i915_gem.c 131.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248 249
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
				struct sg_table *pages)
250
{
C
Chris Wilson 已提交
251
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252

C
Chris Wilson 已提交
253 254
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
255

256 257
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442 443 444
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456 457 458 459 460 461
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598 599
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
600
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
601
	int ret;
602 603 604 605

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
606 607 608 609 610 611
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
612
				   to_rps_client(file));
613 614
	if (ret)
		return ret;
615

616
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 618 619 620 621 622 623 624 625 626
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
627 628 629 630
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
631 632
	}

633
	drm_clflush_virt_range(vaddr, args->size);
634
	i915_gem_chipset_flush(to_i915(dev));
635 636

out:
637
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
638
	return ret;
639 640
}

641
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
642
{
643
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
644 645 646 647
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
648
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
649
	kmem_cache_free(dev_priv->objects, obj);
650 651
}

652 653
static int
i915_gem_create(struct drm_file *file,
654
		struct drm_i915_private *dev_priv,
655 656
		uint64_t size,
		uint32_t *handle_p)
657
{
658
	struct drm_i915_gem_object *obj;
659 660
	int ret;
	u32 handle;
661

662
	size = roundup(size, PAGE_SIZE);
663 664
	if (size == 0)
		return -EINVAL;
665 666

	/* Allocate the new object */
667
	obj = i915_gem_object_create(dev_priv, size);
668 669
	if (IS_ERR(obj))
		return PTR_ERR(obj);
670

671
	ret = drm_gem_handle_create(file, &obj->base, &handle);
672
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
673
	i915_gem_object_put(obj);
674 675
	if (ret)
		return ret;
676

677
	*handle_p = handle;
678 679 680
	return 0;
}

681 682 683 684 685 686
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
687
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
688
	args->size = args->pitch * args->height;
689
	return i915_gem_create(file, to_i915(dev),
690
			       args->size, &args->handle);
691 692 693 694
}

/**
 * Creates a new mm object and returns a handle to it.
695 696 697
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
698 699 700 701 702
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
703
	struct drm_i915_private *dev_priv = to_i915(dev);
704
	struct drm_i915_gem_create *args = data;
705

706
	i915_gem_flush_free_objects(dev_priv);
707

708
	return i915_gem_create(file, dev_priv,
709
			       args->size, &args->handle);
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738
static inline int
739 740
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

764 765 766 767 768 769
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
770
				    unsigned int *needs_clflush)
771 772 773
{
	int ret;

774
	lockdep_assert_held(&obj->base.dev->struct_mutex);
775

776
	*needs_clflush = 0;
777 778
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
779

780 781 782 783 784
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
785 786 787
	if (ret)
		return ret;

C
Chris Wilson 已提交
788
	ret = i915_gem_object_pin_pages(obj);
789 790 791
	if (ret)
		return ret;

792 793
	i915_gem_object_flush_gtt_write_domain(obj);

794 795 796 797 798 799
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 801
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
802 803 804

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 806 807
		if (ret)
			goto err_unpin;

808
		*needs_clflush = 0;
809 810
	}

811
	/* return with the pages pinned */
812
	return 0;
813 814 815 816

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
817 818 819 820 821 822 823
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

824 825
	lockdep_assert_held(&obj->base.dev->struct_mutex);

826 827 828 829
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

830 831 832 833 834 835
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
836 837 838
	if (ret)
		return ret;

C
Chris Wilson 已提交
839
	ret = i915_gem_object_pin_pages(obj);
840 841 842
	if (ret)
		return ret;

843 844
	i915_gem_object_flush_gtt_write_domain(obj);

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 863 864
		if (ret)
			goto err_unpin;

865 866 867 868 869 870 871
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
872
	obj->mm.dirty = true;
873
	/* return with the pages pinned */
874
	return 0;
875 876 877 878

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
879 880
}

881 882 883 884
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
885
	if (unlikely(swizzled)) {
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

903 904 905
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
906
shmem_pread_slow(struct page *page, int offset, int length,
907 908 909 910 911 912 913 914
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
915
		shmem_clflush_swizzled_range(vaddr + offset, length,
916
					     page_do_bit17_swizzling);
917 918

	if (page_do_bit17_swizzling)
919
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
920
	else
921
		ret = __copy_to_user(user_data, vaddr + offset, length);
922 923
	kunmap(page);

924
	return ret ? - EFAULT : 0;
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1003 1004
{
	void *vaddr;
1005
	unsigned long unwritten;
1006 1007

	/* We can use the cpu mem copy function because this is X86. */
1008 1009 1010 1011 1012 1013 1014 1015 1016
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1017 1018 1019 1020
	return unwritten;
}

static int
1021 1022
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1023
{
1024 1025
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1026
	struct drm_mm_node node;
1027 1028 1029
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1030 1031
	int ret;

1032 1033 1034 1035 1036 1037 1038
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1039 1040 1041
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1042
		ret = i915_vma_put_fence(vma);
1043 1044 1045 1046 1047
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1048
	if (IS_ERR(vma)) {
1049
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1050
		if (ret)
1051 1052
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1053 1054 1055 1056 1057 1058
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1059
	mutex_unlock(&i915->drm.struct_mutex);
1060

1061 1062 1063
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1080
					       node.start, I915_CACHE_NONE, 0);
1081 1082 1083 1084
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1085 1086 1087

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1088 1089 1090 1091 1092 1093 1094 1095 1096
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1097
	mutex_lock(&i915->drm.struct_mutex);
1098 1099 1100 1101
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1102
				       node.start, node.size);
1103 1104
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1105
		i915_vma_unpin(vma);
1106
	}
1107 1108 1109
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1110

1111 1112 1113
	return ret;
}

1114 1115
/**
 * Reads data from the object referenced by handle.
1116 1117 1118
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1119 1120 1121 1122 1123
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1124
		     struct drm_file *file)
1125 1126
{
	struct drm_i915_gem_pread *args = data;
1127
	struct drm_i915_gem_object *obj;
1128
	int ret;
1129

1130 1131 1132 1133
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1134
		       u64_to_user_ptr(args->data_ptr),
1135 1136 1137
		       args->size))
		return -EFAULT;

1138
	obj = i915_gem_object_lookup(file, args->handle);
1139 1140
	if (!obj)
		return -ENOENT;
1141

1142
	/* Bounds check source.  */
1143 1144
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1145
		ret = -EINVAL;
1146
		goto out;
C
Chris Wilson 已提交
1147 1148
	}

C
Chris Wilson 已提交
1149 1150
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1151 1152 1153 1154
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1155
	if (ret)
1156
		goto out;
1157

1158
	ret = i915_gem_object_pin_pages(obj);
1159
	if (ret)
1160
		goto out;
1161

1162
	ret = i915_gem_shmem_pread(obj, args);
1163
	if (ret == -EFAULT || ret == -ENODEV)
1164
		ret = i915_gem_gtt_pread(obj, args);
1165

1166 1167
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1168
	i915_gem_object_put(obj);
1169
	return ret;
1170 1171
}

1172 1173
/* This is the fast write path which cannot handle
 * page faults in the source data
1174
 */
1175

1176 1177 1178 1179
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1180
{
1181
	void *vaddr;
1182
	unsigned long unwritten;
1183

