i915_gem.c 143.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763 764 765
	if (!obj->base.filp)
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301
	if (!obj->base.filp || cpu_write_needs_clflush(obj)) {
1302
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1303 1304 1305
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1306
	}
1307

1308
	if (ret == -EFAULT) {
1309 1310
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1311
		else if (obj->base.filp)
1312
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1313 1314
		else
			ret = -ENODEV;
1315
	}
1316

1317
out:
1318
	drm_gem_object_unreference(&obj->base);
1319
unlock:
1320
	mutex_unlock(&dev->struct_mutex);
1321 1322 1323
put_rpm:
	intel_runtime_pm_put(dev_priv);

1324 1325 1326
	return ret;
}

1327 1328
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1329
{
1330 1331
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1332

1333
	if (__i915_reset_in_progress(reset_counter)) {
1334 1335 1336 1337 1338
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1339
		return -EAGAIN;
1340 1341 1342 1343 1344
	}

	return 0;
}

1345 1346 1347 1348 1349 1350
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1351
		       struct intel_engine_cs *engine)
1352
{
1353
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1388
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1389
{
1390
	unsigned long timeout;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1402

1403
	if (req->engine->irq_refcount)
1404 1405
		return -EBUSY;

1406 1407 1408 1409
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1410
	timeout = local_clock_us(&cpu) + 5;
1411
	while (!need_resched()) {
D
Daniel Vetter 已提交
1412
		if (i915_gem_request_completed(req, true))
1413 1414
			return 0;

1415 1416 1417
		if (signal_pending_state(state, current))
			break;

1418
		if (busywait_stop(timeout, cpu))
1419
			break;
1420

1421 1422
		cpu_relax_lowlatency();
	}
1423

D
Daniel Vetter 已提交
1424
	if (i915_gem_request_completed(req, false))
1425 1426 1427
		return 0;

	return -EAGAIN;
1428 1429
}

1430
/**
1431 1432
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1433 1434
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1435
 * @rps: RPS client
1436
 *
1437 1438 1439 1440 1441 1442 1443
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1444
 * Returns 0 if the request was found within the alloted time. Else returns the
1445 1446
 * errno with remaining time filled in timeout argument.
 */
1447
int __i915_wait_request(struct drm_i915_gem_request *req,
1448
			bool interruptible,
1449
			s64 *timeout,
1450
			struct intel_rps_client *rps)
1451
{
1452
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1453
	struct drm_i915_private *dev_priv = req->i915;
1454
	const bool irq_test_in_progress =
1455
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1456
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1457
	DEFINE_WAIT(wait);
1458
	unsigned long timeout_expire;
1459
	s64 before = 0; /* Only to silence a compiler warning. */
1460 1461
	int ret;

1462
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1463

1464 1465 1466
	if (list_empty(&req->list))
		return 0;

1467
	if (i915_gem_request_completed(req, true))
1468 1469
		return 0;

1470 1471 1472 1473 1474 1475 1476 1477 1478
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1479 1480 1481 1482 1483

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1484
	}
1485

1486
	if (INTEL_INFO(dev_priv)->gen >= 6)
1487
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1488

1489
	trace_i915_gem_request_wait_begin(req);
1490 1491

	/* Optimistic spin for the next jiffie before touching IRQs */
1492
	ret = __i915_spin_request(req, state);
1493 1494 1495
	if (ret == 0)
		goto out;

1496
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1497 1498 1499 1500
		ret = -ENODEV;
		goto out;
	}

1501 1502
	for (;;) {
		struct timer_list timer;
1503

1504
		prepare_to_wait(&engine->irq_queue, &wait, state);
1505

1506
		/* We need to check whether any gpu reset happened in between
1507 1508 1509 1510 1511 1512
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1513
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1514
			ret = 0;
1515 1516
			break;
		}
1517

1518
		if (i915_gem_request_completed(req, false)) {
1519 1520 1521
			ret = 0;
			break;
		}
1522

1523
		if (signal_pending_state(state, current)) {
1524 1525 1526 1527
			ret = -ERESTARTSYS;
			break;
		}

1528
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1529 1530 1531 1532 1533
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1534
		if (timeout || missed_irq(dev_priv, engine)) {
1535 1536
			unsigned long expire;

1537
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1538
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1539 1540 1541
			mod_timer(&timer, expire);
		}

1542
		io_schedule();
1543 1544 1545 1546 1547 1548

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1549
	if (!irq_test_in_progress)
1550
		engine->irq_put(engine);
1551

1552
	finish_wait(&engine->irq_queue, &wait);
1553

1554 1555 1556
out:
	trace_i915_gem_request_wait_end(req);

1557
	if (timeout) {
1558
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1559 1560

