbio(bbio);
1307
			btrfs_bio_counter_dec(fs_info);
1308 1309
			return -EIO;
		}
A
Arne Jansen 已提交
1310

1311 1312
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1313
			btrfs_put_bbio(bbio);
1314
			btrfs_bio_counter_dec(fs_info);
1315 1316 1317
			return -ENOMEM;
		}

1318
		refcount_set(&recover->refs, 1);
1319 1320 1321
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1322
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323

1324
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1325

1326
		for (mirror_index = 0; mirror_index < nmirrors;
1327 1328 1329 1330 1331
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1332
			sblock->sctx = sctx;
1333

1334 1335 1336
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1337 1338 1339
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1340
				scrub_put_recover(fs_info, recover);
1341 1342
				return -ENOMEM;
			}
1343 1344
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1345 1346 1347
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1348
			page->logical = logical;
1349 1350 1351 1352 1353
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1354

Z
Zhao Lei 已提交
1355 1356 1357
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1358
						      mapped_length,
1359 1360
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1361 1362 1363 1364 1365 1366 1367
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1368 1369 1370 1371
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1372 1373
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1374
			sblock->page_count++;
1375 1376 1377
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1378 1379 1380

			scrub_get_recover(recover);
			page->recover = recover;
1381
		}
1382
		scrub_put_recover(fs_info, recover);
1383 1384 1385 1386 1387 1388
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1389 1390
}

1391
static void scrub_bio_wait_endio(struct bio *bio)
1392
{
1393
	complete(bio->bi_private);
1394 1395 1396 1397 1398 1399
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1400
	DECLARE_COMPLETION_ONSTACK(done);
1401
	int ret;
1402
	int mirror_num;
1403 1404 1405 1406 1407

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1408
	mirror_num = page->sblock->pagev[0]->mirror_num;
1409
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410
				    page->recover->map_length,
1411
				    mirror_num, 0);
1412 1413 1414
	if (ret)
		return ret;

1415 1416
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1417 1418
}

L
Liu Bo 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1458 1459 1460 1461 1462 1463 1464
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1465
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466 1467
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1468
{
1469
	int page_num;
I
Ilya Dryomov 已提交
1470

1471
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1472

L
Liu Bo 已提交
1473 1474 1475 1476
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1477 1478
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1479
		struct scrub_page *page = sblock->pagev[page_num];
1480

1481
		if (page->dev->bdev == NULL) {
1482 1483 1484 1485 1486
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1487
		WARN_ON(!page->page);
1488
		bio = btrfs_io_bio_alloc(1);
1489
		bio_set_dev(bio, page->dev->bdev);
1490

1491
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1492 1493
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1494

L
Liu Bo 已提交
1495 1496 1497
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1498
		}
1499

1500 1501
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1502

1503
	if (sblock->no_io_error_seen)
1504
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1505 1506
}

M
Miao Xie 已提交
1507 1508 1509 1510 1511 1512
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1513
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1514 1515 1516
	return !ret;
}

1517
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1518
{
1519 1520 1521
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1522

1523 1524 1525 1526
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1527 1528
}

1529
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530
					     struct scrub_block *sblock_good)
1531 1532 1533
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1534

1535 1536
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1537

1538 1539
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1540
							   page_num, 1);
1541 1542
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1543
	}
1544 1545 1546 1547 1548 1549 1550 1551

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1552 1553
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555

1556 1557
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1558 1559 1560 1561 1562
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1563
		if (!page_bad->dev->bdev) {
1564
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1565
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566 1567 1568
			return -EIO;
		}

1569
		bio = btrfs_io_bio_alloc(1);
1570
		bio_set_dev(bio, page_bad->dev->bdev);
1571
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1572
		bio->bi_opf = REQ_OP_WRITE;
1573 1574 1575 1576 1577

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1578
		}
1579

1580
		if (btrfsic_submit_bio_wait(bio)) {
1581 1582
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1583
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584 1585 1586
			bio_put(bio);
			return -EIO;
		}
1587
		bio_put(bio);
A
Arne Jansen 已提交
1588 1589
	}

1590 1591 1592
	return 0;
}

1593 1594
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1595
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596 1597
	int page_num;