1184
	/* We can use the cpu mem copy function because this is X86. */
1185 1186
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1187
						      user_data, length);
1188 1189 1190 1191 1192 1193 1194
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1195 1196 1197 1198

	return unwritten;
}

1199 1200 1201
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1202
 * @obj: i915 GEM object
1203
 * @args: pwrite arguments structure
1204
 */
1205
static int
1206 1207
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1208
{
1209
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1210 1211
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1212 1213 1214
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1215
	int ret;
1216

1217 1218 1219
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1220

1221
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1222
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1223
				       PIN_MAPPABLE | PIN_NONBLOCK);
1224 1225 1226
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1227
		ret = i915_vma_put_fence(vma);
1228 1229 1230 1231 1232
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1233
	if (IS_ERR(vma)) {
1234
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1235
		if (ret)
1236 1237
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1238
	}
D
Daniel Vetter 已提交
1239 1240 1241 1242 1243

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1244 1245
	mutex_unlock(&i915->drm.struct_mutex);

1246
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1247

1248 1249 1250 1251
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1252 1253
		/* Operation in this page
		 *
1254 1255 1256
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1257
		 */
1258
		u32 page_base = node.start;
1259 1260
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1271
		/* If we get a fault while copying data, then (presumably) our
1272 1273
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1274 1275
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1276
		 */
1277 1278 1279 1280
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1281
		}
1282

1283 1284 1285
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1286
	}
1287
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1288 1289

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1290
out_unpin:
1291 1292 1293
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1294
				       node.start, node.size);
1295 1296
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1297
		i915_vma_unpin(vma);
1298
	}
1299
out_unlock:
1300
	intel_runtime_pm_put(i915);
1301
	mutex_unlock(&i915->drm.struct_mutex);
1302
	return ret;
1303 1304
}

1305
static int
1306
shmem_pwrite_slow(struct page *page, int offset, int length,
1307 1308 1309 1310
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1311
{
1312 1313
	char *vaddr;
	int ret;
1314

1315
	vaddr = kmap(page);
1316
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1317
		shmem_clflush_swizzled_range(vaddr + offset, length,
1318
					     page_do_bit17_swizzling);
1319
	if (page_do_bit17_swizzling)
1320 1321
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1322
	else
1323
		ret = __copy_from_user(vaddr + offset, user_data, length);
1324
	if (needs_clflush_after)
1325
		shmem_clflush_swizzled_range(vaddr + offset, length,
1326
					     page_do_bit17_swizzling);
1327
	kunmap(page);
1328

1329
	return ret ? -EFAULT : 0;
1330 1331
}

1332 1333 1334 1335 1336
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1337
static int
1338 1339 1340 1341
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1342
{
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1375
	unsigned int needs_clflush;
1376 1377
	unsigned int offset, idx;
	int ret;
1378

1379
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1380 1381 1382
	if (ret)
		return ret;

1383 1384 1385 1386
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1387

1388 1389 1390
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1391

1392 1393 1394 1395 1396 1397 1398
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1399

1400 1401 1402 1403 1404 1405
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1406

1407 1408 1409
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1410

1411 1412 1413 1414
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1415
		if (ret)
1416
			break;
1417

1418 1419 1420
		remain -= length;
		user_data += length;
		offset = 0;
1421
	}
1422

1423
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1424
	i915_gem_obj_finish_shmem_access(obj);
1425
	return ret;
1426 1427 1428 1429
}

/**
 * Writes data to the object referenced by handle.
1430 1431 1432
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1433 1434 1435 1436 1437
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1438
		      struct drm_file *file)
1439 1440
{
	struct drm_i915_gem_pwrite *args = data;
1441
	struct drm_i915_gem_object *obj;
1442 1443 1444 1445 1446 1447
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1448
		       u64_to_user_ptr(args->data_ptr),
1449 1450 1451
		       args->size))
		return -EFAULT;

1452
	obj = i915_gem_object_lookup(file, args->handle);
1453 1454
	if (!obj)
		return -ENOENT;
1455

1456
	/* Bounds check destination. */
1457 1458
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1459
		ret = -EINVAL;
1460
		goto err;
C
Chris Wilson 已提交
1461 1462
	}

C
Chris Wilson 已提交
1463 1464
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1465 1466 1467 1468 1469
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1470 1471 1472
	if (ret)
		goto err;

1473
	ret = i915_gem_object_pin_pages(obj);
1474
	if (ret)
1475
		goto err;
1476

D
Daniel Vetter 已提交
1477
	ret = -EFAULT;
1478 1479 1480 1481 1482 1483
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1484
	if (!i915_gem_object_has_struct_page(obj) ||
1485
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1486 1487
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1488 1489
		 * textures). Fallback to the shmem path in that case.
		 */
1490
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1491

1492
	if (ret == -EFAULT || ret == -ENOSPC) {
1493 1494
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1495
		else
1496
			ret = i915_gem_shmem_pwrite(obj, args);
1497
	}
1498

1499
	i915_gem_object_unpin_pages(obj);
1500
err:
C
Chris Wilson 已提交
1501
	i915_gem_object_put(obj);
1502
	return ret;
1503 1504
}

1505
static inline enum fb_op_origin
1506 1507
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1508 1509
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1533
	list_move_tail(&obj->global_link, list);
1534 1535
}

1536
/**
1537 1538
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1539 1540 1541
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1542 1543 1544
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1545
			  struct drm_file *file)
1546 1547
{
	struct drm_i915_gem_set_domain *args = data;
1548
	struct drm_i915_gem_object *obj;
1549 1550
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1551
	int err;
1552

1553
	/* Only handle setting domains to types used by the CPU. */
1554
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1555 1556 1557 1558 1559 1560 1561 1562
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1563
	obj = i915_gem_object_lookup(file, args->handle);
1564 1565
	if (!obj)
		return -ENOENT;
1566

1567 1568 1569 1570
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1571
	err = i915_gem_object_wait(obj,
1572 1573 1574 1575
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1576
	if (err)
C
Chris Wilson 已提交
1577
		goto out;
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1589
		goto out;
1590 1591 1592

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1593
		goto out_unpin;
1594

1595
	if (read_domains & I915_GEM_DOMAIN_GTT)
1596
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1597
	else
1598
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1599

1600 1601
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1602

1603
	mutex_unlock(&dev->struct_mutex);
1604

1605 1606 1607
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1608
out_unpin:
1609
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1610 1611
out:
	i915_gem_object_put(obj);
1612
	return err;
1613 1614 1615 1616
}

/**
 * Called when user space has done writes to this buffer
1617 1618 1619
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1620 1621 1622
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1623
			 struct drm_file *file)
1624 1625
{
	struct drm_i915_gem_sw_finish *args = data;
1626
	struct drm_i915_gem_object *obj;
1627
	int err = 0;
1628

1629
	obj = i915_gem_object_lookup(file, args->handle);
1630 1631
	if (!obj)
		return -ENOENT;
1632 1633

	/* Pinned buffers may be scanout, so flush the cache */
1634 1635 1636 1637 1638 1639 1640
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1641

C
Chris Wilson 已提交
1642
	i915_gem_object_put(obj);
1643
	return err;
1644 1645 1646
}

/**
1647 1648 1649 1650 1651
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1652 1653 1654
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1665 1666 1667
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1668
		    struct drm_file *file)
1669 1670
{
	struct drm_i915_gem_mmap *args = data;
1671
	struct drm_i915_gem_object *obj;
1672 1673
	unsigned long addr;

1674 1675 1676
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1677
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1678 1679
		return -ENODEV;

1680 1681
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1682
		return -ENOENT;
1683

1684 1685 1686
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1687
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1688
		i915_gem_object_put(obj);
1689 1690 1691
		return -EINVAL;
	}

