i915_gem.c 144.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = obj->base.filp->f_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379
void *i915_gem_object_alloc(struct drm_device *dev)
{
380
	struct drm_i915_private *dev_priv = to_i915(dev);
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
386
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881
	/* pread for non shmem backed objects */
882 883
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
884 885
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
886 887
		intel_runtime_pm_put(to_i915(dev));
	}
888

889
out:
890
	drm_gem_object_unreference(&obj->base);
891
unlock:
892
	mutex_unlock(&dev->struct_mutex);
893
	return ret;
894 895
}

896 897
/* This is the fast write path which cannot handle
 * page faults in the source data
898
 */
899 900 901 902 903 904

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
905
{
906 907
	void __iomem *vaddr_atomic;
	void *vaddr;
908
	unsigned long unwritten;
909

P
Peter Zijlstra 已提交
910
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911 912 913
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
914
						      user_data, length);
P
Peter Zijlstra 已提交
915
	io_mapping_unmap_atomic(vaddr_atomic);
916
	return unwritten;
917 918
}

919 920 921
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
922 923 924 925
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
926
 */
927
static int
928
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929
			 struct drm_i915_gem_object *obj,
930
			 struct drm_i915_gem_pwrite *args,
931
			 struct drm_file *file)
932
{
933
	struct i915_ggtt *ggtt = &i915->ggtt;
934
	struct drm_device *dev = obj->base.dev;
935 936
	struct drm_mm_node node;
	uint64_t remain, offset;
937
	char __user *user_data;
938
	int ret;
939 940 941 942
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
943

944
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
960 961 962
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
963
	}
D
Daniel Vetter 已提交
964 965 966 967 968

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

969
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970
	obj->dirty = true;
971

972
	user_data = u64_to_user_ptr(args->data_ptr);
973
	offset = args->offset;
974
	remain = args->size;
975
	while (remain) {
976 977
		/* Operation in this page
		 *
978 979 980
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
981
		 */
982 983 984 985 986 987 988 989 990 991 992 993 994
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
995
		/* If we get a fault while copying data, then (presumably) our
996 997
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
998 999
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1000
		 */
1001
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1002
				    page_offset, user_data, page_length)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1015
		}
1016

1017 1018 1019
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1020 1021
	}

1022
out_flush:
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1036
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1037
out_unpin:
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1048
out:
1049
	return ret;
1050 1051
}

1052 1053 1054 1055
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1056
static int
1057 1058 1059 1060 1061
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1062
{
1063
	char *vaddr;
1064
	int ret;
1065

1066
	if (unlikely(page_do_bit17_swizzling))
1067
		return -EINVAL;
1068

1069 1070 1071 1072
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1073 1074
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1075 1076 1077 1078
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1079

1080
	return ret ? -EFAULT : 0;
1081 1082
}

1083 1084
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1085
static int
1086 1087 1088 1089 1090
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1091
{
1092 1093
	char *vaddr;
	int ret;
1094

1095
	vaddr = kmap(page);
1096
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097 1098 1099
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1100 1101
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102 1103
						user_data,
						page_length);
1104 1105 1106 1107 1108
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1109 1110 1111
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1112
	kunmap(page);
1113

1114
	return ret ? -EFAULT : 0;
1115 1116 1117
}

static int
1118 1119 1120 1121
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1122 1123
{
	ssize_t remain;
1124 1125
	loff_t offset;
	char __user *user_data;
1126
	int shmem_page_offset, page_length, ret = 0;
1127
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128
	int hit_slowpath = 0;
1129 1130
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1131
	struct sg_page_iter sg_iter;
1132

1133
	user_data = u64_to_user_ptr(args->data_ptr);
1134 1135
	remain = args->size;

1136
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137

1138 1139 1140 1141 1142
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1143
		needs_clflush_after = cpu_write_needs_clflush(obj);
1144 1145 1146
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1147
	}
1148 1149 1150 1151 1152
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1153

1154 1155 1156 1157
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159

1160 1161
	i915_gem_object_pin_pages(obj);

1162
	offset = args->offset;
1163
	obj->dirty = 1;
1164

1165 1166
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1167
		struct page *page = sg_page_iter_page(&sg_iter);
1168
		int partial_cacheline_write;
1169

1170 1171 1172
		if (remain <= 0)
			break;

1173 1174 1175 1176 1177
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1178
		shmem_page_offset = offset_in_page(offset);
1179 1180 1181 1182 1183

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1184 1185 1186 1187 1188 1189 1190
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1191 1192 1193
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1194 1195 1196 1197 1198 1199
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1200 1201 1202

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1203 1204 1205 1206
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1207

1208
		mutex_lock(&dev->struct_mutex);
1209 1210

		if (ret)
1211 1212
			goto out;

1213
next_page:
1214
		remain -= page_length;
1215
		user_data += page_length;
1216
		offset += page_length;
1217 1218
	}

1219
out:
1220 1221
	i915_gem_object_unpin_pages(obj);

1222
	if (hit_slowpath) {
1223 1224 1225 1226 1227 1228 1229
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1230
			if (i915_gem_clflush_object(obj, obj->pin_display))
1231
				needs_clflush_after = true;
1232
		}
1233
	}
1234

1235
	if (needs_clflush_after)
1236
		i915_gem_chipset_flush(to_i915(dev));
1237 1238
	else
		obj->cache_dirty = true;
1239

1240
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1241
	return ret;
1242 1243 1244 1245
}

/**
 * Writes data to the object referenced by handle.
1246 1247 1248
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1249 1250 1251 1252 1253
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1254
		      struct drm_file *file)
1255
{
1256
	struct drm_i915_private *dev_priv = to_i915(dev);
1257
	struct drm_i915_gem_pwrite *args = data;
1258
	struct drm_i915_gem_object *obj;
1259 1260 1261 1262 1263 1264
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1265
		       u64_to_user_ptr(args->data_ptr),
1266 1267 1268
		       args->size))
		return -EFAULT;

1269
	if (likely(!i915.prefault_disable)) {
1270
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1271 1272 1273 1274
						   args->size);
		if (ret)
			return -EFAULT;
	}
1275

1276 1277
	intel_runtime_pm_get(dev_priv);

1278
	ret = i915_mutex_lock_interruptible(dev);
1279
	if (ret)
1280
		goto put_rpm;
1281

1282
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1283
	if (&obj->base == NULL) {
1284 1285
		ret = -ENOENT;
		goto unlock;
1286
	}
1287

1288
	/* Bounds check destination. */
1289 1290
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1291
		ret = -EINVAL;
1292
		goto out;
C
Chris Wilson 已提交
1293 1294
	}

C
Chris Wilson 已提交
1295 1296
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1297
	ret = -EFAULT;
1298 1299 1300 1301 1302 1303
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1304
	if (!i915_gem_object_has_struct_page(obj) ||
1305
	    cpu_write_needs_clflush(obj)) {
1306
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1307 1308 1309
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1310
	}
1311

1312
	if (ret == -EFAULT || ret == -ENOSPC) {
1313 1314
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1315
		else if (i915_gem_object_has_struct_page(obj))
1316
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1317 1318
		else
			ret = -ENODEV;
1319
	}
1320

1321
out:
1322
	drm_gem_object_unreference(&obj->base);
1323
unlock:
1324
	mutex_unlock(&dev->struct_mutex);
1325 1326 1327
put_rpm:
	intel_runtime_pm_put(dev_priv);

1328 1329 1330
	return ret;
}

1331 1332
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1333
{
1334 1335
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1336

1337
	if (__i915_reset_in_progress(reset_counter)) {
1338 1339 1340 1341 1342
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1343
		return -EAGAIN;
1344 1345 1346 1347 1348
	}

	return 0;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1381 1382
bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
1383
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1395

1396
	timeout_us += local_clock_us(&cpu);
1397
	do {
1398
		if (i915_gem_request_completed(req))
1399
			return true;
1400

1401 1402 1403
		if (signal_pending_state(state, current))
			break;

1404
		if (busywait_stop(timeout_us, cpu))
1405
			break;
1406

1407
		cpu_relax_lowlatency();
1408
	} while (!need_resched());
1409

1410
	return false;
1411 1412
}

1413
/**
1414 1415
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1416 1417
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1418
 * @rps: RPS client
1419
 *
1420 1421 1422 1423 1424 1425 1426
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1427
 * Returns 0 if the request was found within the alloted time. Else returns the
1428 1429
 * errno with remaining time filled in timeout argument.
 */
1430
int __i915_wait_request(struct drm_i915_gem_request *req,
1431
			bool interruptible,
1432
			s64 *timeout,
1433
			struct intel_rps_client *rps)
1434
{
1435
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1436
	DEFINE_WAIT(reset);
1437 1438
	struct intel_wait wait;
	unsigned long timeout_remain;
1439
	s64 before = 0; /* Only to silence a compiler warning. */
1440
	int ret = 0;
1441