		*timeout = tres < 0 ? 0 : tres;
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1571 1572
	}

1573
	return ret;
1574 1575
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1613 1614 1615

	put_pid(request->pid);
	request->pid = NULL;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1635
	if (request->previous_context) {
1636
		if (i915.enable_execlists)
1637 1638
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1639 1640
	}

1641
	i915_gem_context_unreference(request->ctx);
1642 1643 1644 1645 1646 1647
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1648
	struct intel_engine_cs *engine = req->engine;
1649 1650
	struct drm_i915_gem_request *tmp;

1651
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1666
/**
1667
 * Waits for a request to be signaled, and cleans up the
1668
 * request and object lists appropriately for that event.
1669
 * @req: request to wait on
1670 1671
 */
int
1672
i915_wait_request(struct drm_i915_gem_request *req)
1673
{
1674
	struct drm_i915_private *dev_priv = req->i915;
1675
	bool interruptible;
1676 1677
	int ret;

1678 1679
	interruptible = dev_priv->mm.interruptible;

1680
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1681

1682
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1683 1684
	if (ret)
		return ret;
1685

1686 1687 1688 1689
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1690 1691 1692
	return 0;
}

1693 1694 1695
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1696 1697
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1698
 */
1699
int
1700 1701 1702
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1703
	int ret, i;
1704

1705
	if (!obj->active)
1706 1707
		return 0;

1708 1709 1710 1711 1712
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1713

1714
			i = obj->last_write_req->engine->id;
1715 1716 1717 1718 1719 1720
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1721
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1722 1723 1724 1725 1726 1727 1728 1729 1730
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1731
		GEM_BUG_ON(obj->active);
1732 1733 1734 1735 1736 1737 1738 1739 1740
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1741
	int ring = req->engine->id;
1742 1743 1744 1745 1746 1747

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1748 1749
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1750 1751
}

1752 1753 1754 1755 1756
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1757
					    struct intel_rps_client *rps,
1758 1759 1760 1761
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1762
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1763
	int ret, i, n = 0;
1764 1765 1766 1767

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1768
	if (!obj->active)
1769 1770
		return 0;

1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1780
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1791
	mutex_unlock(&dev->struct_mutex);
1792
	ret = 0;
1793
	for (i = 0; ret == 0 && i < n; i++)
1794
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1795 1796
	mutex_lock(&dev->struct_mutex);

1797 1798 1799 1800 1801 1802 1803
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1804 1805
}

1806 1807 1808 1809 1810 1811
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1812
/**
1813 1814
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1815 1816 1817
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1818 1819 1820
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1821
			  struct drm_file *file)
1822 1823
{
	struct drm_i915_gem_set_domain *args = data;
1824
	struct drm_i915_gem_object *obj;
1825 1826
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1827 1828
	int ret;

1829
	/* Only handle setting domains to types used by the CPU. */
1830
	if (write_domain & I915_GEM_GPU_DOMAINS)
1831 1832
		return -EINVAL;

1833
	if (read_domains & I915_GEM_GPU_DOMAINS)
1834 1835 1836 1837 1838 1839 1840 1841
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1842
	ret = i915_mutex_lock_interruptible(dev);
1843
	if (ret)
1844
		return ret;
1845

1846
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1847
	if (&obj->base == NULL) {
1848 1849
		ret = -ENOENT;
		goto unlock;
1850
	}
1851

1852 1853 1854 1855
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1856
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1857
							  to_rps_client(file),
1858
							  !write_domain);
1859 1860 1861
	if (ret)
		goto unref;

1862
	if (read_domains & I915_GEM_DOMAIN_GTT)
1863
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1864
	else
1865
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1866

1867 1868 1869 1870 1871
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1872
unref:
1873
	drm_gem_object_unreference(&obj->base);
1874
unlock:
1875 1876 1877 1878 1879 1880
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1881 1882 1883
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1884 1885 1886
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1887
			 struct drm_file *file)
1888 1889
{
	struct drm_i915_gem_sw_finish *args = data;
1890
	struct drm_i915_gem_object *obj;
1891 1892
	int ret = 0;

1893
	ret = i915_mutex_lock_interruptible(dev);
1894
	if (ret)
1895
		return ret;
1896

1897
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1898
	if (&obj->base == NULL) {
1899 1900
		ret = -ENOENT;
		goto unlock;
1901 1902 1903
	}

	/* Pinned buffers may be scanout, so flush the cache */
1904
	if (obj->pin_display)
1905
		i915_gem_object_flush_cpu_write_domain(obj);
1906