1598 1599 1600 1601 1602 1603 1604
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1605 1606 1607 1608 1609
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1610
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1623
		clear_page(mapped_buffer);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1636
	mutex_lock(&sctx->wr_lock);
1637
again:
1638 1639
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640
					      GFP_KERNEL);
1641 1642
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1643 1644
			return -ENOMEM;
		}
1645 1646
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1647
	}
1648
	sbio = sctx->wr_curr_bio;
1649 1650 1651 1652 1653
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1654
		sbio->dev = sctx->wr_tgtdev;
1655 1656
		bio = sbio->bio;
		if (!bio) {
1657
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658 1659 1660 1661 1662
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1663
		bio_set_dev(bio, sbio->dev->bdev);
1664
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1665
		bio->bi_opf = REQ_OP_WRITE;
1666
		sbio->status = 0;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1680
			mutex_unlock(&sctx->wr_lock);
1681 1682 1683 1684 1685 1686 1687 1688 1689
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1690
	if (sbio->page_count == sctx->pages_per_wr_bio)
1691
		scrub_wr_submit(sctx);
1692
	mutex_unlock(&sctx->wr_lock);
1693 1694 1695 1696 1697 1698 1699 1700

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1701
	if (!sctx->wr_curr_bio)
1702 1703
		return;

1704 1705
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1706
	WARN_ON(!sbio->bio->bi_disk);
1707 1708 1709 1710 1711
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1712
	btrfsic_submit_bio(sbio->bio);
1713 1714
}

1715
static void scrub_wr_bio_end_io(struct bio *bio)
1716 1717
{
	struct scrub_bio *sbio = bio->bi_private;
1718
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719

1720
	sbio->status = bio->bi_status;
1721 1722
	sbio->bio = bio;

1723 1724
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1725
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726 1727 1728 1729 1730 1731 1732 1733 1734
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735
	if (sbio->status) {
1736
		struct btrfs_dev_replace *dev_replace =
1737
			&sbio->sctx->fs_info->dev_replace;
1738 1739 1740 1741 1742

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1743
			atomic64_inc(&dev_replace->num_write_errors);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1756 1757 1758 1759
{
	u64 flags;
	int ret;

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1772 1773
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1785 1786

	return ret;
A
Arne Jansen 已提交
1787 1788
}

1789
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1790
{
1791
	struct scrub_ctx *sctx = sblock->sctx;
1792 1793
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1794
	u8 csum[BTRFS_CSUM_SIZE];
1795 1796 1797 1798 1799
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u64 len;
	int index;
A
Arne Jansen 已提交
1800

1801
	BUG_ON(sblock->page_count < 1);
1802
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1803 1804
		return 0;

1805 1806 1807
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1808 1809
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1810
	buffer = kmap_atomic(page);
1811

1812
	len = sctx->fs_info->sectorsize;
1813 1814 1815 1816
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1817
		crypto_shash_update(shash, buffer, l);
1818
		kunmap_atomic(buffer);
1819 1820 1821 1822 1823
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1824 1825
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1826
		buffer = kmap_atomic(page);
1827 1828
	}

1829
	crypto_shash_final(shash, csum);
1830
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1832

1833
	return sblock->checksum_error;
A
Arne Jansen 已提交
1834 1835
}

1836
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1837
{
1838
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1839
	struct btrfs_header *h;
1840
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842 1843 1844 1845 1846 1847 1848 1849 1850
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u64 len;
	int index;

1851 1852 1853
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1854
	BUG_ON(sblock->page_count < 1);
1855
	page = sblock->pagev[0]->page;
1856
	mapped_buffer = kmap_atomic(page);
1857
	h = (struct btrfs_header *)mapped_buffer;
1858
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1859 1860 1861 1862 1863 1864

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1865
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866
		sblock->header_error = 1;
A
Arne Jansen 已提交
1867

1868 1869 1870 1871
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1872

M
Miao Xie 已提交
1873
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874
		sblock->header_error = 1;
A
Arne Jansen 已提交
1875 1876 1877

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1878
		sblock->header_error = 1;
A
Arne Jansen 已提交
1879

1880
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881 1882 1883 1884 1885 1886
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1887
		crypto_shash_update(shash, p, l);
1888
		kunmap_atomic(mapped_buffer);
1889 1890 1891 1892 1893
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1894 1895
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1896
		mapped_buffer = kmap_atomic(page);
1897 1898 1899 1900
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1901
	crypto_shash_final(shash, calculated_csum);
1902
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1904

1905
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1906 1907
}

1908
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1909 1910
{
	struct btrfs_super_block *s;
1911
	struct scrub_ctx *sctx = sblock->sctx;
1912 1913
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914 1915 1916 1917 1918 1919
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
1920 1921
	int fail_gen = 0;
	int fail_cor = 0;
1922 1923
	u64 len;
	int index;
A
Arne Jansen 已提交
1924

1925 1926 1927
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1928
	BUG_ON(sblock->page_count < 1);
1929
	page = sblock->pagev[0]->page;
1930
	mapped_buffer = kmap_atomic(page);
1931
	s = (struct btrfs_super_block *)mapped_buffer;
1932
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1933

1934
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935
		++fail_cor;
A
Arne Jansen 已提交
1936

