i915_gem.c 126.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612
				    unsigned int *needs_clflush)
613 614 615 616 617
{
	int ret;

	*needs_clflush = 0;

618 619
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
620

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

631 632
	i915_gem_object_flush_gtt_write_domain(obj);

633 634 635 636 637 638
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
639 640
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
641 642 643

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
644 645 646
		if (ret)
			goto err_unpin;

647
		*needs_clflush = 0;
648 649
	}

650
	/* return with the pages pinned */
651
	return 0;
652 653 654 655

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

671 672 673 674 675 676
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

677 678
	i915_gem_object_flush_gtt_write_domain(obj);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
696 697 698
		if (ret)
			goto err_unpin;

699 700 701 702 703 704 705 706
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
707
	/* return with the pages pinned */
708
	return 0;
709 710 711 712

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
713 714
}

715 716 717
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
718
static int
719 720 721 722 723 724 725
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

726
	if (unlikely(page_do_bit17_swizzling))
727 728 729 730 731 732 733 734 735 736 737
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

738
	return ret ? -EFAULT : 0;
739 740
}

741 742 743 744
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
745
	if (unlikely(swizzled)) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

763 764 765 766 767 768 769 770 771 772 773 774
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
775 776 777
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
778 779 780 781 782 783 784 785 786 787 788

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

789
	return ret ? - EFAULT : 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
819
	struct drm_i915_private *dev_priv = to_i915(dev);
820
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
821
	struct i915_vma *vma;
822 823 824 825 826 827
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
828
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
829 830 831
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
832
		ret = i915_vma_put_fence(vma);
833 834 835 836 837
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
838
	if (IS_ERR(vma)) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1134
		ret = i915_vma_put_fence(vma);
1135 1136 1137 1138 1139
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229 1230 1231 1232 1233 1234
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1235
		i915_vma_unpin(vma);
1236
	}
D
Daniel Vetter 已提交
1237
out:
1238
	return ret;
1239 1240
}

1241 1242 1243 1244
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1245
static int
1246 1247 1248 1249 1250
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1251
{
1252
	char *vaddr;
1253
	int ret;
1254

1255
	if (unlikely(page_do_bit17_swizzling))
1256
		return -EINVAL;
1257

1258 1259 1260 1261
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1262 1263
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1264 1265 1266 1267
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1268

1269
	return ret ? -EFAULT : 0;
1270 1271
}

1272 1273
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1274
static int
1275 1276 1277 1278 1279
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1280
{
1281 1282
	char *vaddr;
	int ret;
1283

1284
	vaddr = kmap(page);
1285
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1286 1287 1288
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1289 1290
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1291 1292
						user_data,
						page_length);
1293 1294 1295 1296 1297
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1298 1299 1300
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1301
	kunmap(page);
1302

1303
	return ret ? -EFAULT : 0;
1304 1305 1306
}

static int
1307 1308 1309 1310
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1311 1312
{
	ssize_t remain;
1313 1314
	loff_t offset;
	char __user *user_data;
1315
	int shmem_page_offset, page_length, ret = 0;
1316
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1317
	int hit_slowpath = 0;
1318
	unsigned int needs_clflush;
1319
	struct sg_page_iter sg_iter;
1320

1321
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1322 1323 1324
	if (ret)
		return ret;

1325 1326
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1327
	offset = args->offset;
1328
	remain = args->size;
1329

1330 1331
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1332
		struct page *page = sg_page_iter_page(&sg_iter);
1333
		int partial_cacheline_write;
1334

1335 1336 1337
		if (remain <= 0)
			break;

1338 1339 1340 1341 1342
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1343
		shmem_page_offset = offset_in_page(offset);
1344 1345 1346 1347 1348

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1349 1350 1351
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1352
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1353 1354 1355
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1356 1357 1358
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1359 1360 1361
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1362
					needs_clflush & CLFLUSH_AFTER);
1363 1364
		if (ret == 0)
			goto next_page;
1365 1366 1367

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1368 1369 1370
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1371
					needs_clflush & CLFLUSH_AFTER);
1372

1373
		mutex_lock(&dev->struct_mutex);
1374 1375

		if (ret)
1376 1377
			goto out;

1378
next_page:
1379
		remain -= page_length;
1380
		user_data += page_length;
1381
		offset += page_length;
1382 1383
	}

1384
out:
1385
	i915_gem_obj_finish_shmem_access(obj);
1386

1387
	if (hit_slowpath) {
1388 1389 1390 1391 1392
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1393
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1394
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1395
			if (i915_gem_clflush_object(obj, obj->pin_display))
1396
				needs_clflush |= CLFLUSH_AFTER;
1397
		}
1398
	}
1399

1400
	if (needs_clflush & CLFLUSH_AFTER)
1401
		i915_gem_chipset_flush(to_i915(dev));
1402

1403
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1404
	return ret;
1405 1406 1407 1408
}

/**
 * Writes data to the object referenced by handle.
1409 1410 1411
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1412 1413 1414 1415 1416
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1417
		      struct drm_file *file)
1418
{
1419
	struct drm_i915_private *dev_priv = to_i915(dev);
1420
	struct drm_i915_gem_pwrite *args = data;
1421
	struct drm_i915_gem_object *obj;
1422 1423 1424 1425 1426 1427
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1428
		       u64_to_user_ptr(args->data_ptr),
1429 1430 1431
		       args->size))
		return -EFAULT;

1432
	if (likely(!i915.prefault_disable)) {
1433
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1434 1435 1436 1437
						   args->size);
		if (ret)
			return -EFAULT;
	}
1438

1439
	obj = i915_gem_object_lookup(file, args->handle);
1440 1441
	if (!obj)
		return -ENOENT;
1442

1443
	/* Bounds check destination. */
1444 1445
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1446
		ret = -EINVAL;
1447
		goto err;
C
Chris Wilson 已提交
1448 1449
	}

C
Chris Wilson 已提交
1450 1451
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1462
	ret = -EFAULT;
1463 1464 1465 1466 1467 1468
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1469 1470
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1471
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1472 1473 1474
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1475
	}
1476

1477
	if (ret == -EFAULT || ret == -ENOSPC) {
1478 1479
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1480
		else
1481
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1482
	}
1483

1484
	i915_gem_object_put(obj);
1485
	mutex_unlock(&dev->struct_mutex);
1486 1487
	intel_runtime_pm_put(dev_priv);

1488
	return ret;
1489 1490 1491 1492 1493 1494

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1495 1496
}

1497
static inline enum fb_op_origin
1498 1499
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1500 1501
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1502 1503
}

1504
/**
1505 1506
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1507 1508 1509
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1510 1511 1512
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1513
			  struct drm_file *file)
1514 1515
{
	struct drm_i915_gem_set_domain *args = data;
1516
	struct drm_i915_gem_object *obj;
1517 1518
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1519 1520
	int ret;

1521
	/* Only handle setting domains to types used by the CPU. */
1522
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1531
	obj = i915_gem_object_lookup(file, args->handle);
1532 1533
	if (!obj)
		return -ENOENT;
1534