1907
	drm_gem_object_unreference(&obj->base);
1908
unlock:
1909 1910 1911 1912 1913
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1914 1915 1916 1917 1918
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1919 1920 1921
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1932 1933 1934
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1935
		    struct drm_file *file)
1936 1937 1938 1939 1940
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1941 1942 1943
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1944
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1945 1946
		return -ENODEV;

1947
	obj = drm_gem_object_lookup(file, args->handle);
1948
	if (obj == NULL)
1949
		return -ENOENT;
1950

1951 1952 1953 1954 1955 1956 1957 1958
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1959
	addr = vm_mmap(obj->filp, 0, args->size,
1960 1961
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1962 1963 1964 1965
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1966 1967 1968 1969
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1970 1971 1972 1973 1974 1975 1976 1977
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1978
	drm_gem_object_unreference_unlocked(obj);
1979 1980 1981 1982 1983 1984 1985 1986
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1987 1988
/**
 * i915_gem_fault - fault a page into the GTT
1989 1990
 * @vma: VMA in question
 * @vmf: fault info
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2005 2006
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2007 2008
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2009
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2010 2011 2012
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2013
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2014

2015 2016
	intel_runtime_pm_get(dev_priv);

2017 2018 2019 2020
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2021 2022 2023
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2024

C
Chris Wilson 已提交
2025 2026
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2027 2028 2029 2030 2031 2032 2033 2034 2035
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2036 2037
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2038
		ret = -EFAULT;
2039 2040 2041
		goto unlock;
	}

2042
	/* Use a partial view if the object is bigger than the aperture. */
2043
	if (obj->base.size >= ggtt->mappable_end &&
2044
	    obj->tiling_mode == I915_TILING_NONE) {
2045
		static const unsigned int chunk_size = 256; // 1 MiB
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2059 2060
	if (ret)
		goto unlock;
2061

2062 2063 2064
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2065

2066
	ret = i915_gem_object_get_fence(obj);
2067
	if (ret)
2068
		goto unpin;
2069

2070
	/* Finally, remap it using the new GTT offset */
2071
	pfn = ggtt->mappable_base +
2072
		i915_gem_obj_ggtt_offset_view(obj, &view);
2073
	pfn >>= PAGE_SHIFT;
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2084

2085 2086
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2087 2088 2089 2090 2091
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2113
unpin:
2114
	i915_gem_object_ggtt_unpin_view(obj, &view);
2115
unlock:
2116
	mutex_unlock(&dev->struct_mutex);
2117
out:
2118
	switch (ret) {
2119
	case -EIO:
2120 2121 2122 2123 2124 2125 2126
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2127 2128 2129
			ret = VM_FAULT_SIGBUS;
			break;
		}
2130
	case -EAGAIN:
D
Daniel Vetter 已提交
2131 2132 2133 2134
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2135
		 */
2136 2137
	case 0:
	case -ERESTARTSYS:
2138
	case -EINTR:
2139 2140 2141 2142 2143
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2144 2145
		ret = VM_FAULT_NOPAGE;
		break;
2146
	case -ENOMEM:
2147 2148
		ret = VM_FAULT_OOM;
		break;
2149
	case -ENOSPC:
2150
	case -EFAULT:
2151 2152
		ret = VM_FAULT_SIGBUS;
		break;
2153
	default:
2154
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2155 2156
		ret = VM_FAULT_SIGBUS;
		break;
2157
	}
2158 2159 2160

	intel_runtime_pm_put(dev_priv);
	return ret;
2161 2162
}

2163 2164 2165 2166
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2167
 * Preserve the reservation of the mmapping with the DRM core code, but
2168 2169 2170 2171 2172 2173 2174 2175 2176
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2177
void
2178
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2179
{
2180 2181 2182 2183 2184 2185
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2186 2187
	if (!obj->fault_mappable)
		return;
2188

2189 2190
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2201
	obj->fault_mappable = false;
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2213
uint32_t
2214
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2215
{
2216
	uint32_t gtt_size;
2217 2218

	if (INTEL_INFO(dev)->gen >= 4 ||
2219 2220
	    tiling_mode == I915_TILING_NONE)
		return size;
2221 2222

	/* Previous chips need a power-of-two fence region when tiling */
2223
	if (IS_GEN3(dev))
2224
		gtt_size = 1024*1024;
2225
	else
2226
		gtt_size = 512*1024;
2227

2228 2229
	while (gtt_size < size)
		gtt_size <<= 1;
2230

2231
	return gtt_size;
2232 2233
}

2234 2235
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2236 2237 2238 2239
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2240 2241
 *
 * Return the required GTT alignment for an object, taking into account
2242
 * potential fence register mapping.
2243
 */
2244 2245 2246
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2247 2248 2249 2250 2251
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2252
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2253
	    tiling_mode == I915_TILING_NONE)
2254 2255
		return 4096;

