i915_gem.c 135.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007
			if (i915_gem_clflush_object(obj, obj->pin_display))
1008
				needs_clflush_after = true;
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014 1015
	else
		obj->cache_dirty = true;
1016

1017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018
	return ret;
1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028
		      struct drm_file *file)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_i915_gem_pwrite *args = data;
1032
	struct drm_i915_gem_object *obj;
1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1039
		       to_user_ptr(args->data_ptr),
1040 1041 1042
		       args->size))
		return -EFAULT;

1043
	if (likely(!i915.prefault_disable)) {
1044 1045 1046 1047 1048
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1049

1050 1051
	intel_runtime_pm_get(dev_priv);

1052
	ret = i915_mutex_lock_interruptible(dev);
1053
	if (ret)
1054
		goto put_rpm;
1055

1056
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057
	if (&obj->base == NULL) {
1058 1059
		ret = -ENOENT;
		goto unlock;
1060
	}
1061

1062
	/* Bounds check destination. */
1063 1064
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1077 1078
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1079
	ret = -EFAULT;
1080 1081 1082 1083 1084 1085
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1086 1087 1088
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1089
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1090 1091 1092
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1093
	}
1094

1095 1096 1097 1098 1099 1100
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1101

1102
out:
1103
	drm_gem_object_unreference(&obj->base);
1104
unlock:
1105
	mutex_unlock(&dev->struct_mutex);
1106 1107 1108
put_rpm:
	intel_runtime_pm_put(dev_priv);

1109 1110 1111
	return ret;
}

1112
int
1113
i915_gem_check_wedge(struct i915_gpu_error *error,
1114 1115
		     bool interruptible)
{
1116
	if (i915_reset_in_progress(error)) {
1117 1118 1119 1120 1121
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1122 1123
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1124 1125
			return -EIO;

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1133 1134 1135 1136 1137
	}

	return 0;
}

1138 1139 1140 1141 1142 1143
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1144
		       struct intel_engine_cs *ring)
1145 1146 1147 1148
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1181
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182
{
1183
	unsigned long timeout;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1195

1196
	if (req->ring->irq_refcount)
1197 1198
		return -EBUSY;

1199 1200 1201 1202
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1203
	timeout = local_clock_us(&cpu) + 5;
1204
	while (!need_resched()) {
D
Daniel Vetter 已提交
1205
		if (i915_gem_request_completed(req, true))
1206 1207
			return 0;

1208 1209 1210
		if (signal_pending_state(state, current))
			break;

1211
		if (busywait_stop(timeout, cpu))
1212
			break;
1213

1214 1215
		cpu_relax_lowlatency();
	}
1216

D
Daniel Vetter 已提交
1217
	if (i915_gem_request_completed(req, false))
1218 1219 1220
		return 0;

	return -EAGAIN;
1221 1222
}

1223
/**
1224 1225 1226
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1227 1228 1229
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1230 1231 1232 1233 1234 1235 1236
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1237
 * Returns 0 if the request was found within the alloted time. Else returns the
1238 1239
 * errno with remaining time filled in timeout argument.
 */
1240
int __i915_wait_request(struct drm_i915_gem_request *req,
1241
			unsigned reset_counter,
1242
			bool interruptible,
1243
			s64 *timeout,
1244
			struct intel_rps_client *rps)
1245
{
1246
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247
	struct drm_device *dev = ring->dev;
1248
	struct drm_i915_private *dev_priv = dev->dev_private;
1249 1250
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252
	DEFINE_WAIT(wait);
1253
	unsigned long timeout_expire;
1254
	s64 before, now;
1255 1256
	int ret;

1257
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258

1259 1260 1261
	if (list_empty(&req->list))
		return 0;

1262
	if (i915_gem_request_completed(req, true))
1263 1264
		return 0;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
	}
1275

1276
	if (INTEL_INFO(dev_priv)->gen >= 6)
1277
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278

1279
	/* Record current time in case interrupted by signal, or wedged */
1280
	trace_i915_gem_request_wait_begin(req);
1281
	before = ktime_get_raw_ns();
1282 1283

	/* Optimistic spin for the next jiffie before touching IRQs */
1284
	ret = __i915_spin_request(req, state);
1285 1286 1287 1288 1289 1290 1291 1292
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1293 1294
	for (;;) {
		struct timer_list timer;
1295

1296
		prepare_to_wait(&ring->irq_queue, &wait, state);
1297

1298 1299
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1300 1301 1302 1303 1304 1305 1306 1307
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1308

1309
		if (i915_gem_request_completed(req, false)) {
1310 1311 1312
			ret = 0;
			break;
		}
1313

1314
		if (signal_pending_state(state, current)) {
1315 1316 1317 1318
			ret = -ERESTARTSYS;
			break;
		}

1319
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 1321 1322 1323 1324 1325
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1326 1327
			unsigned long expire;

1328
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 1331 1332
			mod_timer(&timer, expire);
		}

1333
		io_schedule();
1334 1335 1336 1337 1338 1339

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1340 1341
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1342 1343

	finish_wait(&ring->irq_queue, &wait);
1344

1345 1346 1347 1348
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1349
	if (timeout) {
1350 1351 1352
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1363 1364
	}

1365
	return ret;
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1407 1408 1409

	put_pid(request->pid);
	request->pid = NULL;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1453
/**
1454
 * Waits for a request to be signaled, and cleans up the
1455 1456 1457
 * request and object lists appropriately for that event.
 */
int
1458
i915_wait_request(struct drm_i915_gem_request *req)
1459
{
1460 1461 1462
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1463 1464
	int ret;

1465 1466 1467 1468 1469 1470
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1471 1472
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1473
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 1475 1476
	if (ret)
		return ret;

1477 1478
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1479
				  interruptible, NULL, NULL);
1480 1481
	if (ret)
		return ret;
1482

1483
	__i915_gem_request_retire__upto(req);
1484 1485 1486
	return 0;
}

1487 1488 1489 1490
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1491
int
1492 1493 1494
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1495
	int ret, i;
1496

1497
	if (!obj->active)
1498 1499
		return 0;

1500 1501 1502 1503 1504
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1541 1542
}

1543 1544 1545 1546 1547
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548
					    struct intel_rps_client *rps,
1549 1550 1551 1552
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1553
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554
	unsigned reset_counter;
1555
	int ret, i, n = 0;
1556 1557 1558 1559

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1560
	if (!obj->active)
1561 1562
		return 0;

1563
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 1565 1566
	if (ret)
		return ret;

1567
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1589
	mutex_unlock(&dev->struct_mutex);
1590 1591
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1592
					  NULL, rps);
1593 1594
	mutex_lock(&dev->struct_mutex);

1595 1596 1597 1598 1599 1600 1601
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1602 1603
}

1604 1605 1606 1607 1608 1609
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1610
/**
1611 1612
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1613 1614 1615
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616
			  struct drm_file *file)
1617 1618
{
	struct drm_i915_gem_set_domain *args = data;
1619
	struct drm_i915_gem_object *obj;
1620 1621
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1622 1623
	int ret;

1624
	/* Only handle setting domains to types used by the CPU. */
1625
	if (write_domain & I915_GEM_GPU_DOMAINS)
1626 1627
		return -EINVAL;

1628
	if (read_domains & I915_GEM_GPU_DOMAINS)
1629 1630 1631 1632 1633 1634 1635 1636
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1637
	ret = i915_mutex_lock_interruptible(dev);
1638
	if (ret)
1639
		return ret;
1640

1641
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642
	if (&obj->base == NULL) {
1643 1644
		ret = -ENOENT;
		goto unlock;
1645
	}
1646