1535 1536 1537 1538
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1539 1540 1541 1542 1543
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1544
	if (ret)
1545
		goto err;
1546

1547
	if (read_domains & I915_GEM_DOMAIN_GTT)
1548
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1549
	else
1550
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1551

1552
	if (write_domain != 0)
1553
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1554

1555
	i915_gem_object_put(obj);
1556 1557
	mutex_unlock(&dev->struct_mutex);
	return ret;
1558 1559 1560 1561

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1562 1563 1564 1565
}

/**
 * Called when user space has done writes to this buffer
1566 1567 1568
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1572
			 struct drm_file *file)
1573 1574
{
	struct drm_i915_gem_sw_finish *args = data;
1575
	struct drm_i915_gem_object *obj;
1576
	int err = 0;
1577

1578
	obj = i915_gem_object_lookup(file, args->handle);
1579 1580
	if (!obj)
		return -ENOENT;
1581 1582

	/* Pinned buffers may be scanout, so flush the cache */
1583 1584 1585 1586 1587 1588 1589
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1590

1591 1592
	i915_gem_object_put_unlocked(obj);
	return err;
1593 1594 1595
}

/**
1596 1597 1598 1599 1600
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1614 1615 1616
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1617
		    struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_mmap *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	unsigned long addr;

1623 1624 1625
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1626
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1627 1628
		return -ENODEV;

1629 1630
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1631
		return -ENOENT;
1632

1633 1634 1635
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1636
	if (!obj->base.filp) {
1637
		i915_gem_object_put_unlocked(obj);
1638 1639 1640
		return -EINVAL;
	}

1641
	addr = vm_mmap(obj->base.filp, 0, args->size,
1642 1643
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1644 1645 1646 1647
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1648
		if (down_write_killable(&mm->mmap_sem)) {
1649
			i915_gem_object_put_unlocked(obj);
1650 1651
			return -EINTR;
		}
1652 1653 1654 1655 1656 1657 1658
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1659 1660

		/* This may race, but that's ok, it only gets set */
1661
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1662
	}
1663
	i915_gem_object_put_unlocked(obj);
1664 1665 1666 1667 1668 1669 1670 1671
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1682 1683
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1684
 * @area: CPU VMA in question
1685
 * @vmf: fault info
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1698
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1699
{
1700
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1701
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1702
	struct drm_device *dev = obj->base.dev;
1703 1704
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1705
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1706
	struct i915_vma *vma;
1707 1708
	pgoff_t page_offset;
	unsigned long pfn;
1709
	unsigned int flags;
1710
	int ret;
1711

1712
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1713
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1714 1715
		PAGE_SHIFT;

C
Chris Wilson 已提交
1716 1717
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1718
	/* Try to flush the object off the GPU first without holding the lock.
1719
	 * Upon acquiring the lock, we will perform our sanity checks and then
1720 1721 1722
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1723
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1724
	if (ret)
1725 1726 1727 1728 1729 1730 1731
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1732

1733 1734
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1735
		ret = -EFAULT;
1736
		goto err_unlock;
1737 1738
	}

1739 1740 1741 1742 1743 1744 1745 1746
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1747
	/* Now pin it into the GTT as needed */
1748
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1749 1750
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1751 1752
		unsigned int chunk_size;

1753
		/* Use a partial view if it is bigger than available space */
1754 1755 1756
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1757

1758 1759 1760 1761
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1762
			min_t(unsigned int, chunk_size,
C
Chris Wilson 已提交
1763
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1764 1765
			      view.params.partial.offset);

1766 1767 1768 1769 1770 1771
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1772 1773 1774 1775 1776
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1777 1778
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1779 1780
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1781
		goto err_unlock;
C
Chris Wilson 已提交
1782
	}
1783

1784 1785
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1786
		goto err_unpin;
1787

1788
	ret = i915_vma_get_fence(vma);
1789
	if (ret)
1790
		goto err_unpin;
1791

1792
	/* Finally, remap it using the new GTT offset */
1793
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1794
	pfn >>= PAGE_SHIFT;
1795

1796
	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
1797
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1798 1799 1800 1801 1802
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1803 1804
			int i;

C
Chris Wilson 已提交
1805 1806 1807
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1808 1809 1810 1811 1812
						    pfn + i);
				if (ret)
					break;
			}
		} else
C
Chris Wilson 已提交
1813
			ret = vm_insert_pfn(area,
1814 1815
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	} else {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		const struct i915_ggtt_view *view = &vma->ggtt_view;
		unsigned long base = area->vm_start +
			(view->params.partial.offset << PAGE_SHIFT);
		unsigned int i;

		for (i = 0; i < view->params.partial.size; i++) {
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}
1834
	}
1835 1836

	obj->fault_mappable = true;
1837
err_unpin:
C
Chris Wilson 已提交
1838
	__i915_vma_unpin(vma);
1839
err_unlock:
1840
	mutex_unlock(&dev->struct_mutex);
1841 1842 1843
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1844
	switch (ret) {
1845
	case -EIO:
1846 1847 1848 1849 1850 1851 1852
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 1854 1855
			ret = VM_FAULT_SIGBUS;
			break;
		}
1856
	case -EAGAIN:
D
Daniel Vetter 已提交
1857 1858 1859 1860
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1861
		 */
1862 1863
	case 0:
	case -ERESTARTSYS:
1864
	case -EINTR:
1865 1866 1867 1868 1869
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1870 1871
		ret = VM_FAULT_NOPAGE;
		break;
1872
	case -ENOMEM:
1873 1874
		ret = VM_FAULT_OOM;
		break;
1875
	case -ENOSPC:
1876
	case -EFAULT:
1877 1878
		ret = VM_FAULT_SIGBUS;
		break;
1879
	default:
1880
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 1882
		ret = VM_FAULT_SIGBUS;
		break;
1883
	}
1884
	return ret;
1885 1886
}

1887 1888 1889 1890
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1891
 * Preserve the reservation of the mmapping with the DRM core code, but
1892 1893 1894 1895 1896 1897 1898 1899 1900
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1901
void
1902
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903
{
1904 1905 1906 1907 1908 1909
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1910 1911
	if (!obj->fault_mappable)
		return;
1912

1913 1914
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1925
	obj->fault_mappable = false;
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1937 1938
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1939
 * @dev_priv: i915 device
1940 1941 1942 1943 1944 1945
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1946 1947
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1948
{
1949
	u64 ggtt_size;
1950

1951 1952
	GEM_BUG_ON(size == 0);

1953
	if (INTEL_GEN(dev_priv) >= 4 ||
1954 1955
	    tiling_mode == I915_TILING_NONE)
		return size;
1956 1957

	/* Previous chips need a power-of-two fence region when tiling */
1958
	if (IS_GEN3(dev_priv))
1959
		ggtt_size = 1024*1024;
1960
	else
1961
		ggtt_size = 512*1024;
1962