1442
	might_sleep();
1443

1444 1445 1446
	if (list_empty(&req->list))
		return 0;

1447
	if (i915_gem_request_completed(req))
1448 1449
		return 0;

1450
	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1451 1452 1453 1454 1455 1456 1457
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

1458
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1459 1460 1461 1462 1463

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1464
	}
1465

1466
	trace_i915_gem_request_wait_begin(req);
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
1483 1484
	if (INTEL_INFO(req->i915)->gen >= 6)
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1485

1486
	/* Optimistic spin for the next ~jiffie before touching IRQs */
1487
	if (i915_spin_request(req, state, 5))
1488
		goto complete;
1489

1490 1491
	set_current_state(state);
	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1492

1493 1494 1495 1496 1497
	intel_wait_init(&wait, req->seqno);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
1498
		 */
1499
		goto wakeup;
1500

1501
	for (;;) {
1502
		if (signal_pending_state(state, current)) {
1503 1504 1505 1506
			ret = -ERESTARTSYS;
			break;
		}

1507 1508
		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
1509 1510 1511 1512
			ret = -ETIME;
			break;
		}

1513 1514
		if (intel_wait_complete(&wait))
			break;
1515

1516
		set_current_state(state);
1517

1518 1519 1520 1521 1522 1523 1524 1525
wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;
1526

1527 1528 1529
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1530
	}
1531
	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1532

1533 1534 1535
	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
complete:
1536 1537
	trace_i915_gem_request_wait_end(req);

1538
	if (timeout) {
1539
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1540 1541

		*timeout = tres < 0 ? 0 : tres;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1552 1553
	}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	if (rps && req->seqno == req->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&req->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&req->i915->rps.client_lock);
	}

1570
	return ret;
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1610 1611 1612

	put_pid(request->pid);
	request->pid = NULL;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1632
	if (request->previous_context) {
1633
		if (i915.enable_execlists)
1634 1635
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1636 1637
	}

1638
	i915_gem_context_unreference(request->ctx);
1639 1640 1641 1642 1643 1644
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1645
	struct intel_engine_cs *engine = req->engine;
1646 1647
	struct drm_i915_gem_request *tmp;

1648
	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1663
/**
1664
 * Waits for a request to be signaled, and cleans up the
1665
 * request and object lists appropriately for that event.
1666
 * @req: request to wait on
1667 1668
 */
int
1669
i915_wait_request(struct drm_i915_gem_request *req)
1670
{
1671
	struct drm_i915_private *dev_priv = req->i915;
1672
	bool interruptible;
1673 1674
	int ret;

1675 1676
	interruptible = dev_priv->mm.interruptible;

1677
	BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1678

1679
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1680 1681
	if (ret)
		return ret;
1682

1683
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1684
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1685 1686
		__i915_gem_request_retire__upto(req);

1687 1688 1689
	return 0;
}

1690 1691 1692
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1693 1694
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1695
 */
1696
int
1697 1698 1699
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1700
	int ret, i;
1701

1702
	if (!obj->active)
1703 1704
		return 0;

1705 1706 1707 1708 1709
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1710

1711
			i = obj->last_write_req->engine->id;
1712 1713 1714 1715 1716 1717
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1718
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1719 1720 1721 1722 1723 1724 1725 1726 1727
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1728
		GEM_BUG_ON(obj->active);
1729 1730 1731 1732 1733 1734 1735 1736 1737
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1738
	int ring = req->engine->id;
1739 1740 1741 1742 1743 1744

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1745
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1746
		__i915_gem_request_retire__upto(req);
1747 1748
}

1749 1750 1751 1752 1753
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1754
					    struct intel_rps_client *rps,
1755 1756 1757
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1758
	struct drm_i915_private *dev_priv = to_i915(dev);
1759
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1760
	int ret, i, n = 0;
1761 1762 1763 1764

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1765
	if (!obj->active)
1766 1767
		return 0;

1768 1769 1770 1771 1772 1773 1774 1775 1776
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1777
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1788
	mutex_unlock(&dev->struct_mutex);
1789
	ret = 0;
1790
	for (i = 0; ret == 0 && i < n; i++)
1791
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1792 1793
	mutex_lock(&dev->struct_mutex);

1794 1795 1796 1797 1798 1799 1800
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1801 1802
}

1803 1804 1805 1806 1807 1808
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1809 1810 1811 1812 1813 1814 1815
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1816
/**
1817 1818
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1819 1820 1821
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1822 1823 1824
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1825
			  struct drm_file *file)
1826 1827
{
	struct drm_i915_gem_set_domain *args = data;
1828
	struct drm_i915_gem_object *obj;
1829 1830
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1831 1832
	int ret;

1833
	/* Only handle setting domains to types used by the CPU. */
1834
	if (write_domain & I915_GEM_GPU_DOMAINS)
1835 1836
		return -EINVAL;

1837
	if (read_domains & I915_GEM_GPU_DOMAINS)
1838 1839 1840 1841 1842 1843 1844 1845
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1846
	ret = i915_mutex_lock_interruptible(dev);
1847
	if (ret)
1848
		return ret;
1849

1850
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1851
	if (&obj->base == NULL) {
1852 1853
		ret = -ENOENT;
		goto unlock;
1854
	}
1855

1856 1857 1858 1859
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1860
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1861
							  to_rps_client(file),
1862
							  !write_domain);
1863 1864 1865
	if (ret)
		goto unref;

1866
	if (read_domains & I915_GEM_DOMAIN_GTT)
1867
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1868
	else
1869
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1870

1871
	if (write_domain != 0)
1872
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1873

1874
unref:
1875
	drm_gem_object_unreference(&obj->base);
1876
unlock:
1877 1878 1879 1880 1881 1882
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1883 1884 1885
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1886 1887 1888
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1889
			 struct drm_file *file)
1890 1891
{
	struct drm_i915_gem_sw_finish *args = data;
1892
	struct drm_i915_gem_object *obj;
1893 1894
	int ret = 0;

1895
	ret = i915_mutex_lock_interruptible(dev);
1896
	if (ret)
1897
		return ret;
1898

1899
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1900
	if (&obj->base == NULL) {
1901 1902
		ret = -ENOENT;
		goto unlock;
1903 1904 1905
	}

	/* Pinned buffers may be scanout, so flush the cache */
1906
	if (obj->pin_display)
1907
		i915_gem_object_flush_cpu_write_domain(obj);
1908

1909
	drm_gem_object_unreference(&obj->base);
1910
unlock:
1911 1912 1913 1914 1915
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1916 1917 1918 1919 1920
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1921 1922 1923
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1934 1935 1936
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1937
		    struct drm_file *file)
1938 1939 1940 1941 1942
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1943 1944 1945
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1946
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1947 1948
		return -ENODEV;

1949
	obj = drm_gem_object_lookup(file, args->handle);
1950
	if (obj == NULL)
1951
		return -ENOENT;
1952

1953 1954 1955 1956 1957 1958 1959 1960
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1961
	addr = vm_mmap(obj->filp, 0, args->size,
1962 1963
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1964 1965 1966 1967
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1968 1969 1970 1971
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1972 1973 1974 1975 1976 1977 1978
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1979 1980 1981

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1982
	}
1983
	drm_gem_object_unreference_unlocked(obj);
1984 1985 1986 1987 1988 1989 1990 1991
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1992 1993
/**
 * i915_gem_fault - fault a page into the GTT
1994 1995
 * @vma: VMA in question
 * @vmf: fault info
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2010 2011
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2012 2013
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2015 2016 2017
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2018
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2019

2020 2021
	intel_runtime_pm_get(dev_priv);

2022 2023 2024 2025
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2026 2027 2028
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2029

C
Chris Wilson 已提交
2030 2031
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2032 2033 2034 2035 2036 2037 2038 2039 2040
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2041 2042
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2043
		ret = -EFAULT;
2044 2045 2046
		goto unlock;
	}

2047
	/* Use a partial view if the object is bigger than the aperture. */
2048
	if (obj->base.size >= ggtt->mappable_end &&
2049
	    obj->tiling_mode == I915_TILING_NONE) {
2050
		static const unsigned int chunk_size = 256; // 1 MiB
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2064 2065
	if (ret)
		goto unlock;
2066

2067 2068 2069
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2070

2071
	ret = i915_gem_object_get_fence(obj);
2072
	if (ret)
2073
		goto unpin;
2074

2075
	/* Finally, remap it using the new GTT offset */
2076
	pfn = ggtt->mappable_base +
2077
		i915_gem_obj_ggtt_offset_view(obj, &view);
2078
	pfn >>= PAGE_SHIFT;
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2089