1937
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938
		++fail_gen;
A
Arne Jansen 已提交
1939

M
Miao Xie 已提交
1940
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941
		++fail_cor;
A
Arne Jansen 已提交
1942

1943 1944 1945 1946 1947 1948 1949
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1950
		crypto_shash_update(shash, p, l);
1951
		kunmap_atomic(mapped_buffer);
1952 1953 1954 1955 1956
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1957 1958
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1959
		mapped_buffer = kmap_atomic(page);
1960 1961 1962 1963
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1964
	crypto_shash_final(shash, calculated_csum);
1965
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966
		++fail_cor;
A
Arne Jansen 已提交
1967

1968
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1969 1970 1971 1972 1973
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1974 1975 1976
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1977
		if (fail_cor)
1978
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979 1980
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1981
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1983 1984
	}

1985
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1986 1987
}

1988 1989
static void scrub_block_get(struct scrub_block *sblock)
{
1990
	refcount_inc(&sblock->refs);
1991 1992 1993 1994
}

static void scrub_block_put(struct scrub_block *sblock)
{
1995
	if (refcount_dec_and_test(&sblock->refs)) {
1996 1997
		int i;

1998 1999 2000
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2001
		for (i = 0; i < sblock->page_count; i++)
2002
			scrub_page_put(sblock->pagev[i]);
2003 2004 2005 2006
		kfree(sblock);
	}
}

2007 2008
static void scrub_page_get(struct scrub_page *spage)
{
2009
	atomic_inc(&spage->refs);
2010 2011 2012 2013
}

static void scrub_page_put(struct scrub_page *spage)
{
2014
	if (atomic_dec_and_test(&spage->refs)) {
2015 2016 2017 2018 2019 2020
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2021
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2022 2023 2024
{
	struct scrub_bio *sbio;

2025
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2026
		return;
A
Arne Jansen 已提交
2027

2028 2029
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2030
	scrub_pending_bio_inc(sctx);
2031
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2032 2033
}

2034 2035
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2036
{
2037
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2038
	struct scrub_bio *sbio;
2039
	int ret;
A
Arne Jansen 已提交
2040 2041 2042 2043 2044

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2045 2046 2047 2048 2049 2050 2051 2052
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2053
		} else {
2054 2055
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2056 2057
		}
	}
2058
	sbio = sctx->bios[sctx->curr];
2059
	if (sbio->page_count == 0) {
2060 2061
		struct bio *bio;

2062 2063
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2064
		sbio->dev = spage->dev;
2065 2066
		bio = sbio->bio;
		if (!bio) {
2067
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2068 2069
			sbio->bio = bio;
		}
2070 2071 2072

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2073
		bio_set_dev(bio, sbio->dev->bdev);
2074
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2075
		bio->bi_opf = REQ_OP_READ;
2076
		sbio->status = 0;
2077 2078 2079
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080 2081
		   spage->logical ||
		   sbio->dev != spage->dev) {
2082
		scrub_submit(sctx);
A
Arne Jansen 已提交
2083 2084
		goto again;
	}
2085

2086 2087 2088 2089 2090 2091 2092 2093
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2094
		scrub_submit(sctx);
2095 2096 2097
		goto again;
	}

2098
	scrub_block_get(sblock); /* one for the page added to the bio */
2099 2100
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2101
	if (sbio->page_count == sctx->pages_per_rd_bio)
2102
		scrub_submit(sctx);
2103 2104 2105 2106

	return 0;
}

2107
static void scrub_missing_raid56_end_io(struct bio *bio)
2108 2109
{
	struct scrub_block *sblock = bio->bi_private;
2110
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2111

2112
	if (bio->bi_status)
2113 2114
		sblock->no_io_error_seen = 0;

2115 2116
	bio_put(bio);

2117 2118 2119 2120 2121 2122 2123
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2124
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2125 2126 2127 2128 2129 2130
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2131
	if (sblock->no_io_error_seen)
2132
		scrub_recheck_block_checksum(sblock);
2133 2134 2135 2136 2137

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2138
		btrfs_err_rl_in_rcu(fs_info,
2139
			"IO error rebuilding logical %llu for dev %s",
2140 2141 2142 2143 2144
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2145
		btrfs_err_rl_in_rcu(fs_info,
2146
			"failed to rebuild valid logical %llu for dev %s",
2147 2148 2149 2150 2151 2152 2153
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2154
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155
		mutex_lock(&sctx->wr_lock);
2156
		scrub_wr_submit(sctx);
2157
		mutex_unlock(&sctx->wr_lock);
2158 2159 2160 2161 2162 2163 2164 2165
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2166
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2167 2168
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2169
	struct btrfs_bio *bbio = NULL;
2170 2171 2172 2173 2174
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2175
	btrfs_bio_counter_inc_blocked(fs_info);
2176
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177
			&length, &bbio);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2192
	bio = btrfs_io_bio_alloc(0);
2193 2194 2195 2196
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2197
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2217
	btrfs_bio_counter_dec(fs_info);
2218 2219 2220 2221 2222 2223
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2224
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225
		       u64 physical, struct btrfs_device *dev, u64 flags,
2226 2227
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2228 2229 2230 2231
{
	struct scrub_block *sblock;
	int index;