1647 1648 1649 1650
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1651
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652
							  to_rps_client(file),
1653
							  !write_domain);
1654 1655 1656
	if (ret)
		goto unref;

1657
	if (read_domains & I915_GEM_DOMAIN_GTT)
1658
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659
	else
1660
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661

1662 1663 1664 1665 1666
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1667
unref:
1668
	drm_gem_object_unreference(&obj->base);
1669
unlock:
1670 1671 1672 1673 1674 1675 1676 1677 1678
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679
			 struct drm_file *file)
1680 1681
{
	struct drm_i915_gem_sw_finish *args = data;
1682
	struct drm_i915_gem_object *obj;
1683 1684
	int ret = 0;

1685
	ret = i915_mutex_lock_interruptible(dev);
1686
	if (ret)
1687
		return ret;
1688

1689
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690
	if (&obj->base == NULL) {
1691 1692
		ret = -ENOENT;
		goto unlock;
1693 1694 1695
	}

	/* Pinned buffers may be scanout, so flush the cache */
1696
	if (obj->pin_display)
1697
		i915_gem_object_flush_cpu_write_domain(obj);
1698

1699
	drm_gem_object_unreference(&obj->base);
1700
unlock:
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1721 1722 1723
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724
		    struct drm_file *file)
1725 1726 1727 1728 1729
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1730 1731 1732 1733 1734 1735
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1736
	obj = drm_gem_object_lookup(dev, file, args->handle);
1737
	if (obj == NULL)
1738
		return -ENOENT;
1739

1740 1741 1742 1743 1744 1745 1746 1747
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1748
	addr = vm_mmap(obj->filp, 0, args->size,
1749 1750
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1764
	drm_gem_object_unreference_unlocked(obj);
1765 1766 1767 1768 1769 1770 1771 1772
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1773 1774
/**
 * i915_gem_fault - fault a page into the GTT
1775 1776
 * @vma: VMA in question
 * @vmf: fault info
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1791 1792
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1793
	struct drm_i915_private *dev_priv = dev->dev_private;
1794
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 1796 1797
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1798
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799

1800 1801
	intel_runtime_pm_get(dev_priv);

1802 1803 1804 1805
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1806 1807 1808
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812 1813 1814 1815 1816 1817 1818 1819 1820
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1821 1822
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823
		ret = -EFAULT;
1824 1825 1826
		goto unlock;
	}

1827
	/* Use a partial view if the object is bigger than the aperture. */
1828 1829
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1830
		static const unsigned int chunk_size = 256; // 1 MiB
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 1845
	if (ret)
		goto unlock;
1846

1847 1848 1849
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1850

1851
	ret = i915_gem_object_get_fence(obj);
1852
	if (ret)
1853
		goto unpin;
1854

1855
	/* Finally, remap it using the new GTT offset */
1856 1857
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1858
	pfn >>= PAGE_SHIFT;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1869

1870 1871
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 1873 1874 1875 1876
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1898
unpin:
1899
	i915_gem_object_ggtt_unpin_view(obj, &view);
1900
unlock:
1901
	mutex_unlock(&dev->struct_mutex);
1902
out:
1903
	switch (ret) {
1904
	case -EIO:
1905 1906 1907 1908 1909 1910 1911
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 1913 1914
			ret = VM_FAULT_SIGBUS;
			break;
		}
1915
	case -EAGAIN:
D
Daniel Vetter 已提交
1916 1917 1918 1919
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1920
		 */
1921 1922
	case 0:
	case -ERESTARTSYS:
1923
	case -EINTR:
1924 1925 1926 1927 1928
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1929 1930
		ret = VM_FAULT_NOPAGE;
		break;
1931
	case -ENOMEM:
1932 1933
		ret = VM_FAULT_OOM;
		break;
1934
	case -ENOSPC:
1935
	case -EFAULT:
1936 1937
		ret = VM_FAULT_SIGBUS;
		break;
1938
	default:
1939
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 1941
		ret = VM_FAULT_SIGBUS;
		break;
1942
	}
1943 1944 1945

	intel_runtime_pm_put(dev_priv);
	return ret;
1946 1947
}

1948 1949 1950 1951
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1952
 * Preserve the reservation of the mmapping with the DRM core code, but
1953 1954 1955 1956 1957 1958 1959 1960 1961
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1962
void
1963
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964
{
1965 1966
	if (!obj->fault_mappable)
		return;
1967

1968 1969
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1970
	obj->fault_mappable = false;
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980 1981
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1982
uint32_t
1983
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984
{
1985
	uint32_t gtt_size;
1986 1987

	if (INTEL_INFO(dev)->gen >= 4 ||
1988 1989
	    tiling_mode == I915_TILING_NONE)
		return size;
1990 1991 1992

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1993
		gtt_size = 1024*1024;
1994
	else
1995
		gtt_size = 512*1024;
1996

1997 1998
	while (gtt_size < size)
		gtt_size <<= 1;
1999

2000
	return gtt_size;
2001 2002
}

2003 2004 2005 2006 2007
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2008
 * potential fence register mapping.
2009
 */
2010 2011 2012
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2013 2014 2015 2016 2017
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2018
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019
	    tiling_mode == I915_TILING_NONE)
2020 2021
		return 4096;

2022 2023 2024 2025
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2026
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 2028
}

2029 2030 2031 2032 2033
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2034
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 2036
		return 0;

2037 2038
	dev_priv->mm.shrinker_no_lock_stealing = true;

2039 2040
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2041
		goto out;
2042 2043 2044 2045 2046 2047 2048 2049

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2050 2051 2052 2053 2054
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2055 2056
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2057
		goto out;
2058 2059

	i915_gem_shrink_all(dev_priv);
2060 2061 2062 2063 2064
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2065 2066 2067 2068 2069 2070 2071
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2072
int
2073 2074
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2075
		  uint32_t handle,
2076
		  uint64_t *offset)
2077
{
2078
	struct drm_i915_gem_object *obj;
2079 2080
	int ret;

2081
	ret = i915_mutex_lock_interruptible(dev);
2082
	if (ret)
2083
		return ret;
2084

2085
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086
	if (&obj->base == NULL) {
2087 2088 2089
		ret = -ENOENT;
		goto unlock;
	}
2090

2091
	if (obj->madv != I915_MADV_WILLNEED) {
2092
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093
		ret = -EFAULT;
2094
		goto out;
2095 2096
	}

2097 2098 2099
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2100

2101
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102

2103
out:
2104
	drm_gem_object_unreference(&obj->base);
2105
unlock:
2106
	mutex_unlock(&dev->struct_mutex);
2107
	return ret;
2108 2109
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2131
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 2133
}

D
Daniel Vetter 已提交
2134 2135 2136
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137
{
2138
	i915_gem_object_free_mmap_offset(obj);
2139

2140 2141
	if (obj->base.filp == NULL)
		return;
2142

D
Daniel Vetter 已提交
2143 2144 2145 2146 2147
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2148
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2149 2150
	obj->madv = __I915_MADV_PURGED;
}
2151

2152 2153 2154
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2155
{
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 2171
}

2172
static void
2173
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174
{
2175 2176
	struct sg_page_iter sg_iter;
	int ret;
2177

2178
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2179

C
Chris Wilson 已提交
2180 2181 2182 2183 2184 2185
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2186
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2187 2188 2189
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2190 2191
	i915_gem_gtt_finish_object(obj);

2192
	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 2194
		i915_gem_object_save_bit_17_swizzle(obj);

2195 2196
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2197

2198
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199
		struct page *page = sg_page_iter_page(&sg_iter);
2200