1963 1964
	while (ggtt_size < size)
		ggtt_size <<= 1;
1965

1966
	return ggtt_size;
1967 1968
}

1969
/**
1970
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1971
 * @dev_priv: i915 device
1972 1973
 * @size: object size
 * @tiling_mode: tiling mode
1974
 * @fenced: is fenced alignment required or not
1975
 *
1976
 * Return the required global GTT alignment for an object, taking into account
1977
 * potential fence register mapping.
1978
 */
1979
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1980
				int tiling_mode, bool fenced)
1981
{
1982 1983
	GEM_BUG_ON(size == 0);

1984 1985 1986 1987
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1988
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1989
	    tiling_mode == I915_TILING_NONE)
1990 1991
		return 4096;

1992 1993 1994 1995
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1996
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1997 1998
}

1999 2000
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2001
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2002
	int err;
2003

2004 2005 2006
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2007

2008 2009 2010
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2011
	 */
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2022

2023
	return err;
2024 2025 2026 2027 2028 2029 2030
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2031
int
2032 2033
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2034
		  uint32_t handle,
2035
		  uint64_t *offset)
2036
{
2037
	struct drm_i915_gem_object *obj;
2038 2039
	int ret;

2040
	obj = i915_gem_object_lookup(file, handle);
2041 2042
	if (!obj)
		return -ENOENT;
2043

2044
	ret = i915_gem_object_create_mmap_offset(obj);
2045 2046
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2047

2048
	i915_gem_object_put_unlocked(obj);
2049
	return ret;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2073
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2074 2075
}

D
Daniel Vetter 已提交
2076 2077 2078
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2079
{
2080
	i915_gem_object_free_mmap_offset(obj);
2081

2082 2083
	if (obj->base.filp == NULL)
		return;
2084

D
Daniel Vetter 已提交
2085 2086 2087 2088 2089
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2090
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2091 2092
	obj->madv = __I915_MADV_PURGED;
}
2093

2094 2095 2096
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2097
{
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2110
	mapping = obj->base.filp->f_mapping,
2111
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2112 2113
}

2114
static void
2115
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2116
{
2117 2118
	struct sgt_iter sgt_iter;
	struct page *page;
2119
	int ret;
2120

2121
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2122

C
Chris Wilson 已提交
2123
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2124
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2125 2126 2127
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2128
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2129 2130 2131
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2132 2133
	i915_gem_gtt_finish_object(obj);

2134
	if (i915_gem_object_needs_bit17_swizzle(obj))
2135 2136
		i915_gem_object_save_bit_17_swizzle(obj);

2137 2138
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2139

2140
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2141
		if (obj->dirty)
2142
			set_page_dirty(page);
2143

2144
		if (obj->madv == I915_MADV_WILLNEED)
2145
			mark_page_accessed(page);
2146

2147
		put_page(page);
2148
	}
2149
	obj->dirty = 0;
2150

2151 2152
	sg_free_table(obj->pages);
	kfree(obj->pages);
2153
}
C
Chris Wilson 已提交
2154

2155
int
2156 2157 2158 2159
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2160
	if (obj->pages == NULL)
2161 2162
		return 0;

2163 2164 2165
	if (obj->pages_pin_count)
		return -EBUSY;

2166
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2167

2168 2169 2170
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2171
	list_del(&obj->global_list);
2172

2173
	if (obj->mapping) {
2174 2175 2176 2177 2178
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2179
		else
2180 2181
			kunmap(kmap_to_page(ptr));

2182 2183 2184
		obj->mapping = NULL;
	}

2185
	ops->put_pages(obj);
2186
	obj->pages = NULL;
2187

2188
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2189 2190 2191 2192

	return 0;
}

2193
static int
C
Chris Wilson 已提交
2194
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2195
{
2196
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2197 2198
	int page_count, i;
	struct address_space *mapping;
2199 2200
	struct sg_table *st;
	struct scatterlist *sg;
2201
	struct sgt_iter sgt_iter;
2202
	struct page *page;
2203
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2204
	int ret;
C
Chris Wilson 已提交
2205
	gfp_t gfp;
2206

C
Chris Wilson 已提交
2207 2208 2209 2210 2211 2212 2213
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2214 2215 2216 2217
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2218
	page_count = obj->base.size / PAGE_SIZE;
2219 2220
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2221
		return -ENOMEM;
2222
	}
2223

2224 2225 2226 2227 2228
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2229
	mapping = obj->base.filp->f_mapping;
2230
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2231
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2232 2233 2234
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2235 2236
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2237 2238 2239 2240 2241
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2242 2243 2244 2245 2246 2247 2248 2249
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2250
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2251 2252
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2253
				goto err_pages;
I
Imre Deak 已提交
2254
			}
C
Chris Wilson 已提交
2255
		}
2256 2257 2258 2259 2260 2261 2262 2263
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2264 2265 2266 2267 2268 2269 2270 2271 2272
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2273 2274 2275

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2276
	}
2277 2278 2279 2280
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2281 2282
	obj->pages = st;

I
Imre Deak 已提交
2283 2284 2285 2286
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2287
	if (i915_gem_object_needs_bit17_swizzle(obj))
2288 2289
		i915_gem_object_do_bit_17_swizzle(obj);

2290
	if (i915_gem_object_is_tiled(obj) &&
2291 2292 2293
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2294 2295 2296
	return 0;

err_pages:
2297
	sg_mark_end(sg);
2298 2299
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2300 2301
	sg_free_table(st);
	kfree(st);
2302 2303 2304 2305 2306 2307 2308 2309 2310

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2311 2312 2313 2314
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2327
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2328 2329 2330
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2331
	if (obj->pages)
2332 2333
		return 0;

2334
	if (obj->madv != I915_MADV_WILLNEED) {
2335
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2336
		return -EFAULT;
2337 2338
	}

2339 2340
	BUG_ON(obj->pages_pin_count);

2341 2342 2343 2344
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2345
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2346 2347 2348 2349

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2350
	return 0;
2351 2352
}

2353
/* The 'mapping' part of i915_gem_object_pin_map() below */
2354 2355
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2356 2357 2358
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2359 2360
	struct sgt_iter sgt_iter;
	struct page *page;
2361 2362
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2363
	unsigned long i = 0;
2364
	pgprot_t pgprot;
2365 2366 2367
	void *addr;

	/* A single page can always be kmapped */
2368
	if (n_pages == 1 && type == I915_MAP_WB)
2369 2370
		return kmap(sg_page(sgt->sgl));

2371 2372 2373 2374 2375 2376
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2377

2378 2379
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2380 2381 2382 2383

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2384 2385 2386 2387 2388 2389 2390 2391 2392
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2393

2394 2395
	if (pages != stack_pages)
		drm_free_large(pages);
2396 2397 2398 2399 2400

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2401 2402
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2403
{
2404 2405 2406
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2407 2408 2409
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2410
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2411 2412 2413 2414 2415 2416

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2417
	pinned = obj->pages_pin_count > 1;
2418