1692
	addr = vm_mmap(obj->base.filp, 0, args->size,
1693 1694
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1695 1696 1697 1698
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1699
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1700
			i915_gem_object_put(obj);
1701 1702
			return -EINTR;
		}
1703 1704 1705 1706 1707 1708 1709
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1710 1711

		/* This may race, but that's ok, it only gets set */
1712
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1713
	}
C
Chris Wilson 已提交
1714
	i915_gem_object_put(obj);
1715 1716 1717 1718 1719 1720 1721 1722
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1783 1784
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1785
 * @area: CPU VMA in question
1786
 * @vmf: fault info
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1798 1799 1800
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1801
 */
C
Chris Wilson 已提交
1802
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1803
{
1804
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1805
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1806
	struct drm_device *dev = obj->base.dev;
1807 1808
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1809
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1810
	struct i915_vma *vma;
1811
	pgoff_t page_offset;
1812
	unsigned int flags;
1813
	int ret;
1814

1815
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1816
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1817 1818
		PAGE_SHIFT;

C
Chris Wilson 已提交
1819 1820
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1821
	/* Try to flush the object off the GPU first without holding the lock.
1822
	 * Upon acquiring the lock, we will perform our sanity checks and then
1823 1824 1825
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1826 1827 1828 1829
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1830
	if (ret)
1831 1832
		goto err;

1833 1834 1835 1836
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1837 1838 1839 1840 1841
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1842

1843
	/* Access to snoopable pages through the GTT is incoherent. */
1844
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1845
		ret = -EFAULT;
1846
		goto err_unlock;
1847 1848
	}

1849 1850 1851 1852 1853 1854 1855 1856
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1857
	/* Now pin it into the GTT as needed */
1858
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1859 1860
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1861 1862
		unsigned int chunk_size;

1863
		/* Use a partial view if it is bigger than available space */
1864 1865
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1866
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1867

1868 1869 1870 1871
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1872
			min_t(unsigned int, chunk_size,
1873
			      vma_pages(area) - view.params.partial.offset);
1874

1875 1876 1877 1878 1879 1880
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1881 1882 1883 1884 1885
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1886 1887
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1888 1889
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1890
		goto err_unlock;
C
Chris Wilson 已提交
1891
	}
1892

1893 1894
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1895
		goto err_unpin;
1896

1897
	ret = i915_vma_get_fence(vma);
1898
	if (ret)
1899
		goto err_unpin;
1900

1901
	/* Mark as being mmapped into userspace for later revocation */
1902
	assert_rpm_wakelock_held(dev_priv);
1903 1904 1905
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1906
	/* Finally, remap it using the new GTT offset */
1907 1908 1909 1910 1911
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1912

1913
err_unpin:
C
Chris Wilson 已提交
1914
	__i915_vma_unpin(vma);
1915
err_unlock:
1916
	mutex_unlock(&dev->struct_mutex);
1917 1918
err_rpm:
	intel_runtime_pm_put(dev_priv);
1919
	i915_gem_object_unpin_pages(obj);
1920
err:
1921
	switch (ret) {
1922
	case -EIO:
1923 1924 1925 1926 1927 1928 1929
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1930 1931 1932
			ret = VM_FAULT_SIGBUS;
			break;
		}
1933
	case -EAGAIN:
D
Daniel Vetter 已提交
1934 1935 1936 1937
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1938
		 */
1939 1940
	case 0:
	case -ERESTARTSYS:
1941
	case -EINTR:
1942 1943 1944 1945 1946
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1947 1948
		ret = VM_FAULT_NOPAGE;
		break;
1949
	case -ENOMEM:
1950 1951
		ret = VM_FAULT_OOM;
		break;
1952
	case -ENOSPC:
1953
	case -EFAULT:
1954 1955
		ret = VM_FAULT_SIGBUS;
		break;
1956
	default:
1957
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1958 1959
		ret = VM_FAULT_SIGBUS;
		break;
1960
	}
1961
	return ret;
1962 1963
}

1964 1965 1966 1967
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1968
 * Preserve the reservation of the mmapping with the DRM core code, but
1969 1970 1971 1972 1973 1974 1975 1976 1977
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1978
void
1979
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1980
{
1981 1982
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1983 1984 1985
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1986 1987 1988 1989
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1990
	 */
1991
	lockdep_assert_held(&i915->drm.struct_mutex);
1992
	intel_runtime_pm_get(i915);
1993

1994
	if (list_empty(&obj->userfault_link))
1995
		goto out;
1996

1997
	list_del_init(&obj->userfault_link);
1998 1999
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2000 2001 2002 2003 2004 2005 2006 2007 2008

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2009 2010 2011

out:
	intel_runtime_pm_put(i915);
2012 2013
}

2014
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2015
{
2016
	struct drm_i915_gem_object *obj, *on;
2017
	int i;
2018

2019 2020 2021 2022 2023 2024
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2025

2026 2027 2028
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2029 2030 2031
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2049 2050
}

2051 2052
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2053
 * @dev_priv: i915 device
2054 2055 2056 2057 2058 2059
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2060 2061
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2062
{
2063
	u64 ggtt_size;
2064

2065 2066
	GEM_BUG_ON(size == 0);

2067
	if (INTEL_GEN(dev_priv) >= 4 ||
2068 2069
	    tiling_mode == I915_TILING_NONE)
		return size;
2070 2071

	/* Previous chips need a power-of-two fence region when tiling */
2072
	if (IS_GEN3(dev_priv))
2073
		ggtt_size = 1024*1024;
2074
	else
2075
		ggtt_size = 512*1024;
2076

2077 2078
	while (ggtt_size < size)
		ggtt_size <<= 1;
2079

2080
	return ggtt_size;
2081 2082
}

2083
/**
2084
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2085
 * @dev_priv: i915 device
2086 2087
 * @size: object size
 * @tiling_mode: tiling mode
2088
 * @fenced: is fenced alignment required or not
2089
 *
2090
 * Return the required global GTT alignment for an object, taking into account
2091
 * potential fence register mapping.
2092
 */
2093
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2094
				int tiling_mode, bool fenced)
2095
{
2096 2097
	GEM_BUG_ON(size == 0);

2098 2099 2100 2101
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2102 2103
	if (INTEL_GEN(dev_priv) >= 4 ||
	    (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
2104
	    tiling_mode == I915_TILING_NONE)
2105 2106
		return 4096;

2107 2108 2109 2110
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2111
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2112 2113
}

2114 2115
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2116
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2117
	int err;
2118

2119 2120 2121
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2122

2123 2124 2125
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2126
	 */
2127
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2128 2129 2130 2131 2132 2133 2134 2135 2136
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2137

2138
	return err;
2139 2140 2141 2142 2143 2144 2145
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2146
int
2147 2148
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2149
		  uint32_t handle,
2150
		  uint64_t *offset)
2151
{
2152
	struct drm_i915_gem_object *obj;
2153 2154
	int ret;

2155
	obj = i915_gem_object_lookup(file, handle);
2156 2157
	if (!obj)
		return -ENOENT;
2158

2159
	ret = i915_gem_object_create_mmap_offset(obj);
2160 2161
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2162

C
Chris Wilson 已提交
2163
	i915_gem_object_put(obj);
2164
	return ret;
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2188
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2189 2190
}

D
Daniel Vetter 已提交
2191 2192 2193
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2194
{
2195
	i915_gem_object_free_mmap_offset(obj);
2196