2201
		if (obj->dirty)
2202
			set_page_dirty(page);
2203

2204
		if (obj->madv == I915_MADV_WILLNEED)
2205
			mark_page_accessed(page);
2206

2207
		page_cache_release(page);
2208
	}
2209
	obj->dirty = 0;
2210

2211 2212
	sg_free_table(obj->pages);
	kfree(obj->pages);
2213
}
C
Chris Wilson 已提交
2214

2215
int
2216 2217 2218 2219
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2220
	if (obj->pages == NULL)
2221 2222
		return 0;

2223 2224 2225
	if (obj->pages_pin_count)
		return -EBUSY;

2226
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2227

2228 2229 2230
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2231
	list_del(&obj->global_list);
2232

2233
	ops->put_pages(obj);
2234
	obj->pages = NULL;
2235

2236
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2237 2238 2239 2240

	return 0;
}

2241
static int
C
Chris Wilson 已提交
2242
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243
{
C
Chris Wilson 已提交
2244
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 2246
	int page_count, i;
	struct address_space *mapping;
2247 2248
	struct sg_table *st;
	struct scatterlist *sg;
2249
	struct sg_page_iter sg_iter;
2250
	struct page *page;
2251
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2252
	int ret;
C
Chris Wilson 已提交
2253
	gfp_t gfp;
2254

C
Chris Wilson 已提交
2255 2256 2257 2258 2259 2260 2261
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2262 2263 2264 2265
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2266
	page_count = obj->base.size / PAGE_SIZE;
2267 2268
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2269
		return -ENOMEM;
2270
	}
2271

2272 2273 2274 2275 2276
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2277
	mapping = file_inode(obj->base.filp)->i_mapping;
2278
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 2281 2282
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2283 2284
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2285 2286 2287 2288 2289
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2290 2291 2292 2293 2294 2295 2296 2297
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2298
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2299 2300
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2301
				goto err_pages;
I
Imre Deak 已提交
2302
			}
C
Chris Wilson 已提交
2303
		}
2304 2305 2306 2307 2308 2309 2310 2311
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2312 2313 2314 2315 2316 2317 2318 2319 2320
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2321 2322 2323

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324
	}
2325 2326 2327 2328
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2329 2330
	obj->pages = st;

I
Imre Deak 已提交
2331 2332 2333 2334
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2335
	if (i915_gem_object_needs_bit17_swizzle(obj))
2336 2337
		i915_gem_object_do_bit_17_swizzle(obj);

2338 2339 2340 2341
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2342 2343 2344
	return 0;

err_pages:
2345 2346
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347
		page_cache_release(sg_page_iter_page(&sg_iter));
2348 2349
	sg_free_table(st);
	kfree(st);
2350 2351 2352 2353 2354 2355 2356 2357 2358

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2359 2360 2361 2362
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2379
	if (obj->pages)
2380 2381
		return 0;

2382
	if (obj->madv != I915_MADV_WILLNEED) {
2383
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384
		return -EFAULT;
2385 2386
	}

2387 2388
	BUG_ON(obj->pages_pin_count);

2389 2390 2391 2392
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2393
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394 2395 2396 2397

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2398
	return 0;
2399 2400
}

2401
void i915_vma_move_to_active(struct i915_vma *vma,
2402
			     struct drm_i915_gem_request *req)
2403
{
2404
	struct drm_i915_gem_object *obj = vma->obj;
2405 2406 2407
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2408 2409

	/* Add a reference if we're newly entering the active list. */
2410
	if (obj->active == 0)
2411
		drm_gem_object_reference(&obj->base);
2412
	obj->active |= intel_ring_flag(ring);
2413

2414
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416

2417
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 2419
}

2420 2421
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2422
{
2423 2424 2425 2426
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2427
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2428 2429
}

2430
static void
2431
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432
{
2433
	struct i915_vma *vma;
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2447

2448 2449 2450 2451 2452 2453 2454
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2455 2456 2457
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458
	}
2459

2460
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461
	drm_gem_object_unreference(&obj->base);
2462 2463
}

2464
static int
2465
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466
{
2467
	struct drm_i915_private *dev_priv = dev->dev_private;
2468
	struct intel_engine_cs *ring;
2469
	int ret, i, j;
2470

2471
	/* Carefully retire all requests without writing to the rings */
2472
	for_each_ring(ring, dev_priv, i) {
2473 2474 2475
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2476 2477
	}
	i915_gem_retire_requests(dev);
2478 2479

	/* Finally reset hw state */
2480
	for_each_ring(ring, dev_priv, i) {
2481
		intel_ring_init_seqno(ring, seqno);
2482

2483 2484
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2485
	}
2486

2487
	return 0;
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2516 2517
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518
{
2519 2520 2521 2522
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2523
		int ret = i915_gem_init_seqno(dev, 0);
2524 2525
		if (ret)
			return ret;
2526

2527 2528
		dev_priv->next_seqno = 1;
	}
2529

2530
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531
	return 0;
2532 2533
}

2534 2535 2536 2537 2538
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2539
void __i915_add_request(struct drm_i915_gem_request *request,
2540 2541
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2542
{
2543 2544
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2545
	struct intel_ringbuffer *ringbuf;
2546
	u32 request_start;
2547 2548
	int ret;

2549
	if (WARN_ON(request == NULL))
2550
		return;
2551

2552 2553 2554 2555
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2556 2557 2558 2559 2560 2561 2562
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2563
	request_start = intel_ring_get_tail(ringbuf);
2564 2565 2566 2567 2568 2569 2570
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2571 2572
	if (flush_caches) {
		if (i915.enable_execlists)
2573
			ret = logical_ring_flush_all_caches(request);
2574
		else
2575
			ret = intel_ring_flush_all_caches(request);
2576 2577 2578
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2579

2580 2581 2582 2583 2584
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2585
	request->postfix = intel_ring_get_tail(ringbuf);
2586

2587
	if (i915.enable_execlists)
2588
		ret = ring->emit_request(request);
2589
	else {
2590
		ret = ring->add_request(request);
2591 2592

		request->tail = intel_ring_get_tail(ringbuf);
2593
	}
2594 2595
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2596

2597 2598 2599 2600 2601 2602 2603 2604
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2605
	request->batch_obj = obj;
2606

2607
	request->emitted_jiffies = jiffies;
2608
	request->previous_seqno = ring->last_submitted_seqno;
2609
	ring->last_submitted_seqno = request->seqno;
2610
	list_add_tail(&request->list, &ring->request_list);
2611

2612
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2613

2614
	i915_queue_hangcheck(ring->dev);
2615

2616 2617 2618 2619
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2620

2621 2622
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2623 2624
}

2625
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626
				   const struct intel_context *ctx)
2627
{
2628
	unsigned long elapsed;
2629

2630 2631 2632
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2633 2634
		return true;

2635 2636
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2637
		if (!i915_gem_context_is_default(ctx)) {
2638
			DRM_DEBUG("context hanging too fast, banning!\n");
2639
			return true;
2640 2641 2642
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2643
			return true;
2644
		}
2645 2646 2647 2648 2649
	}

	return false;
}

2650
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651
				  struct intel_context *ctx,
2652
				  const bool guilty)
2653
{
2654 2655 2656 2657
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2658

2659 2660 2661
	hs = &ctx->hang_stats;

	if (guilty) {
2662
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 2664 2665 2666
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2667 2668 2669
	}
}

2670 2671 2672 2673 2674 2675
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2676 2677 2678
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2679 2680
	if (ctx) {
		if (i915.enable_execlists) {
2681 2682
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2683
		}
2684