2090 2091
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2092 2093 2094 2095 2096
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2118
unpin:
2119
	i915_gem_object_ggtt_unpin_view(obj, &view);
2120
unlock:
2121
	mutex_unlock(&dev->struct_mutex);
2122
out:
2123
	switch (ret) {
2124
	case -EIO:
2125 2126 2127 2128 2129 2130 2131
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2132 2133 2134
			ret = VM_FAULT_SIGBUS;
			break;
		}
2135
	case -EAGAIN:
D
Daniel Vetter 已提交
2136 2137 2138 2139
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2140
		 */
2141 2142
	case 0:
	case -ERESTARTSYS:
2143
	case -EINTR:
2144 2145 2146 2147 2148
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2149 2150
		ret = VM_FAULT_NOPAGE;
		break;
2151
	case -ENOMEM:
2152 2153
		ret = VM_FAULT_OOM;
		break;
2154
	case -ENOSPC:
2155
	case -EFAULT:
2156 2157
		ret = VM_FAULT_SIGBUS;
		break;
2158
	default:
2159
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160 2161
		ret = VM_FAULT_SIGBUS;
		break;
2162
	}
2163 2164 2165

	intel_runtime_pm_put(dev_priv);
	return ret;
2166 2167
}

2168 2169 2170 2171
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2172
 * Preserve the reservation of the mmapping with the DRM core code, but
2173 2174 2175 2176 2177 2178 2179 2180 2181
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2182
void
2183
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2184
{
2185 2186 2187 2188 2189 2190
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2191 2192
	if (!obj->fault_mappable)
		return;
2193

2194 2195
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2206
	obj->fault_mappable = false;
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2218
uint32_t
2219
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2220
{
2221
	uint32_t gtt_size;
2222 2223

	if (INTEL_INFO(dev)->gen >= 4 ||
2224 2225
	    tiling_mode == I915_TILING_NONE)
		return size;
2226 2227

	/* Previous chips need a power-of-two fence region when tiling */
2228
	if (IS_GEN3(dev))
2229
		gtt_size = 1024*1024;
2230
	else
2231
		gtt_size = 512*1024;
2232

2233 2234
	while (gtt_size < size)
		gtt_size <<= 1;
2235

2236
	return gtt_size;
2237 2238
}

2239 2240
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2241 2242 2243 2244
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2245 2246
 *
 * Return the required GTT alignment for an object, taking into account
2247
 * potential fence register mapping.
2248
 */
2249 2250 2251
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2252 2253 2254 2255 2256
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2257
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2258
	    tiling_mode == I915_TILING_NONE)
2259 2260
		return 4096;

2261 2262 2263 2264
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2265
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2266 2267
}

2268 2269
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2270
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2271 2272
	int ret;

2273 2274
	dev_priv->mm.shrinker_no_lock_stealing = true;

2275 2276
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2277
		goto out;
2278 2279 2280 2281 2282 2283 2284 2285

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2286 2287 2288 2289 2290
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2291 2292
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2293
		goto out;
2294 2295

	i915_gem_shrink_all(dev_priv);
2296 2297 2298 2299 2300
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2301 2302 2303 2304 2305 2306 2307
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2308
int
2309 2310
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2311
		  uint32_t handle,
2312
		  uint64_t *offset)
2313
{
2314
	struct drm_i915_gem_object *obj;
2315 2316
	int ret;

2317
	ret = i915_mutex_lock_interruptible(dev);
2318
	if (ret)
2319
		return ret;
2320

2321
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2322
	if (&obj->base == NULL) {
2323 2324 2325
		ret = -ENOENT;
		goto unlock;
	}
2326

2327
	if (obj->madv != I915_MADV_WILLNEED) {
2328
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2329
		ret = -EFAULT;
2330
		goto out;
2331 2332
	}

2333 2334 2335
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2336

2337
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2338

2339
out:
2340
	drm_gem_object_unreference(&obj->base);
2341
unlock:
2342
	mutex_unlock(&dev->struct_mutex);
2343
	return ret;
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2367
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2368 2369
}

D
Daniel Vetter 已提交
2370 2371 2372
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2373
{
2374
	i915_gem_object_free_mmap_offset(obj);
2375

2376 2377
	if (obj->base.filp == NULL)
		return;
2378

D
Daniel Vetter 已提交
2379 2380 2381 2382 2383
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2384
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2385 2386
	obj->madv = __I915_MADV_PURGED;
}
2387

2388 2389 2390
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2391
{
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2404
	mapping = obj->base.filp->f_mapping,
2405
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2406 2407
}

2408
static void
2409
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2410
{
2411 2412
	struct sgt_iter sgt_iter;
	struct page *page;
2413
	int ret;
2414

2415
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2416

C
Chris Wilson 已提交
2417
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2418
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2419 2420 2421
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2422
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2423 2424 2425
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2426 2427
	i915_gem_gtt_finish_object(obj);

2428
	if (i915_gem_object_needs_bit17_swizzle(obj))
2429 2430
		i915_gem_object_save_bit_17_swizzle(obj);

2431 2432
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2433

2434
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2435
		if (obj->dirty)
2436
			set_page_dirty(page);
2437

2438
		if (obj->madv == I915_MADV_WILLNEED)
2439
			mark_page_accessed(page);
2440

2441
		put_page(page);
2442
	}
2443
	obj->dirty = 0;
2444

2445 2446
	sg_free_table(obj->pages);
	kfree(obj->pages);
2447
}
C
Chris Wilson 已提交
2448

2449
int
2450 2451 2452 2453
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2454
	if (obj->pages == NULL)
2455 2456
		return 0;

2457 2458 2459
	if (obj->pages_pin_count)
		return -EBUSY;

2460
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2461

2462 2463 2464
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2465
	list_del(&obj->global_list);
2466

2467
	if (obj->mapping) {
2468 2469 2470 2471
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2472 2473 2474
		obj->mapping = NULL;
	}

2475
	ops->put_pages(obj);
2476
	obj->pages = NULL;
2477

2478
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2479 2480 2481 2482

	return 0;
}

2483
static int
C
Chris Wilson 已提交
2484
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485
{
2486
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 2488
	int page_count, i;
	struct address_space *mapping;
2489 2490
	struct sg_table *st;
	struct scatterlist *sg;
2491
	struct sgt_iter sgt_iter;
2492
	struct page *page;
2493
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2494
	int ret;
C
Chris Wilson 已提交
2495
	gfp_t gfp;
2496

C
Chris Wilson 已提交
2497 2498 2499 2500 2501 2502 2503
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2504 2505 2506 2507
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2508
	page_count = obj->base.size / PAGE_SIZE;
2509 2510
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2511
		return -ENOMEM;
2512
	}
2513

2514 2515 2516 2517 2518
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2519
	mapping = obj->base.filp->f_mapping;
2520
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2521
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2522 2523 2524
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2525 2526
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2527 2528 2529 2530 2531
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2532 2533 2534 2535 2536 2537 2538 2539
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2540
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2541 2542
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2543
				goto err_pages;
I
Imre Deak 已提交
2544
			}
C
Chris Wilson 已提交
2545
		}
2546 2547 2548 2549 2550 2551 2552 2553
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2554 2555 2556 2557 2558 2559 2560 2561 2562
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2563 2564 2565

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2566
	}
2567 2568 2569 2570
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2571 2572
	obj->pages = st;

I
Imre Deak 已提交
2573 2574 2575 2576
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2577
	if (i915_gem_object_needs_bit17_swizzle(obj))
2578 2579
		i915_gem_object_do_bit_17_swizzle(obj);

2580 2581 2582 2583
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2584 2585 2586
	return 0;

err_pages:
2587
	sg_mark_end(sg);
2588 2589
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2590 2591
	sg_free_table(st);
	kfree(st);
2592 2593 2594 2595 2596 2597 2598 2599 2600

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2601 2602 2603 2604
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2617
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2618 2619 2620
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2621
	if (obj->pages)
2622 2623
		return 0;

2624
	if (obj->madv != I915_MADV_WILLNEED) {
2625
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2626
		return -EFAULT;
2627 2628
	}

2629 2630
	BUG_ON(obj->pages_pin_count);

2631 2632 2633 2634
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2635
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2636 2637 2638 2639

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2640
	return 0;
2641 2642
}

2643 2644 2645 2646 2647
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2648 2649
	struct sgt_iter sgt_iter;
	struct page *page;
2650 2651
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2652 2653 2654 2655 2656 2657 2658
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2659 2660 2661 2662 2663 2664
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2665

2666 2667
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2668 2669 2670 2671 2672 2673

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2674 2675
	if (pages != stack_pages)
		drm_free_large(pages);
2676 2677 2678 2679 2680

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2693 2694 2695
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2696 2697 2698 2699 2700 2701 2702 2703
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2704
void i915_vma_move_to_active(struct i915_vma *vma,
2705
			     struct drm_i915_gem_request *req)
2706
{
2707
	struct drm_i915_gem_object *obj = vma->obj;
2708
	struct intel_engine_cs *engine;
2709

2710
	engine = i915_gem_request_get_engine(req);
2711 2712

	/* Add a reference if we're newly entering the active list. */
2713
	if (obj->active == 0)
2714
		drm_gem_object_reference(&obj->base);
2715
	obj->active |= intel_engine_flag(engine);
2716