2197 2198
	if (obj->base.filp == NULL)
		return;
2199

D
Daniel Vetter 已提交
2200 2201 2202 2203 2204
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2205
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2206
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2207
}
2208

2209
/* Try to discard unwanted pages */
2210
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2211
{
2212 2213
	struct address_space *mapping;

2214 2215 2216
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2217
	switch (obj->mm.madv) {
2218 2219 2220 2221 2222 2223 2224 2225 2226
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2227
	mapping = obj->base.filp->f_mapping,
2228
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2229 2230
}

2231
static void
2232 2233
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2234
{
2235 2236
	struct sgt_iter sgt_iter;
	struct page *page;
2237

2238
	__i915_gem_object_release_shmem(obj, pages);
2239

2240
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2241

2242
	if (i915_gem_object_needs_bit17_swizzle(obj))
2243
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2244

2245
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2246
		if (obj->mm.dirty)
2247
			set_page_dirty(page);
2248

C
Chris Wilson 已提交
2249
		if (obj->mm.madv == I915_MADV_WILLNEED)
2250
			mark_page_accessed(page);
2251

2252
		put_page(page);
2253
	}
C
Chris Wilson 已提交
2254
	obj->mm.dirty = false;
2255

2256 2257
	sg_free_table(pages);
	kfree(pages);
2258
}
C
Chris Wilson 已提交
2259

2260 2261 2262 2263 2264
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2265 2266
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2267 2268
}

2269 2270
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2271
{
2272
	struct sg_table *pages;
2273

C
Chris Wilson 已提交
2274
	if (i915_gem_object_has_pinned_pages(obj))
2275
		return;
2276

2277
	GEM_BUG_ON(obj->bind_count);
2278 2279 2280 2281
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2282
	mutex_lock_nested(&obj->mm.lock, subclass);
2283 2284
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2285

2286 2287 2288
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2289 2290
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2291

C
Chris Wilson 已提交
2292
	if (obj->mm.mapping) {
2293 2294
		void *ptr;

C
Chris Wilson 已提交
2295
		ptr = ptr_mask_bits(obj->mm.mapping);
2296 2297
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2298
		else
2299 2300
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2301
		obj->mm.mapping = NULL;
2302 2303
	}

2304 2305
	__i915_gem_object_reset_page_iter(obj);

2306
	obj->ops->put_pages(obj, pages);
2307 2308
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2309 2310
}

2311
static unsigned int swiotlb_max_size(void)
2312 2313 2314 2315 2316 2317 2318 2319
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2344
static struct sg_table *
C
Chris Wilson 已提交
2345
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2346
{
2347
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2348 2349
	int page_count, i;
	struct address_space *mapping;
2350 2351
	struct sg_table *st;
	struct scatterlist *sg;
2352
	struct sgt_iter sgt_iter;
2353
	struct page *page;
2354
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2355
	unsigned int max_segment;
I
Imre Deak 已提交
2356
	int ret;
C
Chris Wilson 已提交
2357
	gfp_t gfp;
2358

C
Chris Wilson 已提交
2359 2360 2361 2362
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2363 2364
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2365

2366 2367
	max_segment = swiotlb_max_size();
	if (!max_segment)
2368
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2369

2370 2371
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2372
		return ERR_PTR(-ENOMEM);
2373

2374
	page_count = obj->base.size / PAGE_SIZE;
2375 2376
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2377
		return ERR_PTR(-ENOMEM);
2378
	}
2379

2380 2381 2382 2383 2384
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2385
	mapping = obj->base.filp->f_mapping;
2386
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2387
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2388 2389 2390
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2391 2392
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2393 2394 2395 2396 2397
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2398 2399 2400 2401 2402 2403 2404
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2405
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2406 2407
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2408
				goto err_sg;
I
Imre Deak 已提交
2409
			}
C
Chris Wilson 已提交
2410
		}
2411 2412 2413
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2414 2415 2416 2417 2418 2419 2420 2421
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2422 2423 2424

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2425
	}
2426
	if (sg) /* loop terminated early; short sg table */
2427
		sg_mark_end(sg);
2428

2429 2430 2431
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2432
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2433 2434 2435
	if (ret)
		goto err_pages;

2436
	if (i915_gem_object_needs_bit17_swizzle(obj))
2437
		i915_gem_object_do_bit_17_swizzle(obj, st);
2438

2439
	return st;
2440

2441
err_sg:
2442
	sg_mark_end(sg);
2443
err_pages:
2444 2445
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2446 2447
	sg_free_table(st);
	kfree(st);
2448 2449 2450 2451 2452 2453 2454 2455 2456

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2457 2458 2459
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2460 2461 2462 2463 2464 2465
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2466
	lockdep_assert_held(&obj->mm.lock);
2467 2468 2469 2470 2471

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2472 2473 2474 2475 2476 2477 2478

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2479 2480 2481 2482 2483 2484
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2485 2486
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2498 2499
}

2500
/* Ensure that the associated pages are gathered from the backing storage
2501
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2502
 * multiple times before they are released by a single call to
2503
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2504 2505 2506
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2507
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2508
{
2509
	int err;
2510

2511 2512 2513
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2514

2515 2516 2517 2518
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2519

2520 2521 2522
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2523

2524 2525
unlock:
	mutex_unlock(&obj->mm.lock);
2526
	return err;
2527 2528
}

2529
/* The 'mapping' part of i915_gem_object_pin_map() below */
2530 2531
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2532 2533
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2534
	struct sg_table *sgt = obj->mm.pages;
2535 2536
	struct sgt_iter sgt_iter;
	struct page *page;
2537 2538
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2539
	unsigned long i = 0;
2540
	pgprot_t pgprot;
2541 2542 2543
	void *addr;

	/* A single page can always be kmapped */
2544
	if (n_pages == 1 && type == I915_MAP_WB)
2545 2546
		return kmap(sg_page(sgt->sgl));

2547 2548 2549 2550 2551 2552
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2553

2554 2555
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2556 2557 2558 2559

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2560 2561 2562 2563 2564 2565 2566 2567 2568
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2569

2570 2571
	if (pages != stack_pages)
		drm_free_large(pages);
2572 2573 2574 2575 2576

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2577 2578
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2579
{
2580 2581 2582
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2583 2584
	int ret;

2585
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2586

2587
	ret = mutex_lock_interruptible(&obj->mm.lock);
2588 2589 2590
	if (ret)
		return ERR_PTR(ret);

2591 2592
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2593 2594 2595 2596
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2597

2598 2599 2600
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2601 2602 2603
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2604

C
Chris Wilson 已提交
2605
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2606 2607 2608
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2609
			goto err_unpin;
2610
		}
2611 2612 2613 2614 2615 2616

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2617
		ptr = obj->mm.mapping = NULL;
2618 2619
	}

2620 2621 2622 2623
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2624
			goto err_unpin;
2625 2626
		}

C
Chris Wilson 已提交
2627
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2628 2629
	}

2630 2631
out_unlock:
	mutex_unlock(&obj->mm.lock);
2632 2633
	return ptr;

2634 2635 2636 2637 2638
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2639 2640
}

2641
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2642
{
2643
	if (ctx->banned)
2644 2645
		return true;

2646
	if (!ctx->bannable)
2647 2648
		return false;

2649
	if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
2650 2651 2652 2653
		DRM_DEBUG("context hanging too often, banning!\n");
		return true;
	}

2654 2655 2656
	return false;
}

2657
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2658
{
2659
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2660