2685 2686
		i915_gem_context_unreference(ctx);
	}
2687

2688
	kmem_cache_free(req->i915->requests, req);
2689 2690
}

2691
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692 2693
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2694
{
2695
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2696
	struct drm_i915_gem_request *req;
2697 2698
	int ret;

2699 2700 2701
	if (!req_out)
		return -EINVAL;

2702
	*req_out = NULL;
2703

D
Daniel Vetter 已提交
2704 2705
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2706 2707
		return -ENOMEM;

D
Daniel Vetter 已提交
2708
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709 2710
	if (ret)
		goto err;
2711

2712 2713
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2714
	req->ring = ring;
2715 2716
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2717 2718

	if (i915.enable_execlists)
2719
		ret = intel_logical_ring_alloc_request_extras(req);
2720
	else
D
Daniel Vetter 已提交
2721
		ret = intel_ring_alloc_request_extras(req);
2722 2723
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2724
		goto err;
2725
	}
2726

2727 2728 2729 2730 2731 2732 2733
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2747

2748
	*req_out = req;
2749
	return 0;
2750 2751 2752 2753

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2754 2755
}

2756 2757 2758 2759 2760 2761 2762
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2763
struct drm_i915_gem_request *
2764
i915_gem_find_active_request(struct intel_engine_cs *ring)
2765
{
2766 2767 2768
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2769
		if (i915_gem_request_completed(request, false))
2770
			continue;
2771

2772
		return request;
2773
	}
2774 2775 2776 2777 2778

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779
				       struct intel_engine_cs *ring)
2780 2781 2782 2783
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2784
	request = i915_gem_find_active_request(ring);
2785 2786 2787 2788 2789 2790

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2791
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792 2793

	list_for_each_entry_continue(request, &ring->request_list, list)
2794
		i915_set_reset_status(dev_priv, request->ctx, false);
2795
}
2796

2797
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798
					struct intel_engine_cs *ring)
2799
{
2800 2801
	struct intel_ringbuffer *buffer;

2802
	while (!list_empty(&ring->active_list)) {
2803
		struct drm_i915_gem_object *obj;
2804

2805 2806
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2807
				       ring_list[ring->id]);
2808

2809
		i915_gem_object_retire__read(obj, ring->id);
2810
	}
2811

2812 2813 2814 2815 2816 2817
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2818 2819
	if (i915.enable_execlists) {
		spin_lock_irq(&ring->execlist_lock);
2820

2821 2822 2823
		/* list_splice_tail_init checks for empty lists */
		list_splice_tail_init(&ring->execlist_queue,
				      &ring->execlist_retired_req_list);
2824

2825
		spin_unlock_irq(&ring->execlist_lock);
2826
		intel_execlists_retire_requests(ring);
2827 2828
	}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2843
		i915_gem_request_retire(request);
2844
	}
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
	list_for_each_entry(buffer, &ring->buffers, link) {
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2857 2858
}

2859
void i915_gem_reset(struct drm_device *dev)
2860
{
2861
	struct drm_i915_private *dev_priv = dev->dev_private;
2862
	struct intel_engine_cs *ring;
2863
	int i;
2864

2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2873
	for_each_ring(ring, dev_priv, i)
2874
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2875

2876 2877
	i915_gem_context_reset(dev);

2878
	i915_gem_restore_fences(dev);
2879 2880

	WARN_ON(i915_verify_lists(dev));
2881 2882 2883 2884 2885
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2886
void
2887
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2888
{
C
Chris Wilson 已提交
2889
	WARN_ON(i915_verify_lists(ring->dev));
2890

2891 2892 2893 2894
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2895
	 */
2896
	while (!list_empty(&ring->request_list)) {
2897 2898
		struct drm_i915_gem_request *request;

2899
		request = list_first_entry(&ring->request_list,
2900 2901 2902
					   struct drm_i915_gem_request,
					   list);

2903
		if (!i915_gem_request_completed(request, true))
2904 2905
			break;

2906
		i915_gem_request_retire(request);
2907
	}
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2918
				      ring_list[ring->id]);
2919

2920
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2921 2922
			break;

2923
		i915_gem_object_retire__read(obj, ring->id);
2924 2925
	}

2926 2927
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2928
		ring->irq_put(ring);
2929
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2930
	}
2931

C
Chris Wilson 已提交
2932
	WARN_ON(i915_verify_lists(ring->dev));
2933 2934
}

2935
bool
2936 2937
i915_gem_retire_requests(struct drm_device *dev)
{
2938
	struct drm_i915_private *dev_priv = dev->dev_private;
2939
	struct intel_engine_cs *ring;
2940
	bool idle = true;
2941
	int i;
2942

2943
	for_each_ring(ring, dev_priv, i) {
2944
		i915_gem_retire_requests_ring(ring);
2945
		idle &= list_empty(&ring->request_list);
2946 2947 2948 2949 2950 2951 2952 2953 2954
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2955 2956 2957 2958 2959 2960 2961 2962
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2963 2964
}

2965
static void
2966 2967
i915_gem_retire_work_handler(struct work_struct *work)
{
2968 2969 2970
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2971
	bool idle;
2972

2973
	/* Come back later if the device is busy... */
2974 2975 2976 2977
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2978
	}
2979
	if (!idle)
2980 2981
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2982
}
2983

2984 2985 2986 2987 2988
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2989
	struct drm_device *dev = dev_priv->dev;
2990 2991
	struct intel_engine_cs *ring;
	int i;
2992

2993 2994 2995
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2996 2997 2998 2999 3000 3001 3002 3003 3004

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
3005

3006 3007
		mutex_unlock(&dev->struct_mutex);
	}
3008 3009
}

3010 3011 3012 3013 3014 3015 3016 3017
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3018
	int i;
3019 3020 3021

	if (!obj->active)
		return 0;
3022

3023 3024
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3038 3039 3040 3041 3042
	}

	return 0;
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3068
	struct drm_i915_private *dev_priv = dev->dev_private;
3069 3070
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3071
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3072
	unsigned reset_counter;
3073 3074
	int i, n = 0;
	int ret;
3075

3076 3077 3078
	if (args->flags != 0)
		return -EINVAL;

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3089 3090
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3091 3092 3093
	if (ret)
		goto out;

3094
	if (!obj->active)
3095
		goto out;
3096 3097

	/* Do this after OLR check to make sure we make forward progress polling
3098
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3099
	 */
3100
	if (args->timeout_ns == 0) {
3101 3102 3103 3104 3105
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3106
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3107 3108 3109 3110 3111 3112 3113 3114

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3115 3116
	mutex_unlock(&dev->struct_mutex);

3117 3118 3119 3120
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3121
						  to_rps_client(file));
3122 3123
		i915_gem_request_unreference__unlocked(req[i]);
	}
3124
	return ret;
3125 3126 3127 3128 3129 3130 3131

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3132 3133 3134
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3135 3136
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3137 3138 3139 3140
{
	struct intel_engine_cs *from;
	int ret;

3141
	from = i915_gem_request_get_ring(from_req);
3142 3143 3144
	if (to == from)
		return 0;

3145
	if (i915_gem_request_completed(from_req, true))
3146 3147 3148
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3149
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3150
		ret = __i915_wait_request(from_req,
3151 3152 3153 3154
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3155 3156 3157
		if (ret)
			return ret;

3158
		i915_gem_object_retire_request(obj, from_req);
3159 3160
	} else {
		int idx = intel_ring_sync_index(from, to);
3161 3162 3163
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3164 3165 3166 3167