2717
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2718
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2719

2720
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2721 2722
}

2723 2724
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2725
{
2726 2727
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2728 2729

	i915_gem_request_assign(&obj->last_write_req, NULL);
2730
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2731 2732
}

2733
static void
2734
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2735
{
2736
	struct i915_vma *vma;
2737

2738 2739
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2740

2741
	list_del_init(&obj->engine_list[ring]);
2742 2743
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2744
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2745 2746 2747 2748 2749
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2750

2751 2752 2753 2754 2755 2756 2757
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2758 2759 2760
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2761
	}
2762

2763
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2764
	drm_gem_object_unreference(&obj->base);
2765 2766
}

2767
static int
2768
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2769
{
2770
	struct intel_engine_cs *engine;
2771
	int ret;
2772

2773
	/* Carefully retire all requests without writing to the rings */
2774
	for_each_engine(engine, dev_priv) {
2775
		ret = intel_engine_idle(engine);
2776 2777
		if (ret)
			return ret;
2778
	}
2779
	i915_gem_retire_requests(dev_priv);
2780

2781 2782
	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2783 2784
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
2785 2786
			yield();
	}
2787 2788

	/* Finally reset hw state */
2789
	for_each_engine(engine, dev_priv)
2790
		intel_ring_init_seqno(engine, seqno);
2791

2792
	return 0;
2793 2794
}

2795 2796
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
2797
	struct drm_i915_private *dev_priv = to_i915(dev);
2798 2799 2800 2801 2802 2803 2804 2805
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2806
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2821
int
2822
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2823
{
2824 2825
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2826
		int ret = i915_gem_init_seqno(dev_priv, 0);
2827 2828
		if (ret)
			return ret;
2829

2830 2831
		dev_priv->next_seqno = 1;
	}
2832

2833
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2834
	return 0;
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

2857 2858 2859 2860 2861
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2862
void __i915_add_request(struct drm_i915_gem_request *request,
2863 2864
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2865
{
2866
	struct intel_engine_cs *engine;
2867
	struct intel_ringbuffer *ringbuf;
2868
	u32 request_start;
2869
	u32 reserved_tail;
2870 2871
	int ret;

2872
	if (WARN_ON(request == NULL))
2873
		return;
2874

2875
	engine = request->engine;
2876 2877
	ringbuf = request->ringbuf;

2878 2879 2880 2881 2882
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2883
	request_start = intel_ring_get_tail(ringbuf);
2884 2885 2886
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2887 2888 2889 2890 2891 2892 2893
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2894 2895
	if (flush_caches) {
		if (i915.enable_execlists)
2896
			ret = logical_ring_flush_all_caches(request);
2897
		else
2898
			ret = intel_ring_flush_all_caches(request);
2899 2900 2901
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2925 2926 2927 2928 2929
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2930
	request->postfix = intel_ring_get_tail(ringbuf);
2931

2932
	if (i915.enable_execlists)
2933
		ret = engine->emit_request(request);
2934
	else {
2935
		ret = engine->add_request(request);
2936 2937

		request->tail = intel_ring_get_tail(ringbuf);
2938
	}
2939 2940
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2941
	/* Sanity check that the reserved size was large enough. */
2942 2943 2944 2945 2946 2947 2948
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2949 2950

	i915_gem_mark_busy(engine);
2951 2952
}

2953
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2954
{
2955
	unsigned long elapsed;
2956

2957
	if (ctx->hang_stats.banned)
2958 2959
		return true;

2960
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2961 2962
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2963 2964
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2965 2966 2967 2968 2969
	}

	return false;
}

2970
static void i915_set_reset_status(struct i915_gem_context *ctx,
2971
				  const bool guilty)
2972
{
2973
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2974 2975

	if (guilty) {
2976
		hs->banned = i915_context_is_banned(ctx);
2977 2978 2979 2980
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2981 2982 2983
	}
}

2984 2985 2986 2987
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2988
	kmem_cache_free(req->i915->requests, req);
2989 2990
}

2991
static inline int
2992
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2993
			 struct i915_gem_context *ctx,
2994
			 struct drm_i915_gem_request **req_out)
2995
{
2996
	struct drm_i915_private *dev_priv = engine->i915;
2997
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2998
	struct drm_i915_gem_request *req;
2999 3000
	int ret;

3001 3002 3003
	if (!req_out)
		return -EINVAL;

3004
	*req_out = NULL;
3005

3006 3007 3008 3009 3010
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3011 3012 3013
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3014 3015
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3016 3017
		return -ENOMEM;

3018
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3019 3020
	if (ret)
		goto err;
3021

3022 3023
	kref_init(&req->ref);
	req->i915 = dev_priv;
3024
	req->engine = engine;
3025 3026
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3027

3028 3029 3030 3031 3032 3033 3034
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3035
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036

3037
	if (i915.enable_execlists)
3038
		ret = intel_logical_ring_alloc_request_extras(req);
3039
	else
3040 3041 3042
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3043

3044
	*req_out = req;
3045
	return 0;
3046

3047 3048
err_ctx:
	i915_gem_context_unreference(ctx);
3049 3050 3051
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3052 3053
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3068
		       struct i915_gem_context *ctx)
3069 3070 3071 3072 3073
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3074
		ctx = engine->i915->kernel_context;
3075 3076 3077 3078
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3079
struct drm_i915_gem_request *
3080
i915_gem_find_active_request(struct intel_engine_cs *engine)
3081
{
3082 3083
	struct drm_i915_gem_request *request;

3084 3085 3086 3087 3088 3089 3090 3091
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
3092
	list_for_each_entry(request, &engine->request_list, list) {
3093
		if (i915_gem_request_completed(request))
3094
			continue;
3095

3096
		return request;
3097
	}
3098 3099 3100 3101

	return NULL;
}

3102
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3103 3104 3105 3106
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3107
	request = i915_gem_find_active_request(engine);
3108 3109 3110
	if (request == NULL)
		return;

3111
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3112

3113
	i915_set_reset_status(request->ctx, ring_hung);
3114
	list_for_each_entry_continue(request, &engine->request_list, list)
3115
		i915_set_reset_status(request->ctx, false);
3116
}
3117

3118
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3119
{
3120 3121
	struct intel_ringbuffer *buffer;

3122
	while (!list_empty(&engine->active_list)) {
3123
		struct drm_i915_gem_object *obj;
3124

3125
		obj = list_first_entry(&engine->active_list,
3126
				       struct drm_i915_gem_object,
3127
				       engine_list[engine->id]);
3128

3129
		i915_gem_object_retire__read(obj, engine->id);
3130
	}
3131

3132 3133 3134 3135 3136 3137
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3138
	if (i915.enable_execlists) {
3139 3140
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3141

3142
		intel_execlists_cancel_requests(engine);
3143 3144
	}

3145 3146 3147 3148 3149 3150 3151
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3152
	while (!list_empty(&engine->request_list)) {
3153 3154
		struct drm_i915_gem_request *request;

3155
		request = list_first_entry(&engine->request_list,
3156 3157 3158
					   struct drm_i915_gem_request,
					   list);

3159
		i915_gem_request_retire(request);
3160
	}
3161 3162 3163 3164 3165 3166 3167 3168

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3169
	list_for_each_entry(buffer, &engine->buffers, link) {
3170 3171 3172
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3173 3174

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3175 3176

	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
3177 3178
}

3179
void i915_gem_reset(struct drm_device *dev)
3180
{
3181
	struct drm_i915_private *dev_priv = to_i915(dev);
3182
	struct intel_engine_cs *engine;
3183

3184 3185 3186 3187 3188
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3189
	for_each_engine(engine, dev_priv)
3190
		i915_gem_reset_engine_status(engine);
3191

3192
	for_each_engine(engine, dev_priv)
3193
		i915_gem_reset_engine_cleanup(engine);
3194
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3195

3196 3197
	i915_gem_context_reset(dev);

3198
	i915_gem_restore_fences(dev);
3199 3200

	WARN_ON(i915_verify_lists(dev));
3201 3202 3203 3204
}

/**
 * This function clears the request list as sequence numbers are passed.
3205
 * @engine: engine to retire requests on
3206
 */
3207
void
3208
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3209
{
3210
	WARN_ON(i915_verify_lists(engine->dev));
3211

3212 3213 3214 3215
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3216
	 */
3217
	while (!list_empty(&engine->request_list)) {
3218 3219
		struct drm_i915_gem_request *request;

3220
		request = list_first_entry(&engine->request_list,
3221 3222 3223
					   struct drm_i915_gem_request,
					   list);

3224
		if (!i915_gem_request_completed(request))
3225 3226
			break;

3227
		i915_gem_request_retire(request);
3228
	}
3229

3230 3231 3232 3233
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3234
	while (!list_empty(&engine->active_list)) {
3235 3236
		struct drm_i915_gem_object *obj;

3237 3238
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3239
				       engine_list[engine->id]);
3240