2661 2662
	ctx->banned = i915_context_is_banned(ctx);
	ctx->guilty_count++;
2663 2664

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2665 2666
			 ctx->name, ctx->ban_score,
			 yesno(ctx->banned));
2667

2668
	if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
2669 2670
		return;

2671 2672 2673
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2674 2675 2676 2677
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2678
	ctx->active_count++;
2679 2680
}

2681
struct drm_i915_gem_request *
2682
i915_gem_find_active_request(struct intel_engine_cs *engine)
2683
{
2684 2685
	struct drm_i915_gem_request *request;

2686 2687 2688 2689 2690 2691 2692 2693
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2694
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2695
		if (__i915_gem_request_completed(request))
2696
			continue;
2697

2698
		return request;
2699
	}
2700 2701 2702 2703

	return NULL;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2722 2723
{
	struct drm_i915_gem_request *request;
2724
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2725
	struct intel_timeline *timeline;
2726 2727
	bool ring_hung;

2728 2729 2730
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2731
	request = i915_gem_find_active_request(engine);
2732
	if (!request)
2733 2734
		return;

2735 2736 2737 2738 2739
	ring_hung = engine->hangcheck.stalled;
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
				 engine->name,
				 yesno(ring_hung));
2740
		ring_hung = false;
2741
	}
2742

2743 2744 2745 2746 2747
	if (ring_hung)
		i915_gem_context_mark_guilty(request->ctx);
	else
		i915_gem_context_mark_innocent(request->ctx);

2748 2749 2750 2751
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2752
			 engine->name, request->global_seqno);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2769
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2770 2771
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2772 2773 2774 2775

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2776
}
2777

2778
void i915_gem_reset(struct drm_i915_private *dev_priv)
2779
{
2780
	struct intel_engine_cs *engine;
2781
	enum intel_engine_id id;
2782

2783 2784
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2785 2786
	i915_gem_retire_requests(dev_priv);

2787
	for_each_engine(engine, dev_priv, id)
2788 2789
		i915_gem_reset_engine(engine);

2790
	i915_gem_restore_fences(dev_priv);
2791 2792 2793 2794 2795 2796 2797

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2798 2799 2800 2801
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2802 2803
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2804 2805 2806 2807
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
2808 2809 2810 2811 2812 2813
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2814
	engine->submit_request = nop_submit_request;
2815

2816 2817 2818 2819
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2820
	intel_engine_init_global_seqno(engine,
2821
				       intel_engine_last_submit(engine));
2822

2823 2824 2825 2826 2827 2828
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2829
	if (i915.enable_execlists) {
2830 2831 2832 2833
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2834 2835 2836
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2837 2838
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2839 2840

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2841
	}
2842 2843
}

2844
static int __i915_gem_set_wedged_BKL(void *data)
2845
{
2846
	struct drm_i915_private *i915 = data;
2847
	struct intel_engine_cs *engine;
2848
	enum intel_engine_id id;
2849

2850 2851 2852 2853 2854 2855 2856 2857
	for_each_engine(engine, i915, id)
		i915_gem_cleanup_engine(engine);

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2858 2859
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2860

2861
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2862

2863
	i915_gem_context_lost(dev_priv);
2864
	i915_gem_retire_requests(dev_priv);
2865 2866

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2867 2868
}

2869
static void
2870 2871
i915_gem_retire_work_handler(struct work_struct *work)
{
2872
	struct drm_i915_private *dev_priv =
2873
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2874
	struct drm_device *dev = &dev_priv->drm;
2875

2876
	/* Come back later if the device is busy... */
2877
	if (mutex_trylock(&dev->struct_mutex)) {
2878
		i915_gem_retire_requests(dev_priv);
2879
		mutex_unlock(&dev->struct_mutex);
2880
	}
2881 2882 2883 2884 2885

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2886 2887
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2888 2889
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2890
				   round_jiffies_up_relative(HZ));
2891
	}
2892
}
2893

2894 2895 2896 2897
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2898
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2899
	struct drm_device *dev = &dev_priv->drm;
2900
	struct intel_engine_cs *engine;
2901
	enum intel_engine_id id;
2902 2903 2904 2905 2906
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2907 2908 2909 2910 2911 2912 2913
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2914
	if (READ_ONCE(dev_priv->gt.active_requests))
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2928 2929 2930 2931 2932 2933 2934
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2935
	if (dev_priv->gt.active_requests)
2936
		goto out_unlock;
2937

2938 2939 2940
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2941
	for_each_engine(engine, dev_priv, id)
2942
		i915_gem_batch_pool_fini(&engine->batch_pool);
2943

2944 2945 2946
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2947

2948 2949 2950 2951 2952
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2953

2954 2955 2956 2957
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2958
	}
2959 2960
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2971 2972 2973 2974 2975 2976

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2977 2978 2979
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2991 2992
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2993 2994 2995
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3020 3021
	ktime_t start;
	long ret;
3022

3023 3024 3025
	if (args->flags != 0)
		return -EINVAL;

3026
	obj = i915_gem_object_lookup(file, args->bo_handle);
3027
	if (!obj)
3028 3029
		return -ENOENT;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3041 3042
	}

C
Chris Wilson 已提交
3043
	i915_gem_object_put(obj);
3044
	return ret;
3045 3046
}

3047
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3048
{
3049
	int ret, i;
3050

3051 3052 3053 3054 3055
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3056

3057 3058 3059 3060 3061 3062 3063
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3076 3077 3078
		if (ret)
			return ret;
	}
3079

3080
	return 0;
3081 3082
}

3083 3084
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3085 3086 3087 3088 3089
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3090
	if (!obj->mm.pages)
3091
		return;
3092

3093 3094 3095 3096
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3097
	if (obj->stolen || obj->phys_handle)
3098
		return;
3099

3100 3101 3102 3103 3104 3105 3106 3107
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3108 3109
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3110
		return;
3111
	}
3112

C
Chris Wilson 已提交
3113
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3114
	drm_clflush_sg(obj->mm.pages);
3115
	obj->cache_dirty = false;
3116 3117 3118 3119
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3120
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3121
{
3122
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3123

3124
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3125 3126
		return;

3127
	/* No actual flushing is required for the GTT write domain.  Writes
3128
	 * to it "immediately" go to main memory as far as we know, so there's
3129
	 * no chipset flush.  It also doesn't land in render cache.
3130 3131 3132 3133
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3134 3135 3136 3137 3138 3139 3140
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3141
	 */
3142
	wmb();
3143
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3144
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3145

3146
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3147

3148
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3149
	trace_i915_gem_object_change_domain(obj,
3150
					    obj->base.read_domains,
3151
					    I915_GEM_DOMAIN_GTT);
3152 3153 3154 3155
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3156
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3157
{
3158
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3159 3160
		return;

3161
	i915_gem_clflush_object(obj, obj->pin_display);
3162
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3163

3164
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3165
	trace_i915_gem_object_change_domain(obj,
3166
					    obj->base.read_domains,
3167
					    I915_GEM_DOMAIN_CPU);
3168 3169
}

3170 3171
/**
 * Moves a single object to the GTT read, and possibly write domain.
3172 3173
 * @obj: object to act on
 * @write: ask for write access or read only
3174 3175 3176 3177
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3178
int
3179
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3180
{
C
Chris Wilson 已提交
3181
	uint32_t old_write_domain, old_read_domains;
3182
	int ret;
3183

3184
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3185

3186 3187 3188 3189 3190 3191
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3192 3193 3194
	if (ret)
		return ret;