2232
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233
	if (!sblock) {
2234 2235 2236
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2237
		return -ENOMEM;
A
Arne Jansen 已提交
2238
	}
2239

2240 2241
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2242
	refcount_set(&sblock->refs, 1);
2243
	sblock->sctx = sctx;
2244 2245 2246
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2247
		struct scrub_page *spage;
2248 2249
		u64 l = min_t(u64, len, PAGE_SIZE);

2250
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251 2252
		if (!spage) {
leave_nomem:
2253 2254 2255
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2256
			scrub_block_put(sblock);
2257 2258
			return -ENOMEM;
		}
2259 2260 2261
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2262
		spage->sblock = sblock;
2263
		spage->dev = dev;
2264 2265 2266 2267
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2268
		spage->physical_for_dev_replace = physical_for_dev_replace;
2269 2270 2271
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2272
			memcpy(spage->csum, csum, sctx->csum_size);
2273 2274 2275 2276
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2277
		spage->page = alloc_page(GFP_KERNEL);
2278 2279
		if (!spage->page)
			goto leave_nomem;
2280 2281 2282
		len -= l;
		logical += l;
		physical += l;
2283
		physical_for_dev_replace += l;
2284 2285
	}

2286
	WARN_ON(sblock->page_count == 0);
2287
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288 2289 2290 2291 2292 2293 2294 2295 2296
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2297

2298 2299 2300 2301 2302
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2303
		}
A
Arne Jansen 已提交
2304

2305 2306 2307
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2308

2309 2310
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2311 2312 2313
	return 0;
}

2314
static void scrub_bio_end_io(struct bio *bio)
2315 2316
{
	struct scrub_bio *sbio = bio->bi_private;
2317
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318

2319
	sbio->status = bio->bi_status;
2320 2321
	sbio->bio = bio;

2322
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323 2324 2325 2326 2327
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328
	struct scrub_ctx *sctx = sbio->sctx;
2329 2330
	int i;

2331
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332
	if (sbio->status) {
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2353 2354 2355 2356
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2357

2358
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359
		mutex_lock(&sctx->wr_lock);
2360
		scrub_wr_submit(sctx);
2361
		mutex_unlock(&sctx->wr_lock);
2362 2363
	}

2364
	scrub_pending_bio_dec(sctx);
2365 2366
}

2367 2368 2369 2370
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2371
	u64 offset;
2372 2373
	u64 nsectors64;
	u32 nsectors;
2374
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375 2376 2377 2378 2379 2380 2381

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2382 2383
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2384 2385 2386 2387
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2410 2411
static void scrub_block_complete(struct scrub_block *sblock)
{
2412 2413
	int corrupted = 0;

2414
	if (!sblock->no_io_error_seen) {
2415
		corrupted = 1;
2416
		scrub_handle_errored_block(sblock);
2417 2418 2419 2420 2421 2422
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2423 2424
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2425 2426
			scrub_write_block_to_dev_replace(sblock);
	}
2427 2428 2429 2430 2431 2432 2433 2434 2435

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2436 2437
}

2438
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2439 2440
{
	struct btrfs_ordered_sum *sum = NULL;
2441
	unsigned long index;
A
Arne Jansen 已提交
2442 2443
	unsigned long num_sectors;

2444 2445
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2446 2447 2448 2449 2450 2451
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2452
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2453 2454 2455 2456 2457 2458 2459
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2460 2461 2462
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2463
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2466 2467 2468
		list_del(&sum->list);
		kfree(sum);
	}
2469
	return 1;
A
Arne Jansen 已提交
2470 2471 2472
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2473 2474
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2475
			u64 physical, struct btrfs_device *dev, u64 flags,
2476
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2477 2478 2479
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2480 2481 2482
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2483 2484 2485 2486
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2487 2488 2489 2490
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2491
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2492 2493 2494 2495
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2496 2497 2498 2499
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2500
	} else {
2501
		blocksize = sctx->fs_info->sectorsize;
2502
		WARN_ON(1);
2503
	}
A
Arne Jansen 已提交
2504 2505