2419 2420 2421 2422 2423
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2424
		}
2425 2426 2427 2428 2429 2430 2431

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2432 2433
	}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2449 2450
}

2451
static void
2452 2453
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2454
{
2455 2456
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2457

2458
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2459 2460
}

2461
static void
2462 2463
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2464
{
2465 2466 2467
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2468

2469
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2470

2471 2472
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2473
		return;
2474

2475 2476 2477 2478
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2479 2480 2481
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2482

2483
	i915_gem_object_put(obj);
2484 2485
}

2486
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2487
{
2488
	unsigned long elapsed;
2489

2490
	if (ctx->hang_stats.banned)
2491 2492
		return true;

2493
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2494 2495
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2496 2497
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2498 2499 2500 2501 2502
	}

	return false;
}

2503
static void i915_set_reset_status(struct i915_gem_context *ctx,
2504
				  const bool guilty)
2505
{
2506
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2507 2508

	if (guilty) {
2509
		hs->banned = i915_context_is_banned(ctx);
2510 2511 2512 2513
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2514 2515 2516
	}
}

2517
struct drm_i915_gem_request *
2518
i915_gem_find_active_request(struct intel_engine_cs *engine)
2519
{
2520 2521
	struct drm_i915_gem_request *request;

2522 2523 2524 2525 2526 2527 2528 2529
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2530
	list_for_each_entry(request, &engine->request_list, link) {
2531
		if (i915_gem_request_completed(request))
2532
			continue;
2533

2534
		return request;
2535
	}
2536 2537 2538 2539

	return NULL;
}

2540
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2541 2542 2543 2544
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2545
	request = i915_gem_find_active_request(engine);
2546 2547 2548
	if (request == NULL)
		return;

2549
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2550

2551
	i915_set_reset_status(request->ctx, ring_hung);
2552
	list_for_each_entry_continue(request, &engine->request_list, link)
2553
		i915_set_reset_status(request->ctx, false);
2554
}
2555

2556
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2557
{
2558
	struct drm_i915_gem_request *request;
2559
	struct intel_ring *ring;
2560

2561 2562 2563 2564
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2565
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2566

2567 2568 2569 2570 2571 2572
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2573
	if (i915.enable_execlists) {
2574 2575
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2576

2577
		intel_execlists_cancel_requests(engine);
2578 2579
	}

2580 2581 2582 2583 2584 2585 2586
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2587 2588
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2589
	if (request)
2590
		i915_gem_request_retire_upto(request);
2591
	GEM_BUG_ON(intel_engine_is_active(engine));
2592 2593 2594 2595 2596 2597 2598 2599

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2600 2601 2602
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2603
	}
2604

2605
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2606 2607
}

2608
void i915_gem_reset(struct drm_device *dev)
2609
{
2610
	struct drm_i915_private *dev_priv = to_i915(dev);
2611
	struct intel_engine_cs *engine;
2612

2613 2614 2615 2616 2617
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2618
	for_each_engine(engine, dev_priv)
2619
		i915_gem_reset_engine_status(engine);
2620

2621
	for_each_engine(engine, dev_priv)
2622
		i915_gem_reset_engine_cleanup(engine);
2623
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2624

2625 2626
	i915_gem_context_reset(dev);

2627
	i915_gem_restore_fences(dev);
2628 2629
}

2630
static void
2631 2632
i915_gem_retire_work_handler(struct work_struct *work)
{
2633
	struct drm_i915_private *dev_priv =
2634
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2635
	struct drm_device *dev = &dev_priv->drm;
2636

2637
	/* Come back later if the device is busy... */
2638
	if (mutex_trylock(&dev->struct_mutex)) {
2639
		i915_gem_retire_requests(dev_priv);
2640
		mutex_unlock(&dev->struct_mutex);
2641
	}
2642 2643 2644 2645 2646

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2647 2648
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2649 2650
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2651
				   round_jiffies_up_relative(HZ));
2652
	}
2653
}
2654

2655 2656 2657 2658
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2659
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2660
	struct drm_device *dev = &dev_priv->drm;
2661
	struct intel_engine_cs *engine;
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2683

2684
	for_each_engine(engine, dev_priv)
2685
		i915_gem_batch_pool_fini(&engine->batch_pool);
2686

2687 2688 2689
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2690

2691 2692 2693 2694 2695
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2696

2697 2698 2699 2700
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2701
	}
2702 2703
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2717 2718
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2719 2720 2721
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2745
	struct intel_rps_client *rps = to_rps_client(file);
2746
	struct drm_i915_gem_object *obj;
2747 2748
	unsigned long active;
	int idx, ret = 0;
2749

2750 2751 2752
	if (args->flags != 0)
		return -EINVAL;

2753
	obj = i915_gem_object_lookup(file, args->bo_handle);
2754
	if (!obj)
2755 2756
		return -ENOENT;

2757 2758 2759 2760 2761 2762 2763
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2764 2765
	}

2766
	i915_gem_object_put_unlocked(obj);
2767
	return ret;
2768 2769
}

2770
static int
2771
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2772
		       struct drm_i915_gem_request *from)
2773 2774 2775
{
	int ret;

2776
	if (to->engine == from->engine)
2777 2778
		return 0;

2779
	if (!i915.semaphores) {
2780 2781 2782 2783
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2784 2785 2786
		if (ret)
			return ret;
	} else {
2787
		int idx = intel_engine_sync_index(from->engine, to->engine);
2788
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2789 2790
			return 0;

2791
		trace_i915_gem_ring_sync_to(to, from);
2792
		ret = to->engine->semaphore.sync_to(to, from);
2793 2794 2795
		if (ret)
			return ret;

2796
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2797 2798 2799 2800 2801
	}

	return 0;
}

2802 2803 2804 2805
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2806
 * @to: request we are wishing to use
2807 2808
 *
 * This code is meant to abstract object synchronization with the GPU.
2809 2810 2811
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2812 2813 2814 2815 2816 2817 2818
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2819 2820 2821
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2822 2823
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2824
		     struct drm_i915_gem_request *to)
2825
{
C
Chris Wilson 已提交
2826 2827 2828
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2829

C
Chris Wilson 已提交
2830
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2831

2832
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2833 2834
	if (!active_mask)
		return 0;
2835

C
Chris Wilson 已提交
2836 2837
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2838
	} else {
C
Chris Wilson 已提交
2839 2840
		active_mask = 1;
		active = &obj->last_write;
2841
	}
C
Chris Wilson 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2852
		ret = __i915_gem_object_sync(to, request);
2853 2854 2855
		if (ret)
			return ret;
	}
2856

2857
	return 0;
2858 2859
}

2860 2861 2862 2863 2864 2865 2866
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2867 2868 2869
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2881 2882
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2883
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2884 2885 2886 2887 2888 2889 2890 2891

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2892
int i915_vma_unbind(struct i915_vma *vma)
2893
{
2894
	struct drm_i915_gem_object *obj = vma->obj;
2895
	unsigned long active;
2896
	int ret;
2897