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3168 3169 3170 3171 3172 3173
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3174 3175
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3190 3191 3192 3193 3194
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3195 3196 3197
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3198 3199 3200
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3201
 * rather than a particular GPU ring. Conceptually we serialise writes
3202
 * between engines inside the GPU. We only allow one engine to write
3203 3204 3205 3206 3207 3208 3209 3210 3211
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3212
 *
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3223 3224
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3225 3226
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3227 3228
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3229
{
3230 3231 3232
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3233

3234
	if (!obj->active)
3235 3236
		return 0;

3237 3238
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3239

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3250
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3251 3252 3253
		if (ret)
			return ret;
	}
3254

3255
	return 0;
3256 3257
}

3258 3259 3260 3261 3262 3263 3264
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3265 3266 3267
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3268 3269 3270
	/* Wait for any direct GTT access to complete */
	mb();

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3282
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3283
{
3284
	struct drm_i915_gem_object *obj = vma->obj;
3285
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3286
	int ret;
3287

3288
	if (list_empty(&vma->vma_link))
3289 3290
		return 0;

3291 3292 3293 3294
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3295

B
Ben Widawsky 已提交
3296
	if (vma->pin_count)
3297
		return -EBUSY;
3298

3299 3300
	BUG_ON(obj->pages == NULL);

3301 3302 3303 3304 3305
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3306

3307 3308
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3309
		i915_gem_object_finish_gtt(obj);
3310

3311 3312 3313 3314 3315
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3316

3317
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3318

3319
	vma->vm->unbind_vma(vma);
3320
	vma->bound = 0;
3321

3322
	list_del_init(&vma->mm_list);
3323 3324 3325 3326 3327 3328 3329
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3330
		vma->ggtt_view.pages = NULL;
3331
	}
3332

B
Ben Widawsky 已提交
3333 3334 3335 3336
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3337
	 * no more VMAs exist. */
I
Imre Deak 已提交
3338
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3339
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3340

3341 3342 3343 3344 3345 3346
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3347
	return 0;
3348 3349
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3360
int i915_gpu_idle(struct drm_device *dev)
3361
{
3362
	struct drm_i915_private *dev_priv = dev->dev_private;
3363
	struct intel_engine_cs *ring;
3364
	int ret, i;
3365 3366

	/* Flush everything onto the inactive list. */
3367
	for_each_ring(ring, dev_priv, i) {
3368
		if (!i915.enable_execlists) {
3369 3370 3371
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3372 3373
			if (ret)
				return ret;
3374

3375
			ret = i915_switch_context(req);
3376 3377 3378 3379 3380
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3381
			i915_add_request_no_flush(req);
3382
		}
3383

3384
		ret = intel_ring_idle(ring);
3385 3386 3387
		if (ret)
			return ret;
	}
3388

3389
	WARN_ON(i915_verify_lists(dev));
3390
	return 0;
3391 3392
}

3393
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3394 3395
				     unsigned long cache_level)
{
3396
	struct drm_mm_node *gtt_space = &vma->node;
3397 3398
	struct drm_mm_node *other;

3399 3400 3401 3402 3403 3404
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3405
	 */
3406
	if (vma->vm->mm.color_adjust == NULL)
3407 3408
		return true;

3409
	if (!drm_mm_node_allocated(gtt_space))
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3426
/**
3427 3428
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3429
 */
3430
static struct i915_vma *
3431 3432
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3433
			   const struct i915_ggtt_view *ggtt_view,
3434
			   unsigned alignment,
3435
			   uint64_t flags)
3436
{
3437
	struct drm_device *dev = obj->base.dev;
3438
	struct drm_i915_private *dev_priv = dev->dev_private;
3439
	u32 fence_alignment, unfenced_alignment;
3440 3441
	u32 search_flag, alloc_flag;
	u64 start, end;
3442
	u64 size, fence_size;
B
Ben Widawsky 已提交
3443
	struct i915_vma *vma;
3444
	int ret;
3445

3446 3447 3448 3449 3450
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3481

3482 3483 3484 3485 3486 3487 3488
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
		end = min_t(u64, end, dev_priv->gtt.mappable_end);
	if (flags & PIN_ZONE_4G)
		end = min_t(u64, end, (1ULL << 32));

3489
	if (alignment == 0)
3490
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3491
						unfenced_alignment;
3492
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3493 3494 3495
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3496
		return ERR_PTR(-EINVAL);
3497 3498
	}

3499 3500 3501
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3502
	 */
3503
	if (size > end) {
3504
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3505 3506
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3507
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3508
			  end);
3509
		return ERR_PTR(-E2BIG);
3510 3511
	}

3512
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3513
	if (ret)
3514
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3515

3516 3517
	i915_gem_object_pin_pages(obj);

3518 3519 3520
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3521
	if (IS_ERR(vma))
3522
		goto err_unpin;
B
Ben Widawsky 已提交
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3542
	} else {
3543 3544 3545 3546 3547 3548 3549
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3550

3551
search_free:
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3565

3566 3567
			goto err_free_vma;
		}
3568
	}
3569
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3570
		ret = -EINVAL;
3571
		goto err_remove_node;
3572 3573
	}

3574
	trace_i915_vma_bind(vma, flags);
3575
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3576
	if (ret)
I
Imre Deak 已提交
3577
		goto err_remove_node;
3578

3579
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3580
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3581

3582
	return vma;
B
Ben Widawsky 已提交
3583

3584
err_remove_node:
3585
	drm_mm_remove_node(&vma->node);
3586
err_free_vma:
B
Ben Widawsky 已提交
3587
	i915_gem_vma_destroy(vma);
3588
	vma = ERR_PTR(ret);
3589
err_unpin:
B
Ben Widawsky 已提交
3590
	i915_gem_object_unpin_pages(obj);
3591
	return vma;
3592 3593
}

3594
bool
3595 3596
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3597 3598 3599 3600 3601
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3602
	if (obj->pages == NULL)
3603
		return false;
3604

3605 3606 3607 3608
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3609
	if (obj->stolen || obj->phys_handle)
3610
		return false;
3611

3612 3613 3614 3615 3616 3617 3618 3619
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3620 3621
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3622
		return false;
3623
	}
3624

C
Chris Wilson 已提交
3625
	trace_i915_gem_object_clflush(obj);
3626
	drm_clflush_sg(obj->pages);
3627
	obj->cache_dirty = false;
3628 3629

	return true;
3630 3631 3632 3633
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3634
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3635
{
C
Chris Wilson 已提交
3636 3637
	uint32_t old_write_domain;

3638
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3639 3640
		return;

3641
	/* No actual flushing is required for the GTT write domain.  Writes
3642 3643
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3644 3645 3646 3647
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3648
	 */
3649 3650
	wmb();

3651 3652
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3653

3654
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3655

C
Chris Wilson 已提交
3656
	trace_i915_gem_object_change_domain(obj,
3657
					    obj->base.read_domains,
C
Chris Wilson 已提交
3658
					    old_write_domain);
3659 3660 3661 3662
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3663
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3664
{
C
Chris Wilson 已提交
3665
	uint32_t old_write_domain;
3666

3667
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3668 3669
		return;

3670
	if (i915_gem_clflush_object(obj, obj->pin_display))
3671 3672
		i915_gem_chipset_flush(obj->base.dev);

3673 3674
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3675

3676
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3677

C
Chris Wilson 已提交
3678
	trace_i915_gem_object_change_domain(obj,
3679
					    obj->base.read_domains,
C
Chris Wilson 已提交
3680
					    old_write_domain);
3681 3682
}

3683 3684 3685 3686 3687 3688
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3689
int
3690
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3691
{
C
Chris Wilson 已提交
3692
	uint32_t old_write_domain, old_read_domains;
3693
	struct i915_vma *vma;
3694
	int ret;
3695