3241
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3242 3243
			break;

3244
		i915_gem_object_retire__read(obj, engine->id);
3245 3246
	}

3247
	WARN_ON(i915_verify_lists(engine->dev));
3248 3249
}

3250
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251
{
3252
	struct intel_engine_cs *engine;
3253

3254
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3255 3256 3257 3258 3259

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
3260

3261
	for_each_engine(engine, dev_priv) {
3262
		i915_gem_retire_requests_ring(engine);
3263 3264
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3265 3266
	}

3267
	if (dev_priv->gt.active_engines == 0)
3268 3269
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
3270
				   msecs_to_jiffies(100));
3271 3272
}

3273
static void
3274 3275
i915_gem_retire_work_handler(struct work_struct *work)
{
3276
	struct drm_i915_private *dev_priv =
3277
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3278
	struct drm_device *dev = &dev_priv->drm;
3279

3280
	/* Come back later if the device is busy... */
3281
	if (mutex_trylock(&dev->struct_mutex)) {
3282
		i915_gem_retire_requests(dev_priv);
3283
		mutex_unlock(&dev->struct_mutex);
3284
	}
3285 3286 3287 3288 3289

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3290
	if (READ_ONCE(dev_priv->gt.awake))
3291 3292
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3293
				   round_jiffies_up_relative(HZ));
3294
}
3295

3296 3297 3298 3299
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3300
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3301
	struct drm_device *dev = &dev_priv->drm;
3302
	struct intel_engine_cs *engine;
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
3325

3326
	for_each_engine(engine, dev_priv)
3327
		i915_gem_batch_pool_fini(&engine->batch_pool);
3328

3329 3330 3331
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3332

3333 3334 3335 3336 3337
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
3338

3339 3340 3341 3342 3343
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3344

3345 3346 3347 3348
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3349
	}
3350 3351
}

3352 3353 3354 3355
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3356
 * @obj: object to flush
3357 3358 3359 3360
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3361
	int i;
3362 3363 3364

	if (!obj->active)
		return 0;
3365

3366
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3367
		struct drm_i915_gem_request *req;
3368

3369 3370 3371 3372
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3373
		if (i915_gem_request_completed(req))
3374
			i915_gem_object_retire__read(obj, i);
3375 3376 3377 3378 3379
	}

	return 0;
}

3380 3381
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3382 3383 3384
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3409
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3410 3411
	int i, n = 0;
	int ret;
3412

3413 3414 3415
	if (args->flags != 0)
		return -EINVAL;

3416 3417 3418 3419
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3420
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3421 3422 3423 3424 3425
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3426 3427
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3428 3429 3430
	if (ret)
		goto out;

3431
	if (!obj->active)
3432
		goto out;
3433 3434

	/* Do this after OLR check to make sure we make forward progress polling
3435
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3436
	 */
3437
	if (args->timeout_ns == 0) {
3438 3439 3440 3441 3442
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3443

3444
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3445 3446 3447 3448 3449 3450
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3451 3452
	mutex_unlock(&dev->struct_mutex);

3453 3454
	for (i = 0; i < n; i++) {
		if (ret == 0)
3455
			ret = __i915_wait_request(req[i], true,
3456
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3457
						  to_rps_client(file));
3458
		i915_gem_request_unreference(req[i]);
3459
	}
3460
	return ret;
3461 3462 3463 3464 3465 3466 3467

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3468 3469 3470
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3471 3472
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3473 3474 3475 3476
{
	struct intel_engine_cs *from;
	int ret;

3477
	from = i915_gem_request_get_engine(from_req);
3478 3479 3480
	if (to == from)
		return 0;

3481
	if (i915_gem_request_completed(from_req))
3482 3483
		return 0;

3484
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3485
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3486
		ret = __i915_wait_request(from_req,
3487 3488 3489
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3490 3491 3492
		if (ret)
			return ret;

3493
		i915_gem_object_retire_request(obj, from_req);
3494 3495
	} else {
		int idx = intel_ring_sync_index(from, to);
3496 3497 3498
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3499 3500 3501 3502

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3503
		if (*to_req == NULL) {
3504 3505 3506 3507 3508 3509 3510
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3511 3512
		}

3513 3514
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3529 3530 3531 3532 3533
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3534 3535 3536
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3537 3538 3539
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3540
 * rather than a particular GPU ring. Conceptually we serialise writes
3541
 * between engines inside the GPU. We only allow one engine to write
3542 3543 3544 3545 3546 3547 3548 3549 3550
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3551
 *
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3562 3563
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3564 3565
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3566 3567
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3568
{
3569
	const bool readonly = obj->base.pending_write_domain == 0;
3570
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3571
	int ret, i, n;
3572

3573
	if (!obj->active)
3574 3575
		return 0;

3576 3577
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3578

3579 3580 3581 3582 3583
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3584
		for (i = 0; i < I915_NUM_ENGINES; i++)
3585 3586 3587 3588
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3589
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3590 3591 3592
		if (ret)
			return ret;
	}
3593

3594
	return 0;
3595 3596
}

3597 3598 3599 3600 3601 3602 3603
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3604 3605 3606
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3629
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3630
{
3631
	struct drm_i915_gem_object *obj = vma->obj;
3632
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633
	int ret;
3634

3635
	if (list_empty(&vma->obj_link))
3636 3637
		return 0;

3638 3639 3640 3641
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3642

B
Ben Widawsky 已提交
3643
	if (vma->pin_count)
3644
		return -EBUSY;
3645

3646 3647
	BUG_ON(obj->pages == NULL);

3648 3649 3650 3651 3652
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3653

3654
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3655
		i915_gem_object_finish_gtt(obj);
3656

3657 3658 3659 3660
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3661 3662

		__i915_vma_iounmap(vma);
3663
	}
3664

3665
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3666

3667
	vma->vm->unbind_vma(vma);
3668
	vma->bound = 0;
3669

3670
	list_del_init(&vma->vm_link);
3671
	if (vma->is_ggtt) {
3672 3673 3674 3675 3676 3677
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3678
		vma->ggtt_view.pages = NULL;
3679
	}
3680

B
Ben Widawsky 已提交
3681 3682 3683 3684
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3685
	 * no more VMAs exist. */
I
Imre Deak 已提交
3686
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3687
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3688

3689 3690 3691 3692 3693 3694
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3695
	return 0;
3696 3697
}

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3708
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3709
{
3710
	struct intel_engine_cs *engine;
3711
	int ret;
3712

3713
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3714

3715
	for_each_engine(engine, dev_priv) {
3716 3717
		if (engine->last_context == NULL)
			continue;
3718

3719
		ret = intel_engine_idle(engine);
3720 3721 3722
		if (ret)
			return ret;
	}
3723

3724
	WARN_ON(i915_verify_lists(dev));
3725
	return 0;
3726 3727
}

3728
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3729 3730
				     unsigned long cache_level)
{
3731
	struct drm_mm_node *gtt_space = &vma->node;
3732 3733
	struct drm_mm_node *other;

3734 3735 3736 3737 3738 3739
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3740
	 */
3741
	if (vma->vm->mm.color_adjust == NULL)
3742 3743
		return true;

3744
	if (!drm_mm_node_allocated(gtt_space))
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3761
/**
3762 3763
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3764 3765 3766 3767 3768
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3769
 */
3770
static struct i915_vma *
3771 3772
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3773
			   const struct i915_ggtt_view *ggtt_view,
3774
			   unsigned alignment,
3775
			   uint64_t flags)
3776
{
3777
	struct drm_device *dev = obj->base.dev;
3778 3779
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3780
	u32 fence_alignment, unfenced_alignment;
3781 3782
	u32 search_flag, alloc_flag;
	u64 start, end;
3783
	u64 size, fence_size;
B
Ben Widawsky 已提交
3784
	struct i915_vma *vma;
3785
	int ret;
3786

3787 3788 3789 3790 3791
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3822

3823 3824 3825
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3826
		end = min_t(u64, end, ggtt->mappable_end);
3827
	if (flags & PIN_ZONE_4G)
3828
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3829

3830
	if (alignment == 0)
3831
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3832
						unfenced_alignment;
3833
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3834 3835 3836
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3837
		return ERR_PTR(-EINVAL);
3838 3839
	}

3840 3841 3842
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3843
	 */
3844
	if (size > end) {
3845
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3846 3847
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3848
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3849
			  end);
3850
		return ERR_PTR(-E2BIG);
3851 3852
	}

3853
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3854
	if (ret)
3855
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3856

3857 3858
	i915_gem_object_pin_pages(obj);

3859 3860 3861
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3862
	if (IS_ERR(vma))
3863
		goto err_unpin;
B
Ben Widawsky 已提交
3864

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3883
	} else {
3884 3885 3886 3887 3888 3889 3890
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3891

3892
search_free:
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3906

3907 3908
			goto err_free_vma;
		}
3909
	}
3910
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3911
		ret = -EINVAL;
3912
		goto err_remove_node;
3913 3914
	}