2898 2899 2900 2901
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2902
	if (active) {
2903 2904
		int idx;

2905 2906 2907 2908 2909
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2910
		__i915_vma_pin(vma);
2911

2912 2913 2914 2915
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2916
				break;
2917 2918
		}

2919
		__i915_vma_unpin(vma);
2920 2921 2922
		if (ret)
			return ret;

2923 2924 2925
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2926
	if (i915_vma_is_pinned(vma))
2927 2928
		return -EBUSY;

2929 2930
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2931

2932 2933
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2934

2935
	if (i915_vma_is_map_and_fenceable(vma)) {
2936
		i915_gem_object_finish_gtt(obj);
2937

2938
		/* release the fence reg _after_ flushing */
2939
		ret = i915_vma_put_fence(vma);
2940 2941
		if (ret)
			return ret;
2942 2943

		__i915_vma_iounmap(vma);
2944
		vma->flags &= ~I915_VMA_CAN_FENCE;
2945
	}
2946

2947 2948 2949 2950
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2951
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2952

2953 2954 2955
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2956 2957 2958 2959
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2960
	}
2961
	vma->pages = NULL;
2962

B
Ben Widawsky 已提交
2963
	/* Since the unbound list is global, only move to that list if
2964
	 * no more VMAs exist. */
2965 2966 2967
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2968

2969 2970 2971 2972 2973 2974
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2975
destroy:
2976
	if (unlikely(i915_vma_is_closed(vma)))
2977 2978
		i915_vma_destroy(vma);

2979
	return 0;
2980 2981
}

2982 2983
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2984
{
2985
	struct intel_engine_cs *engine;
2986
	int ret;
2987

2988
	for_each_engine(engine, dev_priv) {
2989 2990 2991
		if (engine->last_context == NULL)
			continue;

2992
		ret = intel_engine_idle(engine, interruptible);
2993 2994 2995
		if (ret)
			return ret;
	}
2996

2997
	return 0;
2998 2999
}

3000
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3001 3002
				     unsigned long cache_level)
{
3003
	struct drm_mm_node *gtt_space = &vma->node;
3004 3005
	struct drm_mm_node *other;

3006 3007 3008 3009 3010 3011
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3012
	 */
3013
	if (vma->vm->mm.color_adjust == NULL)
3014 3015
		return true;

3016
	if (!drm_mm_node_allocated(gtt_space))
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3033
/**
3034 3035
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3036
 * @size: requested size in bytes (can be larger than the VMA)
3037
 * @alignment: required alignment
3038
 * @flags: mask of PIN_* flags to use
3039 3040 3041 3042 3043 3044 3045
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3046
 */
3047 3048
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3049
{
3050 3051
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3052
	u64 start, end;
3053
	int ret;
3054

3055
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3056
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3057 3058 3059

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3060 3061
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3062

3063 3064 3065 3066
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3067

3068
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3069 3070

	end = vma->vm->total;
3071
	if (flags & PIN_MAPPABLE)
3072
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3073
	if (flags & PIN_ZONE_4G)
3074
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3075

3076 3077 3078
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3079
	 */
3080
	if (size > end) {
3081
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3082
			  size, obj->base.size,
3083
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3084
			  end);
3085
		return -E2BIG;
3086 3087
	}

3088
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3089
	if (ret)
3090
		return ret;
C
Chris Wilson 已提交
3091

3092 3093
	i915_gem_object_pin_pages(obj);

3094
	if (flags & PIN_OFFSET_FIXED) {
3095
		u64 offset = flags & PIN_OFFSET_MASK;
3096
		if (offset & (alignment - 1) || offset > end - size) {
3097
			ret = -EINVAL;
3098
			goto err_unpin;
3099
		}
3100

3101 3102 3103
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3104
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3105 3106 3107
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3108 3109 3110
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3111
		}
3112
	} else {
3113 3114
		u32 search_flag, alloc_flag;

3115 3116 3117 3118 3119 3120 3121
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3122

3123 3124 3125 3126 3127 3128 3129 3130 3131
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3132
search_free:
3133 3134
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3135 3136 3137 3138 3139 3140
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3141
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3142 3143 3144 3145 3146
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3147

3148
			goto err_unpin;
3149
		}
3150
	}
3151
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3152

3153
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3154
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3155
	obj->bind_count++;
3156

3157
	return 0;
B
Ben Widawsky 已提交
3158

3159
err_unpin:
B
Ben Widawsky 已提交
3160
	i915_gem_object_unpin_pages(obj);
3161
	return ret;
3162 3163
}

3164
bool
3165 3166
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3167 3168 3169 3170 3171
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3172
	if (obj->pages == NULL)
3173
		return false;
3174

3175 3176 3177 3178
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3179
	if (obj->stolen || obj->phys_handle)
3180
		return false;
3181

3182 3183 3184 3185 3186 3187 3188 3189
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3190 3191
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3192
		return false;
3193
	}
3194

C
Chris Wilson 已提交
3195
	trace_i915_gem_object_clflush(obj);
3196
	drm_clflush_sg(obj->pages);
3197
	obj->cache_dirty = false;
3198 3199

	return true;
3200 3201 3202 3203
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3204
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3205
{
3206
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3207

3208
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3209 3210
		return;

3211
	/* No actual flushing is required for the GTT write domain.  Writes
3212
	 * to it "immediately" go to main memory as far as we know, so there's
3213
	 * no chipset flush.  It also doesn't land in render cache.
3214 3215 3216 3217
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3218 3219 3220 3221 3222 3223 3224
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3225
	 */
3226
	wmb();
3227 3228
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3229

3230
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3231

3232
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3233
	trace_i915_gem_object_change_domain(obj,
3234
					    obj->base.read_domains,
3235
					    I915_GEM_DOMAIN_GTT);
3236 3237 3238 3239
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3240
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3241
{
3242
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3243 3244
		return;

3245
	if (i915_gem_clflush_object(obj, obj->pin_display))
3246
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3247

3248
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3249

3250
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3251
	trace_i915_gem_object_change_domain(obj,
3252
					    obj->base.read_domains,
3253
					    I915_GEM_DOMAIN_CPU);
3254 3255
}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3274 3275
/**
 * Moves a single object to the GTT read, and possibly write domain.
3276 3277
 * @obj: object to act on
 * @write: ask for write access or read only
3278 3279 3280 3281
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3282
int
3283
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3284
{
C
Chris Wilson 已提交
3285
	uint32_t old_write_domain, old_read_domains;
3286
	int ret;
3287

3288
	ret = i915_gem_object_wait_rendering(obj, !write);
3289 3290 3291
	if (ret)
		return ret;

3292 3293 3294
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3307
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3308

3309 3310 3311 3312 3313 3314 3315
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3316 3317
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3318

3319 3320 3321
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3322 3323
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3324
	if (write) {
3325 3326 3327
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3328 3329
	}