3696 3697 3698
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3699
	ret = i915_gem_object_wait_rendering(obj, !write);
3700 3701 3702
	if (ret)
		return ret;

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3715
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3716

3717 3718 3719 3720 3721 3722 3723
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3724 3725
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3726

3727 3728 3729
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3730 3731
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3732
	if (write) {
3733 3734 3735
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3736 3737
	}

C
Chris Wilson 已提交
3738 3739 3740 3741
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3742
	/* And bump the LRU for this access */
3743 3744
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3745
		list_move_tail(&vma->mm_list,
3746
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3747

3748 3749 3750
	return 0;
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3764 3765 3766
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3767
	struct drm_device *dev = obj->base.dev;
3768
	struct i915_vma *vma, *next;
3769
	bool bound = false;
3770
	int ret = 0;
3771 3772

	if (obj->cache_level == cache_level)
3773
		goto out;
3774

3775 3776 3777 3778 3779
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3780
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3781 3782 3783 3784 3785 3786 3787 3788
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3789
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3790
			ret = i915_vma_unbind(vma);
3791 3792
			if (ret)
				return ret;
3793 3794
		} else
			bound = true;
3795 3796
	}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3809
		ret = i915_gem_object_wait_rendering(obj, false);
3810 3811 3812
		if (ret)
			return ret;

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3830 3831 3832
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3833 3834 3835 3836 3837 3838 3839 3840
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3841 3842
		}

3843 3844 3845 3846 3847 3848 3849 3850
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3851 3852
	}

3853 3854 3855 3856
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3857
out:
3858 3859 3860 3861
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3862 3863 3864 3865 3866
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3867 3868 3869 3870 3871
	}

	return 0;
}

B
Ben Widawsky 已提交
3872 3873
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3874
{
B
Ben Widawsky 已提交
3875
	struct drm_i915_gem_caching *args = data;
3876 3877 3878
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3879 3880
	if (&obj->base == NULL)
		return -ENOENT;
3881

3882 3883 3884 3885 3886 3887
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3888 3889 3890 3891
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3892 3893 3894 3895
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3896

3897 3898
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3899 3900
}

B
Ben Widawsky 已提交
3901 3902
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3903
{
3904
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3905
	struct drm_i915_gem_caching *args = data;
3906 3907 3908 3909
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3910 3911
	switch (args->caching) {
	case I915_CACHING_NONE:
3912 3913
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3914
	case I915_CACHING_CACHED:
3915 3916 3917 3918 3919 3920
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3921
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3922 3923
			return -ENODEV;

3924 3925
		level = I915_CACHE_LLC;
		break;
3926 3927 3928
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3929 3930 3931 3932
	default:
		return -EINVAL;
	}

3933 3934
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3935 3936
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3937
		goto rpm_put;
B
Ben Widawsky 已提交
3938

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3950 3951 3952
rpm_put:
	intel_runtime_pm_put(dev_priv);

3953 3954 3955
	return ret;
}

3956
/*
3957 3958 3959
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3960 3961
 */
int
3962 3963
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3964
				     const struct i915_ggtt_view *view)
3965
{
3966
	u32 old_read_domains, old_write_domain;
3967 3968
	int ret;

3969 3970 3971
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3972
	obj->pin_display++;
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3983 3984
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3985
	if (ret)
3986
		goto err_unpin_display;
3987

3988 3989 3990 3991
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3992 3993 3994
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3995
	if (ret)
3996
		goto err_unpin_display;
3997

3998
	i915_gem_object_flush_cpu_write_domain(obj);
3999

4000
	old_write_domain = obj->base.write_domain;
4001
	old_read_domains = obj->base.read_domains;
4002 4003 4004 4005

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4006
	obj->base.write_domain = 0;
4007
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4008 4009 4010

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4011
					    old_write_domain);
4012 4013

	return 0;
4014 4015

err_unpin_display:
4016
	obj->pin_display--;
4017 4018 4019 4020
	return ret;
}

void
4021 4022
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4023
{
4024 4025 4026
	if (WARN_ON(obj->pin_display == 0))
		return;

4027 4028
	i915_gem_object_ggtt_unpin_view(obj, view);

4029
	obj->pin_display--;
4030 4031
}

4032 4033 4034 4035 4036 4037
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4038
int
4039
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4040
{
C
Chris Wilson 已提交
4041
	uint32_t old_write_domain, old_read_domains;
4042 4043
	int ret;

4044 4045 4046
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4047
	ret = i915_gem_object_wait_rendering(obj, !write);
4048 4049 4050
	if (ret)
		return ret;

4051
	i915_gem_object_flush_gtt_write_domain(obj);
4052

4053 4054
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4055

4056
	/* Flush the CPU cache if it's still invalid. */
4057
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4058
		i915_gem_clflush_object(obj, false);
4059

4060
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4061 4062 4063 4064 4065
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4066
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4067 4068 4069 4070 4071

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4072 4073
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4074
	}
4075

C
Chris Wilson 已提交
4076 4077 4078 4079
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4080 4081 4082
	return 0;
}

4083 4084 4085
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4086 4087 4088 4089
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4090 4091 4092
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4093
static int
4094
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4095
{
4096 4097
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4098
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4099
	struct drm_i915_gem_request *request, *target = NULL;
4100
	unsigned reset_counter;
4101
	int ret;
4102

4103 4104 4105 4106 4107 4108 4109
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4110

4111
	spin_lock(&file_priv->mm.lock);
4112
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4113 4114
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4115

4116 4117 4118 4119 4120 4121 4122
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4123
		target = request;
4124
	}
4125
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4126 4127
	if (target)
		i915_gem_request_reference(target);
4128
	spin_unlock(&file_priv->mm.lock);
4129

4130
	if (target == NULL)
4131
		return 0;
4132

4133
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4134 4135
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4136

4137
	i915_gem_request_unreference__unlocked(target);
4138

4139 4140 4141
	return ret;
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4158 4159 4160 4161
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4162 4163 4164
	return false;
}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
		    to_i915(obj->base.dev)->gtt.mappable_end);

	obj->map_and_fenceable = mappable && fenceable;
}

4188 4189 4190 4191 4192 4193
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4194
{
4195
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4196
	struct i915_vma *vma;
4197
	unsigned bound;
4198 4199
	int ret;

4200 4201 4202
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4203
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4204
		return -EINVAL;
4205

4206 4207 4208
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4209 4210 4211 4212 4213 4214 4215 4216 4217
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4218
	if (vma) {
B
Ben Widawsky 已提交
4219 4220 4221
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4222
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4223
			WARN(vma->pin_count,
4224
			     "bo is already pinned in %s with incorrect alignment:"
4225
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4226
			     " obj->map_and_fenceable=%d\n",
4227
			     ggtt_view ? "ggtt" : "ppgtt",
4228 4229
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4230
			     alignment,
4231
			     !!(flags & PIN_MAPPABLE),
4232
			     obj->map_and_fenceable);
4233
			ret = i915_vma_unbind(vma);
4234 4235
			if (ret)
				return ret;
4236 4237

			vma = NULL;
4238 4239 4240
		}
	}

4241
	bound = vma ? vma->bound : 0;
4242
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4243 4244
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4245 4246
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4247 4248
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4249 4250 4251
		if (ret)
			return ret;
	}
4252

4253 4254
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4255
		__i915_vma_set_map_and_fenceable(vma);
4256 4257
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4258

4259
	vma->pin_count++;
4260 4261 4262
	return 0;
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4284
				      alignment, flags | PIN_GLOBAL);
4285 4286
}

4287
void
4288 4289
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4290
{
4291
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4292