3915
	trace_i915_vma_bind(vma, flags);
3916
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3917
	if (ret)
I
Imre Deak 已提交
3918
		goto err_remove_node;
3919

3920
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3921
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3922

3923
	return vma;
B
Ben Widawsky 已提交
3924

3925
err_remove_node:
3926
	drm_mm_remove_node(&vma->node);
3927
err_free_vma:
B
Ben Widawsky 已提交
3928
	i915_gem_vma_destroy(vma);
3929
	vma = ERR_PTR(ret);
3930
err_unpin:
B
Ben Widawsky 已提交
3931
	i915_gem_object_unpin_pages(obj);
3932
	return vma;
3933 3934
}

3935
bool
3936 3937
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3938 3939 3940 3941 3942
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3943
	if (obj->pages == NULL)
3944
		return false;
3945

3946 3947 3948 3949
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3950
	if (obj->stolen || obj->phys_handle)
3951
		return false;
3952

3953 3954 3955 3956 3957 3958 3959 3960
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3961 3962
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3963
		return false;
3964
	}
3965

C
Chris Wilson 已提交
3966
	trace_i915_gem_object_clflush(obj);
3967
	drm_clflush_sg(obj->pages);
3968
	obj->cache_dirty = false;
3969 3970

	return true;
3971 3972 3973 3974
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3975
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3976
{
C
Chris Wilson 已提交
3977 3978
	uint32_t old_write_domain;

3979
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3980 3981
		return;

3982
	/* No actual flushing is required for the GTT write domain.  Writes
3983 3984
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3985 3986 3987 3988
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3989
	 */
3990 3991
	wmb();

3992 3993
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3994

3995
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3996

C
Chris Wilson 已提交
3997
	trace_i915_gem_object_change_domain(obj,
3998
					    obj->base.read_domains,
C
Chris Wilson 已提交
3999
					    old_write_domain);
4000 4001 4002 4003
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
4004
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4005
{
C
Chris Wilson 已提交
4006
	uint32_t old_write_domain;
4007

4008
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4009 4010
		return;

4011
	if (i915_gem_clflush_object(obj, obj->pin_display))
4012
		i915_gem_chipset_flush(to_i915(obj->base.dev));
4013

4014 4015
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
4016

4017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4018

C
Chris Wilson 已提交
4019
	trace_i915_gem_object_change_domain(obj,
4020
					    obj->base.read_domains,
C
Chris Wilson 已提交
4021
					    old_write_domain);
4022 4023
}

4024 4025
/**
 * Moves a single object to the GTT read, and possibly write domain.
4026 4027
 * @obj: object to act on
 * @write: ask for write access or read only
4028 4029 4030 4031
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
4032
int
4033
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4034
{
4035 4036 4037
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4038
	uint32_t old_write_domain, old_read_domains;
4039
	struct i915_vma *vma;
4040
	int ret;
4041

4042 4043 4044
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4045
	ret = i915_gem_object_wait_rendering(obj, !write);
4046 4047 4048
	if (ret)
		return ret;

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4061
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4062

4063 4064 4065 4066 4067 4068 4069
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4070 4071
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4072

4073 4074 4075
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4076 4077
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4078
	if (write) {
4079 4080 4081
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4082 4083
	}

C
Chris Wilson 已提交
4084 4085 4086 4087
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4088
	/* And bump the LRU for this access */
4089 4090
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4091
		list_move_tail(&vma->vm_link,
4092
			       &ggtt->base.inactive_list);
4093

4094 4095 4096
	return 0;
}

4097 4098
/**
 * Changes the cache-level of an object across all VMA.
4099 4100
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4112 4113 4114
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4115
	struct drm_device *dev = obj->base.dev;
4116
	struct i915_vma *vma, *next;
4117
	bool bound = false;
4118
	int ret = 0;
4119 4120

	if (obj->cache_level == cache_level)
4121
		goto out;
4122

4123 4124 4125 4126 4127
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4128
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4129 4130 4131 4132 4133 4134 4135 4136
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4137
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4138
			ret = i915_vma_unbind(vma);
4139 4140
			if (ret)
				return ret;
4141 4142
		} else
			bound = true;
4143 4144
	}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4157
		ret = i915_gem_object_wait_rendering(obj, false);
4158 4159 4160
		if (ret)
			return ret;

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4178 4179 4180
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4181 4182 4183 4184 4185 4186 4187 4188
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4189 4190
		}

4191
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4192 4193 4194 4195 4196 4197 4198
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4199 4200
	}

4201
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4202 4203 4204
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4205
out:
4206 4207 4208 4209
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4210
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4211
		if (i915_gem_clflush_object(obj, true))
4212
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4213 4214 4215 4216 4217
	}

	return 0;
}

B
Ben Widawsky 已提交
4218 4219
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4220
{
B
Ben Widawsky 已提交
4221
	struct drm_i915_gem_caching *args = data;
4222 4223
	struct drm_i915_gem_object *obj;

4224
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4225 4226
	if (&obj->base == NULL)
		return -ENOENT;
4227

4228 4229 4230 4231 4232 4233
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4234 4235 4236 4237
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4238 4239 4240 4241
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4242

4243 4244
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4245 4246
}

B
Ben Widawsky 已提交
4247 4248
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4249
{
4250
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
4251
	struct drm_i915_gem_caching *args = data;
4252 4253 4254 4255
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4256 4257
	switch (args->caching) {
	case I915_CACHING_NONE:
4258 4259
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4260
	case I915_CACHING_CACHED:
4261 4262 4263 4264 4265 4266
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4267
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4268 4269
			return -ENODEV;

4270 4271
		level = I915_CACHE_LLC;
		break;
4272 4273 4274
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4275 4276 4277 4278
	default:
		return -EINVAL;
	}

4279 4280
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4281 4282
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4283
		goto rpm_put;
B
Ben Widawsky 已提交
4284

4285
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4296 4297 4298
rpm_put:
	intel_runtime_pm_put(dev_priv);

4299 4300 4301
	return ret;
}

4302
/*
4303 4304 4305
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4306 4307
 */
int
4308 4309
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4310
				     const struct i915_ggtt_view *view)
4311
{
4312
	u32 old_read_domains, old_write_domain;
4313 4314
	int ret;

4315 4316 4317
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4318
	obj->pin_display++;
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4329 4330
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4331
	if (ret)
4332
		goto err_unpin_display;
4333

4334 4335 4336 4337
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4338 4339 4340
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4341
	if (ret)
4342
		goto err_unpin_display;
4343

4344
	i915_gem_object_flush_cpu_write_domain(obj);
4345

4346
	old_write_domain = obj->base.write_domain;
4347
	old_read_domains = obj->base.read_domains;
4348 4349 4350 4351

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4352
	obj->base.write_domain = 0;
4353
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4354 4355 4356

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4357
					    old_write_domain);
4358 4359

	return 0;
4360 4361

err_unpin_display:
4362
	obj->pin_display--;
4363 4364 4365 4366
	return ret;
}

void
4367 4368
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4369
{
4370 4371 4372
	if (WARN_ON(obj->pin_display == 0))
		return;

4373 4374
	i915_gem_object_ggtt_unpin_view(obj, view);

4375
	obj->pin_display--;
4376 4377
}

4378 4379
/**
 * Moves a single object to the CPU read, and possibly write domain.
4380 4381
 * @obj: object to act on
 * @write: requesting write or read-only access
4382 4383 4384 4385
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4386
int
4387
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4388
{
C
Chris Wilson 已提交
4389
	uint32_t old_write_domain, old_read_domains;
4390 4391
	int ret;

4392 4393 4394
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4395
	ret = i915_gem_object_wait_rendering(obj, !write);
4396 4397 4398
	if (ret)
		return ret;

4399
	i915_gem_object_flush_gtt_write_domain(obj);
4400

4401 4402
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4403

4404
	/* Flush the CPU cache if it's still invalid. */
4405
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4406
		i915_gem_clflush_object(obj, false);
4407

4408
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4409 4410 4411 4412 4413
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4414
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4415 4416 4417 4418 4419

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4420 4421
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422
	}
4423

C
Chris Wilson 已提交
4424 4425 4426 4427
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4428 4429 4430
	return 0;
}

4431 4432 4433
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4434 4435 4436 4437
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4438 4439 4440
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4441
static int
4442
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4443
{
4444
	struct drm_i915_private *dev_priv = to_i915(dev);
4445
	struct drm_i915_file_private *file_priv = file->driver_priv;
4446
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4447
	struct drm_i915_gem_request *request, *target = NULL;
4448
	int ret;
4449

4450 4451 4452 4453
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4454 4455 4456
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4457

4458
	spin_lock(&file_priv->mm.lock);
4459
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4460 4461
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4462

4463 4464 4465 4466 4467 4468 4469
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4470
		target = request;
4471
	}
4472 4473
	if (target)
		i915_gem_request_reference(target);
4474
	spin_unlock(&file_priv->mm.lock);
4475