	while (len) {
2506
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2507 2508 2509 2510
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2511
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2512
			if (have_csum == 0)
2513
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2514
		}
2515
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516 2517
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2518 2519 2520 2521 2522
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2523
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2524 2525 2526 2527
	}
	return 0;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2537
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538 2539 2540 2541 2542 2543 2544 2545 2546
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2547
	refcount_set(&sblock->refs, 1);
2548 2549 2550 2551 2552 2553 2554 2555 2556
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2557
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2587
		spage->page = alloc_page(GFP_KERNEL);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2622
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623 2624 2625 2626
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2627
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2628
		blocksize = sparity->stripe_len;
2629
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2630
		blocksize = sparity->stripe_len;
2631
	} else {
2632
		blocksize = sctx->fs_info->sectorsize;
2633 2634 2635 2636 2637 2638 2639 2640 2641
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2642
			have_csum = scrub_find_csum(sctx, logical, csum);
2643 2644 2645 2646 2647 2648 2649 2650
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2651
skip:
2652 2653 2654 2655 2656 2657 2658
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2659 2660 2661 2662 2663 2664 2665 2666
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2667 2668
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2669 2670 2671 2672 2673
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2674 2675
	u32 stripe_index;
	u32 rot;
2676
	const int data_stripes = nr_data_stripes(map);
2677

2678
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679 2680 2681
	if (stripe_start)
		*stripe_start = last_offset;

2682
	*offset = last_offset;
2683
	for (i = 0; i < data_stripes; i++) {
2684 2685
		*offset = last_offset + i * map->stripe_len;

2686
		stripe_nr = div64_u64(*offset, map->stripe_len);
2687
		stripe_nr = div_u64(stripe_nr, data_stripes);
2688 2689

		/* Work out the disk rotation on this stripe-set */
2690
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691 2692
		/* calculate which stripe this data locates */
		rot += i;
2693
		stripe_index = rot % map->num_stripes;
2694 2695 2696 2697 2698 2699 2700 2701 2702
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2735
static void scrub_parity_bio_endio(struct bio *bio)
2736 2737
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739

2740
	if (bio->bi_status)
2741 2742 2743 2744
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2745 2746 2747

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2748
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749 2750 2751 2752 2753
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2754
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2765
	length = sparity->logic_end - sparity->logic_start;
2766 2767

	btrfs_bio_counter_inc_blocked(fs_info);
2768
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769
			       &length, &bbio);
2770
	if (ret || !bbio || !bbio->raid_map)
2771 2772
		goto bbio_out;

2773
	bio = btrfs_io_bio_alloc(0);
2774 2775 2776 2777
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2778
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779
					      length, sparity->scrub_dev,
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2792
	btrfs_bio_counter_dec(fs_info);
2793
	btrfs_put_bbio(bbio);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2805
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806 2807 2808 2809
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2810
	refcount_inc(&sparity->refs);
2811 2812 2813 2814
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2815
	if (!refcount_dec_and_test(&sparity->refs))
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2828
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829 2830 2831
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2832
	struct btrfs_bio *bbio = NULL;
2833 2834 2835 2836 2837 2838 2839 2840 2841
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2842
	u64 mapped_length;
2843 2844 2845 2846 2847 2848 2849
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2850
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2867
	refcount_set(&sparity->refs, 1);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2916 2917 2918 2919
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2920
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921
				bytes = fs_info->nodesize;
2922 2923 2924 2925 2926 2927
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2928
			if (key.objectid >= logic_end) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2941 2942 2943 2944
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2945 2946
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947
					  key.objectid, logic_start);
2948 2949 2950
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2970
			mapped_length = extent_len;
2971
			bbio = NULL;
2972 2973 2974
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3001 3002 3003

			scrub_free_csums(sctx);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3035
						logic_end - logic_start);
3036 3037
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3038
	mutex_lock(&sctx->wr_lock);
3039
	scrub_wr_submit(sctx);
3040
	mutex_unlock(&sctx->wr_lock);
3041 3042 3043 3044 3045

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3046
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047 3048
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3049
					   int num, u64 base, u64 length)
A
Arne Jansen 已提交
3050
{
3051
	struct btrfs_path *path, *ppath;
3052
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3053 3054 3055
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3056
	struct blk_plug plug;
A
Arne Jansen 已提交
3057 3058 3059 3060 3061 3062 3063
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3064
	u64 logic_end;
3065
	u64 physical_end;
A
Arne Jansen 已提交
3066
	u64 generation;
3067
	int mirror_num;
A
Arne Jansen 已提交
3068 3069
	struct reada_control *reada1;
	struct reada_control *reada2;
3070
	struct btrfs_key key;
A
Arne Jansen 已提交
3071
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3072 3073
	u64 increment = map->stripe_len;
	u64 offset;
3074 3075 3076
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3077 3078
	u64 stripe_logical;
	u64 stripe_end;
3079 3080
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3081
	int stop_loop = 0;
D
David Woodhouse 已提交
3082