3195 3196 3197
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3198 3199 3200 3201 3202 3203 3204 3205
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3206
	ret = i915_gem_object_pin_pages(obj);
3207 3208 3209
	if (ret)
		return ret;

3210
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3211

3212 3213 3214 3215 3216 3217 3218
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3219 3220
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3221

3222 3223 3224
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3225
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3226
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3227
	if (write) {
3228 3229
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3230
		obj->mm.dirty = true;
3231 3232
	}

C
Chris Wilson 已提交
3233 3234 3235 3236
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3237
	i915_gem_object_unpin_pages(obj);
3238 3239 3240
	return 0;
}

3241 3242
/**
 * Changes the cache-level of an object across all VMA.
3243 3244
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3256 3257 3258
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3259
	struct i915_vma *vma;
3260
	int ret;
3261

3262 3263
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3264
	if (obj->cache_level == cache_level)
3265
		return 0;
3266

3267 3268 3269 3270 3271
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3272 3273
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3274 3275 3276
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3277
		if (i915_vma_is_pinned(vma)) {
3278 3279 3280 3281
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3294 3295
	}

3296 3297 3298 3299 3300 3301 3302
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3303
	if (obj->bind_count) {
3304 3305 3306 3307
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3308 3309 3310 3311 3312 3313
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3314 3315 3316
		if (ret)
			return ret;

3317 3318
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3335 3336 3337 3338 3339
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3340 3341 3342 3343 3344 3345 3346 3347
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3348 3349
		}

3350
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3351 3352 3353 3354 3355 3356 3357
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3358 3359
	}

3360 3361 3362 3363
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3364
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3365 3366 3367
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3368 3369 3370
	return 0;
}

B
Ben Widawsky 已提交
3371 3372
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3373
{
B
Ben Widawsky 已提交
3374
	struct drm_i915_gem_caching *args = data;
3375
	struct drm_i915_gem_object *obj;
3376
	int err = 0;
3377

3378 3379 3380 3381 3382 3383
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3384

3385 3386 3387 3388 3389 3390
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3391 3392 3393 3394
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3395 3396 3397 3398
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3399 3400 3401
out:
	rcu_read_unlock();
	return err;
3402 3403
}

B
Ben Widawsky 已提交
3404 3405
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3406
{
3407
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3408
	struct drm_i915_gem_caching *args = data;
3409 3410 3411 3412
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3413 3414
	switch (args->caching) {
	case I915_CACHING_NONE:
3415 3416
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3417
	case I915_CACHING_CACHED:
3418 3419 3420 3421 3422 3423
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3424
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3425 3426
			return -ENODEV;

3427 3428
		level = I915_CACHE_LLC;
		break;
3429
	case I915_CACHING_DISPLAY:
3430
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3431
		break;
3432 3433 3434 3435
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3436 3437
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3438
		return ret;
B
Ben Widawsky 已提交
3439

3440 3441
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3442 3443 3444 3445 3446
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3447
	i915_gem_object_put(obj);
3448 3449 3450 3451 3452
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3453
/*
3454 3455 3456
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3457
 */
C
Chris Wilson 已提交
3458
struct i915_vma *
3459 3460
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3461
				     const struct i915_ggtt_view *view)
3462
{
C
Chris Wilson 已提交
3463
	struct i915_vma *vma;
3464
	u32 old_read_domains, old_write_domain;
3465 3466
	int ret;

3467 3468
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3469 3470 3471
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3472
	obj->pin_display++;
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3483
	ret = i915_gem_object_set_cache_level(obj,
3484 3485
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3486 3487
	if (ret) {
		vma = ERR_PTR(ret);
3488
		goto err_unpin_display;
C
Chris Wilson 已提交
3489
	}
3490

3491 3492
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 3494 3495 3496
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3497
	 */
3498 3499 3500 3501
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3518
	if (IS_ERR(vma))
3519
		goto err_unpin_display;
3520

3521 3522
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3523 3524 3525 3526 3527
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3528

3529
	old_write_domain = obj->base.write_domain;
3530
	old_read_domains = obj->base.read_domains;
3531 3532 3533 3534

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3535
	obj->base.write_domain = 0;
3536
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3537 3538 3539

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3540
					    old_write_domain);
3541

C
Chris Wilson 已提交
3542
	return vma;
3543 3544

err_unpin_display:
3545
	obj->pin_display--;
C
Chris Wilson 已提交
3546
	return vma;
3547 3548 3549
}

void
C
Chris Wilson 已提交
3550
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3551
{
3552
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3553

C
Chris Wilson 已提交
3554
	if (WARN_ON(vma->obj->pin_display == 0))
3555 3556
		return;

3557 3558
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3559

3560 3561 3562 3563
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3564
	i915_vma_unpin(vma);
3565 3566
}

3567 3568
/**
 * Moves a single object to the CPU read, and possibly write domain.
3569 3570
 * @obj: object to act on
 * @write: requesting write or read-only access
3571 3572 3573 3574
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3575
int
3576
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3577
{
C
Chris Wilson 已提交
3578
	uint32_t old_write_domain, old_read_domains;
3579 3580
	int ret;

3581
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3582

3583 3584 3585 3586 3587 3588
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3589 3590 3591
	if (ret)
		return ret;

3592 3593 3594
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3595
	i915_gem_object_flush_gtt_write_domain(obj);
3596

3597 3598
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3599

3600
	/* Flush the CPU cache if it's still invalid. */
3601
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3602
		i915_gem_clflush_object(obj, false);
3603

3604
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3605 3606 3607 3608 3609
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3610
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3611 3612 3613 3614 3615

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3616 3617
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3618
	}
3619

C
Chris Wilson 已提交
3620 3621 3622 3623
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3624 3625 3626
	return 0;
}

3627 3628 3629
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3630 3631 3632 3633
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3634 3635 3636
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3637
static int
3638
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3639
{
3640
	struct drm_i915_private *dev_priv = to_i915(dev);
3641
	struct drm_i915_file_private *file_priv = file->driver_priv;
3642
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3643
	struct drm_i915_gem_request *request, *target = NULL;
3644
	long ret;
3645

3646 3647 3648
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3649

3650
	spin_lock(&file_priv->mm.lock);
3651
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3652 3653
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3654

3655 3656 3657 3658 3659 3660 3661
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3662
		target = request;
3663
	}
3664
	if (target)
3665
		i915_gem_request_get(target);
3666
	spin_unlock(&file_priv->mm.lock);
3667

3668
	if (target == NULL)
3669
		return 0;
3670

3671 3672 3673
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3674
	i915_gem_request_put(target);
3675

3676
	return ret < 0 ? ret : 0;
3677 3678
}

C
Chris Wilson 已提交
3679
struct i915_vma *
3680 3681
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3682
			 u64 size,
3683 3684
			 u64 alignment,
			 u64 flags)
3685
{
3686 3687
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3688 3689
	struct i915_vma *vma;
	int ret;
3690

3691 3692
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3693
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3694
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3695
		return vma;
3696 3697 3698 3699

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3700
			return ERR_PTR(-ENOSPC);
3701

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3737 3738
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3739 3740 3741
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3742
		     !!(flags & PIN_MAPPABLE),
3743
		     i915_vma_is_map_and_fenceable(vma));
3744 3745
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3746
			return ERR_PTR(ret);
3747 3748
	}

C
Chris Wilson 已提交
3749 3750 3751
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3752