C
Chris Wilson 已提交
3330 3331 3332 3333
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3334
	/* And bump the LRU for this access */
3335
	i915_gem_object_bump_inactive_ggtt(obj);
3336

3337 3338 3339
	return 0;
}

3340 3341
/**
 * Changes the cache-level of an object across all VMA.
3342 3343
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3355 3356 3357
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3358
	struct i915_vma *vma;
3359
	int ret = 0;
3360 3361

	if (obj->cache_level == cache_level)
3362
		goto out;
3363

3364 3365 3366 3367 3368
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3369 3370
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3371 3372 3373
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3374
		if (i915_vma_is_pinned(vma)) {
3375 3376 3377 3378
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3391 3392
	}

3393 3394 3395 3396 3397 3398 3399
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3400
	if (obj->bind_count) {
3401 3402 3403 3404
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3405
		ret = i915_gem_object_wait_rendering(obj, false);
3406 3407 3408
		if (ret)
			return ret;

3409
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3426 3427 3428 3429 3430
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3431 3432 3433 3434 3435 3436 3437 3438
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3439 3440
		}

3441
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3442 3443 3444 3445 3446 3447 3448
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3449 3450
	}

3451
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3452 3453 3454
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3455
out:
3456 3457 3458 3459
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3460
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3461
		if (i915_gem_clflush_object(obj, true))
3462
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3463 3464 3465 3466 3467
	}

	return 0;
}

B
Ben Widawsky 已提交
3468 3469
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3470
{
B
Ben Widawsky 已提交
3471
	struct drm_i915_gem_caching *args = data;
3472 3473
	struct drm_i915_gem_object *obj;

3474 3475
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3476
		return -ENOENT;
3477

3478 3479 3480 3481 3482 3483
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3484 3485 3486 3487
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3488 3489 3490 3491
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3492

3493
	i915_gem_object_put_unlocked(obj);
3494
	return 0;
3495 3496
}

B
Ben Widawsky 已提交
3497 3498
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3499
{
3500
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3501
	struct drm_i915_gem_caching *args = data;
3502 3503 3504 3505
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3506 3507
	switch (args->caching) {
	case I915_CACHING_NONE:
3508 3509
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3510
	case I915_CACHING_CACHED:
3511 3512 3513 3514 3515 3516
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3517
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3518 3519
			return -ENODEV;

3520 3521
		level = I915_CACHE_LLC;
		break;
3522 3523 3524
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3525 3526 3527 3528
	default:
		return -EINVAL;
	}

3529 3530
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3531 3532
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3533
		goto rpm_put;
B
Ben Widawsky 已提交
3534

3535 3536
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3537 3538 3539 3540 3541 3542
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3543
	i915_gem_object_put(obj);
3544 3545
unlock:
	mutex_unlock(&dev->struct_mutex);
3546 3547 3548
rpm_put:
	intel_runtime_pm_put(dev_priv);

3549 3550 3551
	return ret;
}

3552
/*
3553 3554 3555
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3556
 */
C
Chris Wilson 已提交
3557
struct i915_vma *
3558 3559
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3560
				     const struct i915_ggtt_view *view)
3561
{
C
Chris Wilson 已提交
3562
	struct i915_vma *vma;
3563
	u32 old_read_domains, old_write_domain;
3564 3565
	int ret;

3566 3567 3568
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3569
	obj->pin_display++;
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3580 3581
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3582 3583
	if (ret) {
		vma = ERR_PTR(ret);
3584
		goto err_unpin_display;
C
Chris Wilson 已提交
3585
	}
3586

3587 3588
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3589 3590 3591 3592
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3593
	 */
3594 3595 3596 3597 3598 3599
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3600
	if (IS_ERR(vma))
3601
		goto err_unpin_display;
3602

3603 3604
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

C
Chris Wilson 已提交
3605 3606
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3607
	i915_gem_object_flush_cpu_write_domain(obj);
3608

3609
	old_write_domain = obj->base.write_domain;
3610
	old_read_domains = obj->base.read_domains;
3611 3612 3613 3614

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3615
	obj->base.write_domain = 0;
3616
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617 3618 3619

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3620
					    old_write_domain);
3621

C
Chris Wilson 已提交
3622
	return vma;
3623 3624

err_unpin_display:
3625
	obj->pin_display--;
C
Chris Wilson 已提交
3626
	return vma;
3627 3628 3629
}

void
C
Chris Wilson 已提交
3630
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3631
{
C
Chris Wilson 已提交
3632
	if (WARN_ON(vma->obj->pin_display == 0))
3633 3634
		return;

3635 3636
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3637

3638 3639 3640 3641
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3642 3643
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3644 3645
}

3646 3647
/**
 * Moves a single object to the CPU read, and possibly write domain.
3648 3649
 * @obj: object to act on
 * @write: requesting write or read-only access
3650 3651 3652 3653
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3654
int
3655
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3656
{
C
Chris Wilson 已提交
3657
	uint32_t old_write_domain, old_read_domains;
3658 3659
	int ret;

3660
	ret = i915_gem_object_wait_rendering(obj, !write);
3661 3662 3663
	if (ret)
		return ret;

3664 3665 3666
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3667
	i915_gem_object_flush_gtt_write_domain(obj);
3668

3669 3670
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3671

3672
	/* Flush the CPU cache if it's still invalid. */
3673
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3674
		i915_gem_clflush_object(obj, false);
3675

3676
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3677 3678 3679 3680 3681
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3682
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3683 3684 3685 3686 3687

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3688 3689
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3690
	}
3691

C
Chris Wilson 已提交
3692 3693 3694 3695
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3696 3697 3698
	return 0;
}

3699 3700 3701
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3702 3703 3704 3705
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3706 3707 3708
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3709
static int
3710
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3711
{
3712
	struct drm_i915_private *dev_priv = to_i915(dev);
3713
	struct drm_i915_file_private *file_priv = file->driver_priv;
3714
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3715
	struct drm_i915_gem_request *request, *target = NULL;
3716
	int ret;
3717

3718 3719 3720 3721
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3722 3723 3724
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3725

3726
	spin_lock(&file_priv->mm.lock);
3727
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3728 3729
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3730

3731 3732 3733 3734 3735 3736 3737
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3738
		target = request;
3739
	}
3740
	if (target)
3741
		i915_gem_request_get(target);
3742
	spin_unlock(&file_priv->mm.lock);
3743

3744
	if (target == NULL)
3745
		return 0;
3746

3747
	ret = i915_wait_request(target, true, NULL, NULL);
3748
	i915_gem_request_put(target);
3749

3750 3751 3752
	return ret;
}

3753
static bool
3754
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3755
{
3756 3757 3758
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3759 3760 3761 3762
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3763 3764
		return true;

3765
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3766 3767 3768 3769 3770 3771
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3772 3773 3774 3775
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3776 3777 3778
	return false;
}

3779 3780 3781
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3782
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3783 3784 3785
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3786
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3787
					    vma->size,
3788
					    i915_gem_object_get_tiling(obj));
3789
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3790
						      vma->size,
3791
						      i915_gem_object_get_tiling(obj),
3792
						      true);
3793 3794 3795 3796 3797