3083
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3084
	offset = 0;
3085
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3086 3087 3088
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3089
		mirror_num = 1;
A
Arne Jansen 已提交
3090 3091 3092 3093
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3094
		mirror_num = num % map->sub_stripes + 1;
3095
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3096
		increment = map->stripe_len;
3097
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3098 3099
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3100
		mirror_num = num % map->num_stripes + 1;
3101
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103 3104
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3105 3106
	} else {
		increment = map->stripe_len;
3107
		mirror_num = 1;
A
Arne Jansen 已提交
3108 3109 3110 3111 3112 3113
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3114 3115
	ppath = btrfs_alloc_path();
	if (!ppath) {
3116
		btrfs_free_path(path);
3117 3118 3119
		return -ENOMEM;
	}

3120 3121 3122 3123 3124
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3125 3126 3127
	path->search_commit_root = 1;
	path->skip_locking = 1;

3128 3129
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3130
	/*
A
Arne Jansen 已提交
3131 3132 3133
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3134 3135
	 */
	logical = base + offset;
3136
	physical_end = physical + nstripes * map->stripe_len;
3137
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138
		get_raid56_logic_offset(physical_end, num,
3139
					map, &logic_end, NULL);
3140 3141 3142 3143
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3144
	wait_event(sctx->list_wait,
3145
		   atomic_read(&sctx->bios_in_flight) == 0);
3146
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3147 3148

	/* FIXME it might be better to start readahead at commit root */
3149 3150 3151
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3152
	key_end.objectid = logic_end;
3153 3154
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3155
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3156

3157 3158 3159
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3160 3161
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162
	key_end.offset = logic_end;
3163
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3164 3165 3166 3167 3168 3169

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3170 3171 3172 3173 3174

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3175
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3176 3177 3178 3179 3180

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3181
	while (physical < physical_end) {
A
Arne Jansen 已提交
3182 3183 3184 3185
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3187 3188 3189 3190 3191 3192 3193 3194
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3195
			sctx->flush_all_writes = true;
3196
			scrub_submit(sctx);
3197
			mutex_lock(&sctx->wr_lock);
3198
			scrub_wr_submit(sctx);
3199
			mutex_unlock(&sctx->wr_lock);
3200
			wait_event(sctx->list_wait,
3201
				   atomic_read(&sctx->bios_in_flight) == 0);
3202
			sctx->flush_all_writes = false;
3203
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3204 3205
		}

3206 3207 3208 3209 3210 3211
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3212
				/* it is parity strip */
3213
				stripe_logical += base;
3214
				stripe_end = stripe_logical + increment;
3215 3216 3217 3218 3219 3220 3221 3222 3223
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3224 3225 3226 3227
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3228
		key.objectid = logical;
L
Liu Bo 已提交
3229
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3230 3231 3232 3233

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3234

3235
		if (ret > 0) {
3236
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3237 3238
			if (ret < 0)
				goto out;
3239 3240 3241 3242 3243 3244 3245 3246 3247
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3248 3249
		}

L
Liu Bo 已提交
3250
		stop_loop = 0;
A
Arne Jansen 已提交
3251
		while (1) {
3252 3253
			u64 bytes;

A
Arne Jansen 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3263
				stop_loop = 1;
A
Arne Jansen 已提交
3264 3265 3266 3267
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3268 3269 3270 3271
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3272
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273
				bytes = fs_info->nodesize;
3274 3275 3276 3277
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3278 3279
				goto next;

L
Liu Bo 已提交
3280 3281 3282 3283 3284 3285
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3286 3287 3288 3289 3290 3291

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3292 3293 3294 3295
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3296
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3297
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298
				       key.objectid, logical);
3299 3300 3301
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3302 3303 3304
				goto next;
			}

L
Liu Bo 已提交
3305 3306 3307 3308
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3309 3310 3311
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3312 3313 3314
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3315
			}
L
Liu Bo 已提交
3316
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3317
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3318 3319
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3320 3321
			}

L
Liu Bo 已提交
3322
			extent_physical = extent_logical - logical + physical;
3323 3324
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3325
			if (sctx->is_dev_replace)
3326 3327 3328 3329
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3330

3331 3332 3333 3334 3335
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3336 3337 3338
			if (ret)
				goto out;

L
Liu Bo 已提交
3339
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340 3341
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3342
					   extent_logical - logical + physical);
3343 3344 3345

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3346 3347 3348
			if (ret)
				goto out;