C
Chris Wilson 已提交
3753
	return vma;
3754 3755
}

3756
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3771 3772 3773 3774 3775 3776 3777 3778 3779
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3780 3781
}

3782
static __always_inline unsigned int
3783
__busy_set_if_active(const struct dma_fence *fence,
3784 3785
		     unsigned int (*flag)(unsigned int id))
{
3786
	struct drm_i915_gem_request *rq;
3787

3788 3789 3790 3791
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3792
	 *
3793
	 * Note we only report on the status of native fences.
3794
	 */
3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3804 3805
}

3806
static __always_inline unsigned int
3807
busy_check_reader(const struct dma_fence *fence)
3808
{
3809
	return __busy_set_if_active(fence, __busy_read_flag);
3810 3811
}

3812
static __always_inline unsigned int
3813
busy_check_writer(const struct dma_fence *fence)
3814
{
3815 3816 3817 3818
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3819 3820
}

3821 3822
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3823
		    struct drm_file *file)
3824 3825
{
	struct drm_i915_gem_busy *args = data;
3826
	struct drm_i915_gem_object *obj;
3827 3828
	struct reservation_object_list *list;
	unsigned int seq;
3829
	int err;
3830

3831
	err = -ENOENT;
3832 3833
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3834
	if (!obj)
3835
		goto out;
3836

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3855

3856 3857
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3858

3859 3860 3861 3862
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3863

3864 3865 3866 3867 3868 3869
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3870
	}
3871

3872 3873 3874 3875
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3876 3877 3878
out:
	rcu_read_unlock();
	return err;
3879 3880 3881 3882 3883 3884
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3885
	return i915_gem_ring_throttle(dev, file_priv);
3886 3887
}

3888 3889 3890 3891
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3892
	struct drm_i915_private *dev_priv = to_i915(dev);
3893
	struct drm_i915_gem_madvise *args = data;
3894
	struct drm_i915_gem_object *obj;
3895
	int err;
3896 3897 3898 3899 3900 3901 3902 3903 3904

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3905
	obj = i915_gem_object_lookup(file_priv, args->handle);
3906 3907 3908 3909 3910 3911
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3912

C
Chris Wilson 已提交
3913
	if (obj->mm.pages &&
3914
	    i915_gem_object_is_tiled(obj) &&
3915
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3916 3917
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3918
			__i915_gem_object_unpin_pages(obj);
3919 3920 3921
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3922
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3923
			__i915_gem_object_pin_pages(obj);
3924 3925
			obj->mm.quirked = true;
		}
3926 3927
	}

C
Chris Wilson 已提交
3928 3929
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3930

C
Chris Wilson 已提交
3931
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3932
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3933 3934
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3935
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3936
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3937

3938
out:
3939
	i915_gem_object_put(obj);
3940
	return err;
3941 3942
}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3953 3954
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3955
{
3956 3957
	mutex_init(&obj->mm.lock);

3958
	INIT_LIST_HEAD(&obj->global_link);
3959
	INIT_LIST_HEAD(&obj->userfault_link);
3960
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3961
	INIT_LIST_HEAD(&obj->vma_list);
3962
	INIT_LIST_HEAD(&obj->batch_pool_link);
3963

3964 3965
	obj->ops = ops;

3966 3967 3968
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3969
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3970
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3971 3972 3973 3974

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3975

3976
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3977 3978
}

3979
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3980 3981
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3982 3983 3984 3985
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3986 3987 3988 3989 3990
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
3991
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3992
{
3993
	struct drm_i915_gem_object *obj;
3994
	struct address_space *mapping;
D
Daniel Vetter 已提交
3995
	gfp_t mask;
3996
	int ret;
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4009
	obj = i915_gem_object_alloc(dev_priv);
4010
	if (obj == NULL)
4011
		return ERR_PTR(-ENOMEM);
4012

4013
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4014 4015
	if (ret)
		goto fail;
4016

4017
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4018
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4019 4020 4021 4022 4023
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4024
	mapping = obj->base.filp->f_mapping;
4025
	mapping_set_gfp_mask(mapping, mask);
4026

4027
	i915_gem_object_init(obj, &i915_gem_object_ops);
4028

4029 4030
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4031

4032
	if (HAS_LLC(dev_priv)) {
4033
		/* On some devices, we can have the GPU use the LLC (the CPU
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4049 4050
	trace_i915_gem_object_create(obj);

4051
	return obj;
4052 4053 4054 4055

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4056 4057
}

4058 4059 4060 4061 4062 4063 4064 4065
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4066
	if (obj->mm.madv != I915_MADV_WILLNEED)
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4082 4083
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4084
{
4085
	struct drm_i915_gem_object *obj, *on;
4086

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4102 4103
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4104

4105
		list_del(&obj->global_link);
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4116

4117 4118
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4119
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4120 4121 4122 4123 4124
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4125
		reservation_object_fini(&obj->__builtin_resv);
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4148

4149 4150 4151 4152 4153 4154 4155
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4156

4157 4158 4159
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4175

4176 4177 4178
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4179

4180 4181 4182
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4183
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4184
		obj->mm.madv = I915_MADV_DONTNEED;
4185

4186 4187 4188 4189 4190 4191
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4192 4193
}

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4205 4206 4207 4208 4209 4210 4211 4212 4213
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
}

4214
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4215
{
4216
	struct drm_device *dev = &dev_priv->drm;
4217
	int ret;
4218

4219 4220
	intel_suspend_gt_powersave(dev_priv);

4221
	mutex_lock(&dev->struct_mutex);
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4235 4236 4237
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4238
	if (ret)
4239
		goto err;
4240

4241
	i915_gem_retire_requests(dev_priv);
4242
	GEM_BUG_ON(dev_priv->gt.active_requests);
4243

4244
	assert_kernel_context_is_current(dev_priv);
4245
	i915_gem_context_lost(dev_priv);
4246 4247
	mutex_unlock(&dev->struct_mutex);

4248
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4249 4250
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4251
	flush_work(&dev_priv->mm.free_work);
4252

4253 4254 4255
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4256
	WARN_ON(dev_priv->gt.awake);
4257
	WARN_ON(!intel_execlists_idle(dev_priv));
4258

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4278
	if (HAS_HW_CONTEXTS(dev_priv)) {
4279 4280 4281 4282
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4283
	return 0;
4284 4285 4286 4287

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4288 4289
}

4290
void i915_gem_resume(struct drm_i915_private *dev_priv)
4291
{
4292
	struct drm_device *dev = &dev_priv->drm;
4293

4294 4295
	WARN_ON(dev_priv->gt.awake);

4296
	mutex_lock(&dev->struct_mutex);
4297
	i915_gem_restore_gtt_mappings(dev_priv);
4298 4299 4300 4301 4302

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4303
	dev_priv->gt.resume(dev_priv);
4304 4305 4306 4307

	mutex_unlock(&dev->struct_mutex);
}

4308
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4309
{
4310
	if (INTEL_GEN(dev_priv) < 5 ||
4311 4312 4313 4314 4315 4316
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4317
	if (IS_GEN5(dev_priv))
4318 4319
		return;

4320
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4321
	if (IS_GEN6(dev_priv))
4322
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4323
	else if (IS_GEN7(dev_priv))
4324
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4325
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4326
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4327 4328
	else
		BUG();
4329
}
D
Daniel Vetter 已提交
4330

4331
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4332 4333 4334 4335 4336 4337 4338
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4339
static void init_unused_rings(struct drm_i915_private *dev_priv)
4340
{
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4353 4354 4355
	}
}