4476
	if (target == NULL)
4477
		return 0;
4478

4479
	ret = __i915_wait_request(target, true, NULL, NULL);
4480
	i915_gem_request_unreference(target);
4481

4482 4483 4484
	return ret;
}

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4501 4502 4503 4504
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4505 4506 4507
	return false;
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4526
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4527 4528 4529 4530

	obj->map_and_fenceable = mappable && fenceable;
}

4531 4532 4533 4534 4535 4536
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4537
{
4538
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4539
	struct i915_vma *vma;
4540
	unsigned bound;
4541 4542
	int ret;

4543 4544 4545
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4546
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4547
		return -EINVAL;
4548

4549 4550 4551
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4552 4553 4554 4555 4556 4557
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4558
	if (vma) {
B
Ben Widawsky 已提交
4559 4560 4561
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4562
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4563
			WARN(vma->pin_count,
4564
			     "bo is already pinned in %s with incorrect alignment:"
4565
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4566
			     " obj->map_and_fenceable=%d\n",
4567
			     ggtt_view ? "ggtt" : "ppgtt",
4568 4569
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4570
			     alignment,
4571
			     !!(flags & PIN_MAPPABLE),
4572
			     obj->map_and_fenceable);
4573
			ret = i915_vma_unbind(vma);
4574 4575
			if (ret)
				return ret;
4576 4577

			vma = NULL;
4578 4579 4580
		}
	}

4581
	bound = vma ? vma->bound : 0;
4582
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4583 4584
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4585 4586
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4587 4588
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4589 4590 4591
		if (ret)
			return ret;
	}
4592

4593 4594
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4595
		__i915_vma_set_map_and_fenceable(vma);
4596 4597
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4598

4599
	vma->pin_count++;
4600 4601 4602
	return 0;
}

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4620 4621 4622 4623
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4624
	BUG_ON(!view);
4625

4626
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4627
				      alignment, flags | PIN_GLOBAL);
4628 4629
}

4630
void
4631 4632
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4633
{
4634
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4635

4636
	WARN_ON(vma->pin_count == 0);
4637
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4638

4639
	--vma->pin_count;
4640 4641 4642 4643
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4644
		    struct drm_file *file)
4645 4646
{
	struct drm_i915_gem_busy *args = data;
4647
	struct drm_i915_gem_object *obj;
4648 4649
	int ret;

4650
	ret = i915_mutex_lock_interruptible(dev);
4651
	if (ret)
4652
		return ret;
4653

4654
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4655
	if (&obj->base == NULL) {
4656 4657
		ret = -ENOENT;
		goto unlock;
4658
	}
4659

4660 4661 4662 4663
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4664
	 */
4665
	ret = i915_gem_object_flush_active(obj);
4666 4667
	if (ret)
		goto unref;
4668

4669 4670 4671 4672
	args->busy = 0;
	if (obj->active) {
		int i;

4673
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4674 4675 4676 4677
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4678
				args->busy |= 1 << (16 + req->engine->exec_id);
4679 4680
		}
		if (obj->last_write_req)
4681
			args->busy |= obj->last_write_req->engine->exec_id;
4682
	}
4683

4684
unref:
4685
	drm_gem_object_unreference(&obj->base);
4686
unlock:
4687
	mutex_unlock(&dev->struct_mutex);
4688
	return ret;
4689 4690 4691 4692 4693 4694
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4695
	return i915_gem_ring_throttle(dev, file_priv);
4696 4697
}

4698 4699 4700 4701
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4702
	struct drm_i915_private *dev_priv = to_i915(dev);
4703
	struct drm_i915_gem_madvise *args = data;
4704
	struct drm_i915_gem_object *obj;
4705
	int ret;
4706 4707 4708 4709 4710 4711 4712 4713 4714

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4715 4716 4717 4718
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4719
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4720
	if (&obj->base == NULL) {
4721 4722
		ret = -ENOENT;
		goto unlock;
4723 4724
	}

B
Ben Widawsky 已提交
4725
	if (i915_gem_obj_is_pinned(obj)) {
4726 4727
		ret = -EINVAL;
		goto out;
4728 4729
	}

4730 4731 4732 4733 4734 4735 4736 4737 4738
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4739 4740
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4741

C
Chris Wilson 已提交
4742
	/* if the object is no longer attached, discard its backing storage */
4743
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4744 4745
		i915_gem_object_truncate(obj);

4746
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4747

4748
out:
4749
	drm_gem_object_unreference(&obj->base);
4750
unlock:
4751
	mutex_unlock(&dev->struct_mutex);
4752
	return ret;
4753 4754
}

4755 4756
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4757
{
4758 4759
	int i;

4760
	INIT_LIST_HEAD(&obj->global_list);
4761
	for (i = 0; i < I915_NUM_ENGINES; i++)
4762
		INIT_LIST_HEAD(&obj->engine_list[i]);
4763
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4764
	INIT_LIST_HEAD(&obj->vma_list);
4765
	INIT_LIST_HEAD(&obj->batch_pool_link);
4766

4767 4768
	obj->ops = ops;

4769 4770 4771
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4772
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4773 4774
}

4775
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4776
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4777 4778 4779 4780
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4781
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4782
						  size_t size)
4783
{
4784
	struct drm_i915_gem_object *obj;
4785
	struct address_space *mapping;
D
Daniel Vetter 已提交
4786
	gfp_t mask;
4787
	int ret;
4788

4789
	obj = i915_gem_object_alloc(dev);
4790
	if (obj == NULL)
4791
		return ERR_PTR(-ENOMEM);
4792

4793 4794 4795
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4796

4797 4798 4799 4800 4801 4802 4803
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4804
	mapping = obj->base.filp->f_mapping;
4805
	mapping_set_gfp_mask(mapping, mask);
4806

4807
	i915_gem_object_init(obj, &i915_gem_object_ops);
4808

4809 4810
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4811

4812 4813
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4829 4830
	trace_i915_gem_object_create(obj);

4831
	return obj;
4832 4833 4834 4835 4836

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4837 4838
}

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4863
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4864
{
4865
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4866
	struct drm_device *dev = obj->base.dev;
4867
	struct drm_i915_private *dev_priv = to_i915(dev);
4868
	struct i915_vma *vma, *next;
4869

4870 4871
	intel_runtime_pm_get(dev_priv);

4872 4873
	trace_i915_gem_object_destroy(obj);

4874
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4875 4876 4877 4878
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4879 4880
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4881

4882 4883
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4884

4885
			WARN_ON(i915_vma_unbind(vma));
4886

4887 4888
			dev_priv->mm.interruptible = was_interruptible;
		}
4889 4890
	}

B
Ben Widawsky 已提交
4891 4892 4893 4894 4895
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4896 4897
	WARN_ON(obj->frontbuffer_bits);

4898 4899 4900 4901 4902
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4903 4904
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4905
	if (discard_backing_storage(obj))
4906
		obj->madv = I915_MADV_DONTNEED;
4907
	i915_gem_object_put_pages(obj);
4908
	i915_gem_object_free_mmap_offset(obj);
4909

4910 4911
	BUG_ON(obj->pages);

4912 4913
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4914

4915 4916 4917
	if (obj->ops->release)
		obj->ops->release(obj);

4918 4919
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4920

4921
	kfree(obj->bit_17);
4922
	i915_gem_object_free(obj);
4923 4924

	intel_runtime_pm_put(dev_priv);
4925 4926
}

4927 4928
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4929 4930
{
	struct i915_vma *vma;
4931
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4932 4933
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4934
			return vma;
4935 4936 4937 4938 4939 4940 4941 4942
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4943

4944
	GEM_BUG_ON(!view);
4945

4946
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4947
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4948
			return vma;
4949 4950 4951
	return NULL;
}

B
Ben Widawsky 已提交
4952 4953 4954
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4955 4956 4957 4958 4959

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4960 4961
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4962

4963
	list_del(&vma->obj_link);
4964

4965
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4966 4967
}

4968
static void
4969
i915_gem_stop_engines(struct drm_device *dev)
4970
{
4971
	struct drm_i915_private *dev_priv = to_i915(dev);
4972
	struct intel_engine_cs *engine;
4973

4974
	for_each_engine(engine, dev_priv)
4975
		dev_priv->gt.stop_engine(engine);
4976 4977
}

4978
int
4979
i915_gem_suspend(struct drm_device *dev)
4980
{
4981
	struct drm_i915_private *dev_priv = to_i915(dev);
4982
	int ret = 0;
4983

4984
	mutex_lock(&dev->struct_mutex);
4985
	ret = i915_gem_wait_for_idle(dev_priv);
4986
	if (ret)
4987
		goto err;
4988

4989
	i915_gem_retire_requests(dev_priv);
4990

4991
	i915_gem_stop_engines(dev);
4992
	i915_gem_context_lost(dev_priv);
4993 4994
	mutex_unlock(&dev->struct_mutex);