B
Ben Widawsky 已提交
4293
	BUG_ON(!vma);
4294
	WARN_ON(vma->pin_count == 0);
4295
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4296

4297
	--vma->pin_count;
4298 4299 4300 4301
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4302
		    struct drm_file *file)
4303 4304
{
	struct drm_i915_gem_busy *args = data;
4305
	struct drm_i915_gem_object *obj;
4306 4307
	int ret;

4308
	ret = i915_mutex_lock_interruptible(dev);
4309
	if (ret)
4310
		return ret;
4311

4312
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4313
	if (&obj->base == NULL) {
4314 4315
		ret = -ENOENT;
		goto unlock;
4316
	}
4317

4318 4319 4320 4321
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4322
	 */
4323
	ret = i915_gem_object_flush_active(obj);
4324 4325
	if (ret)
		goto unref;
4326

4327 4328 4329 4330
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4331

4332
unref:
4333
	drm_gem_object_unreference(&obj->base);
4334
unlock:
4335
	mutex_unlock(&dev->struct_mutex);
4336
	return ret;
4337 4338 4339 4340 4341 4342
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4343
	return i915_gem_ring_throttle(dev, file_priv);
4344 4345
}

4346 4347 4348 4349
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4350
	struct drm_i915_private *dev_priv = dev->dev_private;
4351
	struct drm_i915_gem_madvise *args = data;
4352
	struct drm_i915_gem_object *obj;
4353
	int ret;
4354 4355 4356 4357 4358 4359 4360 4361 4362

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4363 4364 4365 4366
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4367
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4368
	if (&obj->base == NULL) {
4369 4370
		ret = -ENOENT;
		goto unlock;
4371 4372
	}

B
Ben Widawsky 已提交
4373
	if (i915_gem_obj_is_pinned(obj)) {
4374 4375
		ret = -EINVAL;
		goto out;
4376 4377
	}

4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4387 4388
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4389

C
Chris Wilson 已提交
4390
	/* if the object is no longer attached, discard its backing storage */
4391
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4392 4393
		i915_gem_object_truncate(obj);

4394
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4395

4396
out:
4397
	drm_gem_object_unreference(&obj->base);
4398
unlock:
4399
	mutex_unlock(&dev->struct_mutex);
4400
	return ret;
4401 4402
}

4403 4404
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4405
{
4406 4407
	int i;

4408
	INIT_LIST_HEAD(&obj->global_list);
4409 4410
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4411
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4412
	INIT_LIST_HEAD(&obj->vma_list);
4413
	INIT_LIST_HEAD(&obj->batch_pool_link);
4414

4415 4416
	obj->ops = ops;

4417 4418 4419 4420 4421 4422
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4423 4424 4425 4426 4427
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4428 4429
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4430
{
4431
	struct drm_i915_gem_object *obj;
4432
	struct address_space *mapping;
D
Daniel Vetter 已提交
4433
	gfp_t mask;
4434

4435
	obj = i915_gem_object_alloc(dev);
4436 4437
	if (obj == NULL)
		return NULL;
4438

4439
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4440
		i915_gem_object_free(obj);
4441 4442
		return NULL;
	}
4443

4444 4445 4446 4447 4448 4449 4450
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4451
	mapping = file_inode(obj->base.filp)->i_mapping;
4452
	mapping_set_gfp_mask(mapping, mask);
4453

4454
	i915_gem_object_init(obj, &i915_gem_object_ops);
4455

4456 4457
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4458

4459 4460
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4476 4477
	trace_i915_gem_object_create(obj);

4478
	return obj;
4479 4480
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4505
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4506
{
4507
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4508
	struct drm_device *dev = obj->base.dev;
4509
	struct drm_i915_private *dev_priv = dev->dev_private;
4510
	struct i915_vma *vma, *next;
4511

4512 4513
	intel_runtime_pm_get(dev_priv);

4514 4515
	trace_i915_gem_object_destroy(obj);

4516
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4517 4518 4519 4520
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4521 4522
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4523

4524 4525
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4526

4527
			WARN_ON(i915_vma_unbind(vma));
4528

4529 4530
			dev_priv->mm.interruptible = was_interruptible;
		}
4531 4532
	}

B
Ben Widawsky 已提交
4533 4534 4535 4536 4537
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4538 4539
	WARN_ON(obj->frontbuffer_bits);

4540 4541 4542 4543 4544
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4545 4546
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4547
	if (discard_backing_storage(obj))
4548
		obj->madv = I915_MADV_DONTNEED;
4549
	i915_gem_object_put_pages(obj);
4550
	i915_gem_object_free_mmap_offset(obj);
4551

4552 4553
	BUG_ON(obj->pages);

4554 4555
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4556

4557 4558 4559
	if (obj->ops->release)
		obj->ops->release(obj);

4560 4561
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4562

4563
	kfree(obj->bit_17);
4564
	i915_gem_object_free(obj);
4565 4566

	intel_runtime_pm_put(dev_priv);
4567 4568
}

4569 4570
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4571 4572
{
	struct i915_vma *vma;
4573
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4574 4575
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4576
			return vma;
4577 4578 4579 4580 4581 4582 4583 4584 4585
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4586

4587 4588 4589 4590
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4591 4592
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4593
			return vma;
4594 4595 4596
	return NULL;
}

B
Ben Widawsky 已提交
4597 4598
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4599
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4600
	WARN_ON(vma->node.allocated);
4601 4602 4603 4604 4605

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4606 4607
	vm = vma->vm;

4608 4609
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4610

4611
	list_del(&vma->vma_link);
4612

4613
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4614 4615
}

4616 4617 4618 4619
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4620
	struct intel_engine_cs *ring;
4621 4622 4623
	int i;

	for_each_ring(ring, dev_priv, i)
4624
		dev_priv->gt.stop_ring(ring);
4625 4626
}

4627
int
4628
i915_gem_suspend(struct drm_device *dev)
4629
{
4630
	struct drm_i915_private *dev_priv = dev->dev_private;
4631
	int ret = 0;
4632

4633
	mutex_lock(&dev->struct_mutex);
4634
	ret = i915_gpu_idle(dev);
4635
	if (ret)
4636
		goto err;
4637

4638
	i915_gem_retire_requests(dev);
4639

4640
	i915_gem_stop_ringbuffers(dev);
4641 4642
	mutex_unlock(&dev->struct_mutex);

4643
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4644
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4645
	flush_delayed_work(&dev_priv->mm.idle_work);
4646

4647 4648 4649 4650 4651
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4652
	return 0;
4653 4654 4655 4656

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4657 4658
}

4659
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4660
{
4661
	struct intel_engine_cs *ring = req->ring;
4662
	struct drm_device *dev = ring->dev;
4663
	struct drm_i915_private *dev_priv = dev->dev_private;
4664
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4665
	int i, ret;
B
Ben Widawsky 已提交
4666

4667
	if (!HAS_L3_DPF(dev) || !remap_info)
4668
		return 0;
B
Ben Widawsky 已提交
4669

4670
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4671 4672
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4673

4674 4675 4676 4677 4678
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4679
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4680
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4681
		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4682
		intel_ring_emit(ring, remap_info[i]);
B
Ben Widawsky 已提交
4683 4684
	}

4685
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4686

4687
	return ret;
B
Ben Widawsky 已提交
4688 4689
}

4690 4691
void i915_gem_init_swizzling(struct drm_device *dev)
{
4692
	struct drm_i915_private *dev_priv = dev->dev_private;
4693

4694
	if (INTEL_INFO(dev)->gen < 5 ||
4695 4696 4697 4698 4699 4700
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4701 4702 4703
	if (IS_GEN5(dev))
		return;