4356
int
4357
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4358
{
4359
	struct intel_engine_cs *engine;
4360
	enum intel_engine_id id;
C
Chris Wilson 已提交
4361
	int ret;
4362

4363 4364
	dev_priv->gt.last_init_time = ktime_get();

4365 4366 4367
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4368
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4369
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4370

4371
	if (IS_HASWELL(dev_priv))
4372
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4373
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4374

4375
	if (HAS_PCH_NOP(dev_priv)) {
4376
		if (IS_IVYBRIDGE(dev_priv)) {
4377 4378 4379
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4380
		} else if (INTEL_GEN(dev_priv) >= 7) {
4381 4382 4383 4384
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4385 4386
	}

4387
	i915_gem_init_swizzling(dev_priv);
4388

4389 4390 4391 4392 4393 4394
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4395
	init_unused_rings(dev_priv);
4396

4397
	BUG_ON(!dev_priv->kernel_context);
4398

4399
	ret = i915_ppgtt_init_hw(dev_priv);
4400 4401 4402 4403 4404 4405
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4406
	for_each_engine(engine, dev_priv, id) {
4407
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4408
		if (ret)
4409
			goto out;
D
Daniel Vetter 已提交
4410
	}
4411

4412
	intel_mocs_init_l3cc_table(dev_priv);
4413

4414
	/* We can't enable contexts until all firmware is loaded */
4415
	ret = intel_guc_setup(dev_priv);
4416 4417
	if (ret)
		goto out;
4418

4419 4420
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4421
	return ret;
4422 4423
}

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4445
int i915_gem_init(struct drm_i915_private *dev_priv)
4446 4447 4448
{
	int ret;

4449
	mutex_lock(&dev_priv->drm.struct_mutex);
4450

4451
	if (!i915.enable_execlists) {
4452
		dev_priv->gt.resume = intel_legacy_submission_resume;
4453
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4454
	} else {
4455
		dev_priv->gt.resume = intel_lr_context_resume;
4456
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4457 4458
	}

4459 4460 4461 4462 4463 4464 4465 4466
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4467
	i915_gem_init_userptr(dev_priv);
4468 4469 4470 4471

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4472

4473
	ret = i915_gem_context_init(dev_priv);
4474 4475
	if (ret)
		goto out_unlock;
4476

4477
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4478
	if (ret)
4479
		goto out_unlock;
4480

4481
	ret = i915_gem_init_hw(dev_priv);
4482
	if (ret == -EIO) {
4483
		/* Allow engine initialisation to fail by marking the GPU as
4484 4485 4486 4487
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4488
		i915_gem_set_wedged(dev_priv);
4489
		ret = 0;
4490
	}
4491 4492

out_unlock:
4493
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4494
	mutex_unlock(&dev_priv->drm.struct_mutex);
4495

4496
	return ret;
4497 4498
}

4499
void
4500
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4501
{
4502
	struct intel_engine_cs *engine;
4503
	enum intel_engine_id id;
4504

4505
	for_each_engine(engine, dev_priv, id)
4506
		dev_priv->gt.cleanup_engine(engine);
4507 4508
}

4509 4510 4511
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4512
	int i;
4513 4514 4515 4516

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4517 4518 4519
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4520 4521 4522 4523
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4524
	if (intel_vgpu_active(dev_priv))
4525 4526 4527 4528
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4529 4530 4531 4532 4533 4534 4535
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4536
	i915_gem_restore_fences(dev_priv);
4537

4538
	i915_gem_detect_bit_6_swizzle(dev_priv);
4539 4540
}

4541
int
4542
i915_gem_load_init(struct drm_i915_private *dev_priv)
4543
{
4544
	int err = -ENOMEM;
4545

4546 4547
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4548 4549
		goto err_out;

4550 4551
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4552 4553
		goto err_objects;

4554 4555 4556 4557 4558
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4559 4560
		goto err_vmas;

4561 4562 4563 4564 4565 4566
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4567 4568
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4569
	err = i915_gem_timeline_init__global(dev_priv);
4570 4571
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4572
		goto err_dependencies;
4573

4574
	INIT_LIST_HEAD(&dev_priv->context_list);
4575 4576
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4577 4578
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4579
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4580
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4581
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4582
			  i915_gem_retire_work_handler);
4583
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4584
			  i915_gem_idle_work_handler);
4585
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4586
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4587

4588 4589
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4590
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4591

4592 4593
	dev_priv->mm.interruptible = true;

4594 4595
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4596
	spin_lock_init(&dev_priv->fb_tracking.lock);
4597 4598 4599

	return 0;

4600 4601
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4602 4603 4604 4605 4606 4607 4608 4609
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4610
}
4611

4612
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4613
{
4614 4615
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4616 4617 4618 4619 4620
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4621
	kmem_cache_destroy(dev_priv->dependencies);
4622 4623 4624
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4625 4626 4627

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4628 4629
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4643 4644 4645
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4646 4647 4648 4649 4650
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4661 4662 4663
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4664 4665
	 */

4666 4667
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4668

4669
	for (p = phases; *p; p++) {
4670
		list_for_each_entry(obj, *p, global_link) {
4671 4672 4673
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4674
	}
4675
	mutex_unlock(&dev_priv->drm.struct_mutex);
4676 4677 4678 4679

	return 0;
}

4680
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4681
{
4682
	struct drm_i915_file_private *file_priv = file->driver_priv;
4683
	struct drm_i915_gem_request *request;
4684 4685 4686 4687 4688

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4689
	spin_lock(&file_priv->mm.lock);
4690
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4691
		request->file_priv = NULL;
4692
	spin_unlock(&file_priv->mm.lock);
4693

4694
	if (!list_empty(&file_priv->rps.link)) {
4695
		spin_lock(&to_i915(dev)->rps.client_lock);
4696
		list_del(&file_priv->rps.link);
4697
		spin_unlock(&to_i915(dev)->rps.client_lock);
4698
	}
4699 4700 4701 4702 4703
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4704
	int ret;
4705

4706
	DRM_DEBUG("\n");
4707 4708 4709 4710 4711 4712

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4713
	file_priv->dev_priv = to_i915(dev);
4714
	file_priv->file = file;
4715
	INIT_LIST_HEAD(&file_priv->rps.link);
4716 4717 4718 4719

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4720
	file_priv->bsd_engine = -1;
4721

4722 4723 4724
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4725

4726
	return ret;
4727 4728
}

4729 4730
/**
 * i915_gem_track_fb - update frontbuffer tracking
4731 4732 4733
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4734 4735 4736 4737
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4738 4739 4740 4741
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4742 4743 4744 4745 4746 4747 4748 4749 4750
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4751
	if (old) {
4752 4753
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4754 4755 4756
	}

	if (new) {
4757 4758
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4759 4760 4761
	}
}

4762 4763
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4764
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4765 4766 4767 4768 4769 4770 4771
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4772
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4773
	if (IS_ERR(obj))
4774 4775 4776 4777 4778 4779
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4780
	ret = i915_gem_object_pin_pages(obj);
4781 4782 4783
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4784
	sg = obj->mm.pages;
4785
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4786
	obj->mm.dirty = true; /* Backing store is now out of date */
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4798
	i915_gem_object_put(obj);
4799 4800
	return ERR_PTR(ret);
}
4801 4802 4803 4804 4805 4806

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4807
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4808 4809 4810 4811 4812
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4813
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4938
	if (!obj->mm.dirty)
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}