4995
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4996 4997
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4998

4999 5000 5001
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5002
	WARN_ON(dev_priv->gt.awake);
5003

5004
	return 0;
5005 5006 5007 5008

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
5009 5010
}

5011 5012
void i915_gem_init_swizzling(struct drm_device *dev)
{
5013
	struct drm_i915_private *dev_priv = to_i915(dev);
5014

5015
	if (INTEL_INFO(dev)->gen < 5 ||
5016 5017 5018 5019 5020 5021
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5022 5023 5024
	if (IS_GEN5(dev))
		return;

5025 5026
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
5027
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5028
	else if (IS_GEN7(dev))
5029
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5030 5031
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5032 5033
	else
		BUG();
5034
}
D
Daniel Vetter 已提交
5035

5036 5037
static void init_unused_ring(struct drm_device *dev, u32 base)
{
5038
	struct drm_i915_private *dev_priv = to_i915(dev);
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5063
int i915_gem_init_engines(struct drm_device *dev)
5064
{
5065
	struct drm_i915_private *dev_priv = to_i915(dev);
5066
	int ret;
5067

5068
	ret = intel_init_render_ring_buffer(dev);
5069
	if (ret)
5070
		return ret;
5071 5072

	if (HAS_BSD(dev)) {
5073
		ret = intel_init_bsd_ring_buffer(dev);
5074 5075
		if (ret)
			goto cleanup_render_ring;
5076
	}
5077

5078
	if (HAS_BLT(dev)) {
5079 5080 5081 5082 5083
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5084 5085 5086 5087 5088 5089
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5090 5091 5092 5093 5094
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5095

5096 5097
	return 0;

B
Ben Widawsky 已提交
5098
cleanup_vebox_ring:
5099
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5100
cleanup_blt_ring:
5101
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5102
cleanup_bsd_ring:
5103
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5104
cleanup_render_ring:
5105
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5106 5107 5108 5109 5110 5111 5112

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5113
	struct drm_i915_private *dev_priv = to_i915(dev);
5114
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5115
	int ret;
5116

5117 5118 5119
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5120
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5121
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5122

5123 5124 5125
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5126

5127
	if (HAS_PCH_NOP(dev)) {
5128 5129 5130 5131 5132 5133 5134 5135 5136
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5137 5138
	}

5139 5140
	i915_gem_init_swizzling(dev);

5141 5142 5143 5144 5145 5146 5147 5148
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5149
	BUG_ON(!dev_priv->kernel_context);
5150

5151 5152 5153 5154 5155 5156 5157
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5158
	for_each_engine(engine, dev_priv) {
5159
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5160
		if (ret)
5161
			goto out;
D
Daniel Vetter 已提交
5162
	}
5163

5164 5165
	intel_mocs_init_l3cc_table(dev);

5166
	/* We can't enable contexts until all firmware is loaded */
5167
	ret = intel_guc_setup(dev);
5168 5169 5170
	if (ret)
		goto out;

5171 5172
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173
	return ret;
5174 5175
}

5176 5177
int i915_gem_init(struct drm_device *dev)
{
5178
	struct drm_i915_private *dev_priv = to_i915(dev);
5179 5180 5181
	int ret;

	mutex_lock(&dev->struct_mutex);
5182

5183
	if (!i915.enable_execlists) {
5184
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5185 5186 5187
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5188
	} else {
5189
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5190 5191 5192
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5193 5194
	}

5195 5196 5197 5198 5199 5200 5201 5202
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5203
	i915_gem_init_userptr(dev_priv);
5204
	i915_gem_init_ggtt(dev);
5205

5206
	ret = i915_gem_context_init(dev);
5207 5208
	if (ret)
		goto out_unlock;
5209

5210
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5211
	if (ret)
5212
		goto out_unlock;
5213

5214
	ret = i915_gem_init_hw(dev);
5215 5216 5217 5218 5219 5220
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5221
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5222
		ret = 0;
5223
	}
5224 5225

out_unlock:
5226
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5227
	mutex_unlock(&dev->struct_mutex);
5228

5229
	return ret;
5230 5231
}

5232
void
5233
i915_gem_cleanup_engines(struct drm_device *dev)
5234
{
5235
	struct drm_i915_private *dev_priv = to_i915(dev);
5236
	struct intel_engine_cs *engine;
5237

5238
	for_each_engine(engine, dev_priv)
5239
		dev_priv->gt.cleanup_engine(engine);
5240 5241
}

5242
static void
5243
init_engine_lists(struct intel_engine_cs *engine)
5244
{
5245 5246
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5247 5248
}

5249 5250 5251
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5252
	struct drm_device *dev = &dev_priv->drm;
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5263
	if (intel_vgpu_active(dev_priv))
5264 5265 5266 5267 5268 5269 5270
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
5271 5272
}

5273
void
5274
i915_gem_load_init(struct drm_device *dev)
5275
{
5276
	struct drm_i915_private *dev_priv = to_i915(dev);
5277 5278
	int i;

5279
	dev_priv->objects =
5280 5281 5282 5283
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5284 5285 5286 5287 5288
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5289 5290 5291 5292 5293
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5294

B
Ben Widawsky 已提交
5295
	INIT_LIST_HEAD(&dev_priv->vm_list);
5296
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5297 5298
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5299
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5300 5301
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5302
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5303
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5304
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5305
			  i915_gem_retire_work_handler);
5306
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5307
			  i915_gem_idle_work_handler);
5308
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5309
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5310

5311 5312
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5313
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5314

5315
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5316

5317 5318
	dev_priv->mm.interruptible = true;

5319
	mutex_init(&dev_priv->fb_tracking.lock);
5320
}
5321

5322 5323 5324 5325 5326 5327 5328 5329 5330
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5359
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5360
{
5361
	struct drm_i915_file_private *file_priv = file->driver_priv;
5362 5363 5364 5365 5366

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5367
	spin_lock(&file_priv->mm.lock);
5368 5369 5370 5371 5372 5373 5374 5375 5376
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5377
	spin_unlock(&file_priv->mm.lock);
5378

5379
	if (!list_empty(&file_priv->rps.link)) {
5380
		spin_lock(&to_i915(dev)->rps.client_lock);
5381
		list_del(&file_priv->rps.link);
5382
		spin_unlock(&to_i915(dev)->rps.client_lock);
5383
	}
5384 5385 5386 5387 5388
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5389
	int ret;
5390 5391 5392 5393 5394 5395 5396 5397

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5398
	file_priv->dev_priv = to_i915(dev);
5399
	file_priv->file = file;
5400
	INIT_LIST_HEAD(&file_priv->rps.link);
5401 5402 5403 5404

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5405 5406
	file_priv->bsd_ring = -1;

5407 5408 5409
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5410

5411
	return ret;
5412 5413
}

5414 5415
/**
 * i915_gem_track_fb - update frontbuffer tracking
5416 5417 5418
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5419 5420 5421 5422
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5440
/* All the new VM stuff */
5441 5442
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5443
{
5444
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5445 5446
	struct i915_vma *vma;

5447
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5448

5449
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5450
		if (vma->is_ggtt &&
5451 5452 5453
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5454 5455
			return vma->node.start;
	}
5456

5457 5458
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5459 5460 5461
	return -1;
}

5462 5463
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5464 5465 5466
{
	struct i915_vma *vma;

5467
	list_for_each_entry(vma, &o->vma_list, obj_link)
5468
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5469 5470
			return vma->node.start;

5471
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5472 5473 5474 5475 5476 5477 5478 5479
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5480
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5481
		if (vma->is_ggtt &&
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5492
				  const struct i915_ggtt_view *view)
5493 5494 5495
{
	struct i915_vma *vma;

5496
	list_for_each_entry(vma, &o->vma_list, obj_link)
5497
		if (vma->is_ggtt &&
5498
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5499
		    drm_mm_node_allocated(&vma->node))
5500 5501 5502 5503 5504 5505 5506
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5507
	struct i915_vma *vma;
5508

5509
	list_for_each_entry(vma, &o->vma_list, obj_link)
5510
		if (drm_mm_node_allocated(&vma->node))
5511 5512 5513 5514 5515
			return true;

	return false;
}

5516
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5517 5518 5519
{
	struct i915_vma *vma;

5520
	GEM_BUG_ON(list_empty(&o->vma_list));
5521

5522
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5523
		if (vma->is_ggtt &&
5524
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5525
			return vma->node.size;
5526
	}
5527

5528 5529 5530
	return 0;
}

5531
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5532 5533
{
	struct i915_vma *vma;
5534
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5535 5536
		if (vma->pin_count > 0)
			return true;
5537

5538
	return false;
5539
}
5540

5541 5542 5543 5544 5545 5546 5547
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5548
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5549 5550 5551 5552 5553 5554 5555
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5566
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5567
	if (IS_ERR(obj))
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5581
	obj->dirty = 1;		/* Backing store is now out of date */
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}