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3798
		    dev_priv->ggtt.mappable_end);
3799

3800 3801 3802 3803
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3804 3805
}

3806 3807
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3808
{
3809
	unsigned int bound = vma->flags;
3810 3811
	int ret;

3812
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3813
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3814

3815 3816 3817 3818
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3819

3820
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3821 3822 3823
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3824
	}
3825

3826
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3827
	if (ret)
3828
		goto err;
3829

3830
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3831
		__i915_vma_set_map_and_fenceable(vma);
3832

3833
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3834 3835
	return 0;

3836 3837 3838
err:
	__i915_vma_unpin(vma);
	return ret;
3839 3840
}

C
Chris Wilson 已提交
3841
struct i915_vma *
3842 3843
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3844
			 u64 size,
3845 3846
			 u64 alignment,
			 u64 flags)
3847
{
C
Chris Wilson 已提交
3848
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3849 3850
	struct i915_vma *vma;
	int ret;
3851

C
Chris Wilson 已提交
3852
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3853
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3854
		return vma;
3855 3856 3857 3858

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3859
			return ERR_PTR(-ENOSPC);
3860 3861 3862

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3863 3864 3865
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3866
		     !!(flags & PIN_MAPPABLE),
3867
		     i915_vma_is_map_and_fenceable(vma));
3868 3869
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3870
			return ERR_PTR(ret);
3871 3872
	}

C
Chris Wilson 已提交
3873 3874 3875
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3876

C
Chris Wilson 已提交
3877
	return vma;
3878 3879
}

3880
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3895 3896 3897 3898 3899 3900 3901 3902 3903
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3904 3905
}

3906
static __always_inline unsigned int
3907 3908 3909
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3910
	struct drm_i915_gem_request *request;
3911

3912 3913 3914
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3915

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3972 3973
}

3974
static __always_inline unsigned int
3975 3976 3977 3978 3979
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3980
static __always_inline unsigned int
3981 3982 3983 3984 3985
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3986 3987
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3988
		    struct drm_file *file)
3989 3990
{
	struct drm_i915_gem_busy *args = data;
3991
	struct drm_i915_gem_object *obj;
3992
	unsigned long active;
3993

3994
	obj = i915_gem_object_lookup(file, args->handle);
3995 3996
	if (!obj)
		return -ENOENT;
3997

3998
	args->busy = 0;
3999 4000 4001
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4002

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4019 4020 4021 4022 4023 4024
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4025 4026 4027 4028 4029 4030 4031
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4032 4033 4034 4035 4036
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4037 4038 4039 4040 4041 4042 4043 4044 4045
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4046
	}
4047

4048 4049
	i915_gem_object_put_unlocked(obj);
	return 0;
4050 4051 4052 4053 4054 4055
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4056
	return i915_gem_ring_throttle(dev, file_priv);
4057 4058
}

4059 4060 4061 4062
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4063
	struct drm_i915_private *dev_priv = to_i915(dev);
4064
	struct drm_i915_gem_madvise *args = data;
4065
	struct drm_i915_gem_object *obj;
4066
	int ret;
4067 4068 4069 4070 4071 4072 4073 4074 4075

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4076 4077 4078 4079
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4080 4081
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4082 4083
		ret = -ENOENT;
		goto unlock;
4084 4085
	}

4086
	if (obj->pages &&
4087
	    i915_gem_object_is_tiled(obj) &&
4088 4089 4090 4091 4092 4093 4094
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4095 4096
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4097

C
Chris Wilson 已提交
4098
	/* if the object is no longer attached, discard its backing storage */
4099
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4100 4101
		i915_gem_object_truncate(obj);

4102
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4103

4104
	i915_gem_object_put(obj);
4105
unlock:
4106
	mutex_unlock(&dev->struct_mutex);
4107
	return ret;
4108 4109
}

4110 4111
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4112
{
4113 4114
	int i;

4115
	INIT_LIST_HEAD(&obj->global_list);
4116
	for (i = 0; i < I915_NUM_ENGINES; i++)
4117 4118 4119 4120
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4121
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4122
	INIT_LIST_HEAD(&obj->vma_list);
4123
	INIT_LIST_HEAD(&obj->batch_pool_link);
4124

4125 4126
	obj->ops = ops;

4127
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4128 4129
	obj->madv = I915_MADV_WILLNEED;

4130
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4131 4132
}

4133
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4134
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4135 4136 4137 4138
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4139
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4140
						  size_t size)
4141
{
4142
	struct drm_i915_gem_object *obj;
4143
	struct address_space *mapping;
D
Daniel Vetter 已提交
4144
	gfp_t mask;
4145
	int ret;
4146

4147
	obj = i915_gem_object_alloc(dev);
4148
	if (obj == NULL)
4149
		return ERR_PTR(-ENOMEM);
4150

4151 4152 4153
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4154

4155 4156 4157 4158 4159 4160 4161
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4162
	mapping = obj->base.filp->f_mapping;
4163
	mapping_set_gfp_mask(mapping, mask);
4164

4165
	i915_gem_object_init(obj, &i915_gem_object_ops);
4166

4167 4168
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4169

4170 4171
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4187 4188
	trace_i915_gem_object_create(obj);

4189
	return obj;
4190 4191 4192 4193 4194

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4195 4196
}

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4221
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4222
{
4223
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4224
	struct drm_device *dev = obj->base.dev;
4225
	struct drm_i915_private *dev_priv = to_i915(dev);
4226
	struct i915_vma *vma, *next;
4227

4228 4229
	intel_runtime_pm_get(dev_priv);

4230 4231
	trace_i915_gem_object_destroy(obj);

4232 4233 4234 4235 4236 4237 4238
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4239
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4240
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4241
		GEM_BUG_ON(i915_vma_is_active(vma));
4242
		vma->flags &= ~I915_VMA_PIN_MASK;
4243
		i915_vma_close(vma);
4244
	}
4245
	GEM_BUG_ON(obj->bind_count);
4246

B
Ben Widawsky 已提交
4247 4248 4249 4250 4251
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4252
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4253

4254 4255
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4256
	    i915_gem_object_is_tiled(obj))
4257 4258
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4259 4260
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4261
	if (discard_backing_storage(obj))
4262
		obj->madv = I915_MADV_DONTNEED;
4263
	i915_gem_object_put_pages(obj);
4264

4265 4266
	BUG_ON(obj->pages);

4267 4268
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4269

4270 4271 4272
	if (obj->ops->release)
		obj->ops->release(obj);

4273 4274
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4275

4276
	kfree(obj->bit_17);
4277
	i915_gem_object_free(obj);
4278 4279

	intel_runtime_pm_put(dev_priv);
4280 4281
}

4282
int i915_gem_suspend(struct drm_device *dev)
4283
{
4284
	struct drm_i915_private *dev_priv = to_i915(dev);
4285
	int ret;
4286