L
Liu Bo 已提交
3349 3350
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3351
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352 3353 3354 3355
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3366
								increment;
3367 3368 3369 3370 3371 3372 3373 3374
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3375 3376 3377 3378
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3379 3380 3381 3382 3383
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3384
				if (physical >= physical_end) {
L
Liu Bo 已提交
3385 3386 3387 3388
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3389 3390 3391
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3392
		btrfs_release_path(path);
3393
skip:
A
Arne Jansen 已提交
3394 3395
		logical += increment;
		physical += map->stripe_len;
3396
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3397 3398 3399 3400 3401
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3402
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3403 3404
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3405
	}
3406
out:
A
Arne Jansen 已提交
3407
	/* push queued extents */
3408
	scrub_submit(sctx);
3409
	mutex_lock(&sctx->wr_lock);
3410
	scrub_wr_submit(sctx);
3411
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3412

3413
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3414
	btrfs_free_path(path);
3415
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3416 3417 3418
	return ret < 0 ? ret : 0;
}

3419
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3420 3421
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3422
					  u64 dev_offset,
3423
					  struct btrfs_block_group_cache *cache)
A
Arne Jansen 已提交
3424
{
3425
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3427 3428 3429
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3430
	int ret = 0;
A
Arne Jansen 已提交
3431

3432 3433 3434
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3448

3449
	map = em->map_lookup;
A
Arne Jansen 已提交
3450 3451 3452 3453 3454 3455 3456
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3457
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458
		    map->stripes[i].physical == dev_offset) {
3459
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460
					   chunk_offset, length);
A
Arne Jansen 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3472
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3474 3475 3476
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3477 3478
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3479 3480
	u64 length;
	u64 chunk_offset;
3481
	int ret = 0;
3482
	int ro_set;
A
Arne Jansen 已提交
3483 3484 3485 3486 3487
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3488
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3489 3490 3491 3492 3493

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3494
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3495 3496 3497
	path->search_commit_root = 1;
	path->skip_locking = 1;

3498
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3499 3500 3501 3502 3503 3504
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3505 3506 3507 3508 3509
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3510 3511 3512 3513
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3514
					break;
3515 3516 3517
				}
			} else {
				ret = 0;
3518 3519
			}
		}
A
Arne Jansen 已提交
3520 3521 3522 3523 3524 3525

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3526
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3527 3528
			break;

3529
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3541 3542
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3543 3544 3545 3546 3547 3548 3549 3550

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551 3552 3553 3554 3555 3556

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3557 3558 3559 3560 3561 3562 3563 3564 3565
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3566
		ret = btrfs_inc_block_group_ro(cache);
3567
		if (!ret && sctx->is_dev_replace) {
3568 3569
			/*
			 * If we are doing a device replace wait for any tasks
3570
			 * that started delalloc right before we set the block
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3588
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589 3590 3591 3592 3593 3594 3595 3596 3597
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3598
					ret = btrfs_commit_transaction(trans);
3599 3600 3601 3602 3603 3604 3605
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3606
		scrub_pause_off(fs_info);
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3620
			btrfs_warn(fs_info,
3621
				   "failed setting block group ro: %d", ret);
3622 3623 3624 3625
			btrfs_put_block_group(cache);
			break;
		}

3626
		down_write(&fs_info->dev_replace.rwsem);
3627 3628 3629
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3630 3631
		up_write(&dev_replace->rwsem);

3632
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633
				  found_key.offset, cache);
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3645
		sctx->flush_all_writes = true;
3646
		scrub_submit(sctx);
3647
		mutex_lock(&sctx->wr_lock);
3648
		scrub_wr_submit(sctx);
3649
		mutex_unlock(&sctx->wr_lock);
3650 3651 3652

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3653 3654

		scrub_pause_on(fs_info);
3655 3656 3657 3658 3659 3660

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3661 3662
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3663
		sctx->flush_all_writes = false;
3664

3665
		scrub_pause_off(fs_info);
3666

3667
		down_write(&fs_info->dev_replace.rwsem);
3668 3669
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3670
		up_write(&fs_info->dev_replace.rwsem);
3671

3672
		if (ro_set)
3673
			btrfs_dec_block_group_ro(cache);
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
3686
			btrfs_mark_bg_unused(cache);
3687 3688 3689 3690
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3691 3692 3693
		btrfs_put_block_group(cache);
		if (ret)
			break;
3694
		if (sctx->is_dev_replace &&
3695
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696 3697 3698 3699 3700 3701 3702
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3703
skip:
A
Arne Jansen 已提交
3704
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3705
		btrfs_release_path(path);
A
Arne Jansen 已提交
3706 3707 3708
	}

	btrfs_free_path(path);
3709

3710
	return ret;
A
Arne Jansen 已提交
3711 3712
}

3713 3714
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3715 3716 3717 3718 3719
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3720
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3721

3722
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723 3724
		return -EIO;