4704 4705
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4706
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4707
	else if (IS_GEN7(dev))
4708
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4709 4710
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4711 4712
	else
		BUG();
4713
}
D
Daniel Vetter 已提交
4714

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4742
int i915_gem_init_rings(struct drm_device *dev)
4743
{
4744
	struct drm_i915_private *dev_priv = dev->dev_private;
4745
	int ret;
4746

4747
	ret = intel_init_render_ring_buffer(dev);
4748
	if (ret)
4749
		return ret;
4750 4751

	if (HAS_BSD(dev)) {
4752
		ret = intel_init_bsd_ring_buffer(dev);
4753 4754
		if (ret)
			goto cleanup_render_ring;
4755
	}
4756

4757
	if (HAS_BLT(dev)) {
4758 4759 4760 4761 4762
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4763 4764 4765 4766 4767 4768
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4769 4770 4771 4772 4773
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4774

4775 4776
	return 0;

B
Ben Widawsky 已提交
4777 4778
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4792
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4793
	struct intel_engine_cs *ring;
4794
	int ret, i, j;
4795 4796 4797 4798

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4799 4800 4801
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4802
	if (dev_priv->ellc_size)
4803
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4804

4805 4806 4807
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4808

4809
	if (HAS_PCH_NOP(dev)) {
4810 4811 4812 4813 4814 4815 4816 4817 4818
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4819 4820
	}

4821 4822
	i915_gem_init_swizzling(dev);

4823 4824 4825 4826 4827 4828 4829 4830
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4831 4832
	BUG_ON(!dev_priv->ring[RCS].default_context);

4833 4834 4835 4836 4837 4838 4839
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4840 4841 4842
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4843
			goto out;
D
Daniel Vetter 已提交
4844
	}
4845

4846
	/* We can't enable contexts until all firmware is loaded */
4847 4848 4849
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4850 4851 4852
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4853
		}
4854 4855
	}

4856 4857 4858 4859 4860 4861 4862 4863
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4864 4865
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4866 4867
		struct drm_i915_gem_request *req;

4868 4869
		WARN_ON(!ring->default_context);

4870 4871 4872 4873 4874 4875
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4876 4877
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4878
				i915_gem_l3_remap(req, j);
4879
		}
4880

4881
		ret = i915_ppgtt_init_ring(req);
4882 4883
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4884
			i915_gem_request_cancel(req);
4885 4886 4887
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4888

4889
		ret = i915_gem_context_enable(req);
4890 4891
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4892
			i915_gem_request_cancel(req);
4893 4894 4895
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4896

4897
		i915_add_request_no_flush(req);
4898
	}
D
Daniel Vetter 已提交
4899

4900 4901
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4902
	return ret;
4903 4904
}

4905 4906 4907 4908 4909
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4910 4911 4912
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4913
	mutex_lock(&dev->struct_mutex);
4914

4915
	if (!i915.enable_execlists) {
4916
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4917 4918 4919
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4920
	} else {
4921
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4922 4923 4924
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4925 4926
	}

4927 4928 4929 4930 4931 4932 4933 4934
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4935
	ret = i915_gem_init_userptr(dev);
4936 4937
	if (ret)
		goto out_unlock;
4938

4939
	i915_gem_init_global_gtt(dev);
4940

4941
	ret = i915_gem_context_init(dev);
4942 4943
	if (ret)
		goto out_unlock;
4944

D
Daniel Vetter 已提交
4945 4946
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4947
		goto out_unlock;
4948

4949
	ret = i915_gem_init_hw(dev);
4950 4951 4952 4953 4954 4955
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4956
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4957
		ret = 0;
4958
	}
4959 4960

out_unlock:
4961
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4962
	mutex_unlock(&dev->struct_mutex);
4963

4964
	return ret;
4965 4966
}

4967 4968 4969
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4970
	struct drm_i915_private *dev_priv = dev->dev_private;
4971
	struct intel_engine_cs *ring;
4972
	int i;
4973

4974
	for_each_ring(ring, dev_priv, i)
4975
		dev_priv->gt.cleanup_ring(ring);
4976 4977 4978 4979 4980 4981 4982 4983

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4984 4985
}

4986
static void
4987
init_ring_lists(struct intel_engine_cs *ring)
4988 4989 4990 4991 4992
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4993 4994 4995
void
i915_gem_load(struct drm_device *dev)
{
4996
	struct drm_i915_private *dev_priv = dev->dev_private;
4997 4998
	int i;

4999
	dev_priv->objects =
5000 5001 5002 5003
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5004 5005 5006 5007 5008
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5009 5010 5011 5012 5013
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5014

B
Ben Widawsky 已提交
5015
	INIT_LIST_HEAD(&dev_priv->vm_list);
5016
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5017 5018
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5019
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5020 5021
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5022
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5023
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5024 5025
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5026 5027
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5028
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5029

5030 5031
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5032
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5033 5034
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5035 5036 5037 5038
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5039 5040 5041 5042
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5051
	/* Initialize fence registers to zero */
5052 5053
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5054

5055
	i915_gem_detect_bit_6_swizzle(dev);
5056
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5057

5058 5059
	dev_priv->mm.interruptible = true;

5060
	i915_gem_shrinker_init(dev_priv);
5061 5062

	mutex_init(&dev_priv->fb_tracking.lock);
5063
}
5064

5065
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5066
{
5067
	struct drm_i915_file_private *file_priv = file->driver_priv;
5068 5069 5070 5071 5072

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5073
	spin_lock(&file_priv->mm.lock);
5074 5075 5076 5077 5078 5079 5080 5081 5082
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5083
	spin_unlock(&file_priv->mm.lock);
5084

5085
	if (!list_empty(&file_priv->rps.link)) {
5086
		spin_lock(&to_i915(dev)->rps.client_lock);
5087
		list_del(&file_priv->rps.link);
5088
		spin_unlock(&to_i915(dev)->rps.client_lock);
5089
	}
5090 5091 5092 5093 5094
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5095
	int ret;
5096 5097 5098 5099 5100 5101 5102 5103 5104

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5105
	file_priv->file = file;
5106
	INIT_LIST_HEAD(&file_priv->rps.link);
5107 5108 5109 5110

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5111 5112 5113
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5114

5115
	return ret;
5116 5117
}

5118 5119
/**
 * i915_gem_track_fb - update frontbuffer tracking
5120 5121 5122
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5123 5124 5125 5126
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5144
/* All the new VM stuff */
5145 5146
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5147 5148 5149 5150
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5151
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5152 5153

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5154 5155 5156 5157
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5158 5159
			return vma->node.start;
	}
5160

5161 5162
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5163 5164 5165
	return -1;
}

5166 5167
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5168
{
5169
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5170 5171 5172
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5173 5174
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5175 5176
			return vma->node.start;

5177
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5198
				  const struct i915_ggtt_view *view)
5199 5200 5201 5202 5203 5204
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5205
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5206
		    drm_mm_node_allocated(&vma->node))
5207 5208 5209 5210 5211 5212 5213
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5214
	struct i915_vma *vma;
5215

5216 5217
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5229
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5230 5231 5232

	BUG_ON(list_empty(&o->vma_list));

5233 5234 5235 5236
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5237 5238
		if (vma->vm == vm)
			return vma->node.size;
5239
	}
5240 5241 5242
	return 0;
}

5243
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5244 5245
{
	struct i915_vma *vma;
5246
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5247 5248
		if (vma->pin_count > 0)
			return true;
5249

5250
	return false;
5251
}
5252

5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
	if (WARN_ON(obj->ops != &i915_gem_object_ops))
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5293
	obj->dirty = 1;		/* Backing store is now out of date */
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}