4287 4288
	intel_suspend_gt_powersave(dev_priv);

4289
	mutex_lock(&dev->struct_mutex);
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4303
	ret = i915_gem_wait_for_idle(dev_priv, true);
4304
	if (ret)
4305
		goto err;
4306

4307
	i915_gem_retire_requests(dev_priv);
4308

4309
	i915_gem_context_lost(dev_priv);
4310 4311
	mutex_unlock(&dev->struct_mutex);

4312
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4313 4314
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4315

4316 4317 4318
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4319
	WARN_ON(dev_priv->gt.awake);
4320

4321
	return 0;
4322 4323 4324 4325

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4326 4327
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4345 4346
void i915_gem_init_swizzling(struct drm_device *dev)
{
4347
	struct drm_i915_private *dev_priv = to_i915(dev);
4348

4349
	if (INTEL_INFO(dev)->gen < 5 ||
4350 4351 4352 4353 4354 4355
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4356 4357 4358
	if (IS_GEN5(dev))
		return;

4359 4360
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4361
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4362
	else if (IS_GEN7(dev))
4363
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4364 4365
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4366 4367
	else
		BUG();
4368
}
D
Daniel Vetter 已提交
4369

4370 4371
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4372
	struct drm_i915_private *dev_priv = to_i915(dev);
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4397 4398 4399
int
i915_gem_init_hw(struct drm_device *dev)
{
4400
	struct drm_i915_private *dev_priv = to_i915(dev);
4401
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4402
	int ret;
4403

4404 4405 4406
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4407
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4408
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4409

4410 4411 4412
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4413

4414
	if (HAS_PCH_NOP(dev)) {
4415 4416 4417 4418 4419 4420 4421 4422 4423
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4424 4425
	}

4426 4427
	i915_gem_init_swizzling(dev);

4428 4429 4430 4431 4432 4433 4434 4435
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4436
	BUG_ON(!dev_priv->kernel_context);
4437

4438 4439 4440 4441 4442 4443 4444
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4445
	for_each_engine(engine, dev_priv) {
4446
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4447
		if (ret)
4448
			goto out;
D
Daniel Vetter 已提交
4449
	}
4450

4451 4452
	intel_mocs_init_l3cc_table(dev);

4453
	/* We can't enable contexts until all firmware is loaded */
4454 4455 4456
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4457

4458 4459
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4460
	return ret;
4461 4462
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4484 4485
int i915_gem_init(struct drm_device *dev)
{
4486
	struct drm_i915_private *dev_priv = to_i915(dev);
4487 4488 4489
	int ret;

	mutex_lock(&dev->struct_mutex);
4490

4491
	if (!i915.enable_execlists) {
4492
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4493
	} else {
4494
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4495 4496
	}

4497 4498 4499 4500 4501 4502 4503 4504
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4505
	i915_gem_init_userptr(dev_priv);
4506 4507 4508 4509

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4510

4511
	ret = i915_gem_context_init(dev);
4512 4513
	if (ret)
		goto out_unlock;
4514

4515
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4516
	if (ret)
4517
		goto out_unlock;
4518

4519
	ret = i915_gem_init_hw(dev);
4520
	if (ret == -EIO) {
4521
		/* Allow engine initialisation to fail by marking the GPU as
4522 4523 4524 4525
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4526
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4527
		ret = 0;
4528
	}
4529 4530

out_unlock:
4531
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4532
	mutex_unlock(&dev->struct_mutex);
4533

4534
	return ret;
4535 4536
}

4537
void
4538
i915_gem_cleanup_engines(struct drm_device *dev)
4539
{
4540
	struct drm_i915_private *dev_priv = to_i915(dev);
4541
	struct intel_engine_cs *engine;
4542

4543
	for_each_engine(engine, dev_priv)
4544
		dev_priv->gt.cleanup_engine(engine);
4545 4546
}

4547
static void
4548
init_engine_lists(struct intel_engine_cs *engine)
4549
{
4550
	INIT_LIST_HEAD(&engine->request_list);
4551 4552
}

4553 4554 4555
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4556
	struct drm_device *dev = &dev_priv->drm;
4557
	int i;
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4568
	if (intel_vgpu_active(dev_priv))
4569 4570 4571 4572
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4573 4574 4575 4576 4577 4578 4579
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4580 4581 4582 4583 4584
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4585
void
4586
i915_gem_load_init(struct drm_device *dev)
4587
{
4588
	struct drm_i915_private *dev_priv = to_i915(dev);
4589 4590
	int i;

4591
	dev_priv->objects =
4592 4593 4594 4595
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4596 4597 4598 4599 4600
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4601 4602 4603
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4604 4605 4606
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4607
				  NULL);
4608

4609
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4610 4611
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4612
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4613 4614
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4615
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4616
			  i915_gem_retire_work_handler);
4617
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4618
			  i915_gem_idle_work_handler);
4619
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4620
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4621

4622 4623
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4624
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4625

4626 4627
	dev_priv->mm.interruptible = true;

4628
	spin_lock_init(&dev_priv->fb_tracking.lock);
4629
}
4630

4631 4632 4633 4634 4635 4636 4637
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4638 4639 4640

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4641 4642
}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4671
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4672
{
4673
	struct drm_i915_file_private *file_priv = file->driver_priv;
4674
	struct drm_i915_gem_request *request;
4675 4676 4677 4678 4679

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4680
	spin_lock(&file_priv->mm.lock);
4681
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4682
		request->file_priv = NULL;
4683
	spin_unlock(&file_priv->mm.lock);
4684

4685
	if (!list_empty(&file_priv->rps.link)) {
4686
		spin_lock(&to_i915(dev)->rps.client_lock);
4687
		list_del(&file_priv->rps.link);
4688
		spin_unlock(&to_i915(dev)->rps.client_lock);
4689
	}
4690 4691 4692 4693 4694
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4695
	int ret;
4696 4697 4698 4699 4700 4701 4702 4703

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4704
	file_priv->dev_priv = to_i915(dev);
4705
	file_priv->file = file;
4706
	INIT_LIST_HEAD(&file_priv->rps.link);
4707 4708 4709 4710

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4711
	file_priv->bsd_engine = -1;
4712

4713 4714 4715
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4716

4717
	return ret;
4718 4719
}

4720 4721
/**
 * i915_gem_track_fb - update frontbuffer tracking
4722 4723 4724
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4725 4726 4727 4728
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4729 4730 4731 4732
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4733 4734 4735 4736 4737 4738 4739 4740 4741
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4742
	if (old) {
4743 4744
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4745 4746 4747
	}

	if (new) {
4748 4749
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4750 4751 4752
	}
}

4753 4754 4755 4756 4757 4758 4759
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4760
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4761 4762 4763 4764 4765 4766 4767
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4778
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4779
	if (IS_ERR(obj))
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4793
	obj->dirty = 1;		/* Backing store is now out of date */
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4805
	i915_gem_object_put(obj);
4806 4807
	return ERR_PTR(ret);
}