3725
	/* Seed devices of a new filesystem has their own generation. */
3726
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3727 3728
		gen = scrub_dev->generation;
	else
3729
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3730 3731 3732

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3733 3734
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3735 3736
			break;

3737
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3740 3741 3742
		if (ret)
			return ret;
	}
3743
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3744 3745 3746 3747 3748 3749 3750

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3751 3752
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3753
{
3754
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3755
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3756

3757 3758
	lockdep_assert_held(&fs_info->scrub_lock);

3759
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760
		ASSERT(fs_info->scrub_workers == NULL);
3761 3762
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3763 3764 3765
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3766
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3767
		fs_info->scrub_wr_completion_workers =
3768
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769
					      max_active, 2);
3770 3771 3772
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3773
		ASSERT(fs_info->scrub_parity_workers == NULL);
3774
		fs_info->scrub_parity_workers =
3775
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776
					      max_active, 2);
3777 3778
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3779 3780 3781 3782

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3783
	}
3784 3785 3786 3787 3788 3789 3790 3791
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3792 3793
}

3794 3795
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3796
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3797
{
3798
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3799 3800
	int ret;
	struct btrfs_device *dev;
3801
	unsigned int nofs_flag;
3802 3803 3804
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3805

3806
	if (btrfs_fs_closing(fs_info))
3807
		return -EAGAIN;
A
Arne Jansen 已提交
3808

3809
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810 3811 3812 3813 3814
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3815 3816
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817 3818
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3819 3820 3821
		return -EINVAL;
	}

3822
	if (fs_info->sectorsize != PAGE_SIZE) {
3823
		/* not supported for data w/o checksums */
3824
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3825
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3827 3828 3829
		return -EINVAL;
	}

3830
	if (fs_info->nodesize >
3831
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3833 3834 3835 3836
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3837 3838
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839
		       fs_info->nodesize,
3840
		       SCRUB_MAX_PAGES_PER_BLOCK,
3841
		       fs_info->sectorsize,
3842 3843 3844 3845
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3846 3847 3848 3849
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3850

3851
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853 3854
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3855
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856 3857
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3858 3859
	}

3860 3861
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 3864
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3865 3866
		ret = -EROFS;
		goto out_free_ctx;
3867 3868
	}

3869
	mutex_lock(&fs_info->scrub_lock);
3870
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3872
		mutex_unlock(&fs_info->scrub_lock);
3873
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 3875
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3876 3877
	}

3878
	down_read(&fs_info->dev_replace.rwsem);
3879
	if (dev->scrub_ctx ||
3880 3881
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3883
		mutex_unlock(&fs_info->scrub_lock);
3884
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885 3886
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3887
	}
3888
	up_read(&fs_info->dev_replace.rwsem);
3889 3890 3891 3892 3893

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894
		goto out_free_ctx;
3895 3896
	}

3897
	sctx->readonly = readonly;
3898
	dev->scrub_ctx = sctx;
3899
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3900

3901 3902 3903 3904
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3905
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3906 3907 3908
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3919
	if (!is_dev_replace) {
3920
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921 3922 3923 3924
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3925
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926
		ret = scrub_supers(sctx, dev);
3927
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928
	}
A
Arne Jansen 已提交
3929 3930

	if (!ret)
3931
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3933

3934
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3935 3936 3937
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3938
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939

A
Arne Jansen 已提交
3940
	if (progress)
3941
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3942

3943 3944 3945 3946
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3947
	mutex_lock(&fs_info->scrub_lock);
3948
	dev->scrub_ctx = NULL;
3949
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950 3951 3952
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3953 3954 3955 3956

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3957
	}
A
Arne Jansen 已提交
3958 3959
	mutex_unlock(&fs_info->scrub_lock);

3960 3961 3962
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
3963
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3964

3965 3966 3967 3968 3969
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
3970 3971 3972
	return ret;
}

3973
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3988
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3989 3990 3991 3992 3993
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3994
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4015
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4016
{
4017
	struct btrfs_fs_info *fs_info = dev->fs_info;
4018
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4019 4020

	mutex_lock(&fs_info->scrub_lock);
4021
	sctx = dev->scrub_ctx;
4022
	if (!sctx) {
A
Arne Jansen 已提交
4023 4024 4025
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4026
	atomic_inc(&sctx->cancel_req);
4027
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4028 4029
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4030
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4031 4032 4033 4034 4035 4036
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4037

4038
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4039 4040 4041
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4042
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4043

4044
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4046
	if (dev)
4047
		sctx = dev->scrub_ctx;
4048 4049
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4050
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4051

4052
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4053
}
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4066
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067 4068 4069
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4070
		btrfs_put_bbio(bbio);
4071 4072 4073 4074 4075 4076
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4077
	btrfs_put_bbio(bbio);
4078
}