2256 2257 2258 2259
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2260
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2261 2262
}

2263 2264 2265 2266 2267
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2268 2269
	dev_priv->mm.shrinker_no_lock_stealing = true;

2270 2271
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2272
		goto out;
2273 2274 2275 2276 2277 2278 2279 2280

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2281 2282 2283 2284 2285
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2286 2287
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2288
		goto out;
2289 2290

	i915_gem_shrink_all(dev_priv);
2291 2292 2293 2294 2295
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2296 2297 2298 2299 2300 2301 2302
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2303
int
2304 2305
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2306
		  uint32_t handle,
2307
		  uint64_t *offset)
2308
{
2309
	struct drm_i915_gem_object *obj;
2310 2311
	int ret;

2312
	ret = i915_mutex_lock_interruptible(dev);
2313
	if (ret)
2314
		return ret;
2315

2316
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2317
	if (&obj->base == NULL) {
2318 2319 2320
		ret = -ENOENT;
		goto unlock;
	}
2321

2322
	if (obj->madv != I915_MADV_WILLNEED) {
2323
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2324
		ret = -EFAULT;
2325
		goto out;
2326 2327
	}

2328 2329 2330
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2331

2332
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2333

2334
out:
2335
	drm_gem_object_unreference(&obj->base);
2336
unlock:
2337
	mutex_unlock(&dev->struct_mutex);
2338
	return ret;
2339 2340
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2362
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2363 2364
}

D
Daniel Vetter 已提交
2365 2366 2367
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2368
{
2369
	i915_gem_object_free_mmap_offset(obj);
2370

2371 2372
	if (obj->base.filp == NULL)
		return;
2373

D
Daniel Vetter 已提交
2374 2375 2376 2377 2378
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2379
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2380 2381
	obj->madv = __I915_MADV_PURGED;
}
2382

2383 2384 2385
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2386
{
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2401 2402
}

2403
static void
2404
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2405
{
2406 2407
	struct sgt_iter sgt_iter;
	struct page *page;
2408
	int ret;
2409

2410
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2411

C
Chris Wilson 已提交
2412
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2413
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2414 2415 2416
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2417
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2418 2419 2420
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2421 2422
	i915_gem_gtt_finish_object(obj);

2423
	if (i915_gem_object_needs_bit17_swizzle(obj))
2424 2425
		i915_gem_object_save_bit_17_swizzle(obj);

2426 2427
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2428

2429
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2430
		if (obj->dirty)
2431
			set_page_dirty(page);
2432

2433
		if (obj->madv == I915_MADV_WILLNEED)
2434
			mark_page_accessed(page);
2435

2436
		put_page(page);
2437
	}
2438
	obj->dirty = 0;
2439

2440 2441
	sg_free_table(obj->pages);
	kfree(obj->pages);
2442
}
C
Chris Wilson 已提交
2443

2444
int
2445 2446 2447 2448
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2449
	if (obj->pages == NULL)
2450 2451
		return 0;

2452 2453 2454
	if (obj->pages_pin_count)
		return -EBUSY;

2455
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2456

2457 2458 2459
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2460
	list_del(&obj->global_list);
2461

2462
	if (obj->mapping) {
2463 2464 2465 2466
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2467 2468 2469
		obj->mapping = NULL;
	}

2470
	ops->put_pages(obj);
2471
	obj->pages = NULL;
2472

2473
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2474 2475 2476 2477

	return 0;
}

2478
static int
C
Chris Wilson 已提交
2479
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2480
{
C
Chris Wilson 已提交
2481
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2482 2483
	int page_count, i;
	struct address_space *mapping;
2484 2485
	struct sg_table *st;
	struct scatterlist *sg;
2486
	struct sgt_iter sgt_iter;
2487
	struct page *page;
2488
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2489
	int ret;
C
Chris Wilson 已提交
2490
	gfp_t gfp;
2491

C
Chris Wilson 已提交
2492 2493 2494 2495 2496 2497 2498
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2499 2500 2501 2502
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2503
	page_count = obj->base.size / PAGE_SIZE;
2504 2505
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2506
		return -ENOMEM;
2507
	}
2508

2509 2510 2511 2512 2513
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2514
	mapping = file_inode(obj->base.filp)->i_mapping;
2515
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2516
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2517 2518 2519
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2520 2521
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2522 2523 2524 2525 2526
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2527 2528 2529 2530 2531 2532 2533 2534
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2535
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2536 2537
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2538
				goto err_pages;
I
Imre Deak 已提交
2539
			}
C
Chris Wilson 已提交
2540
		}
2541 2542 2543 2544 2545 2546 2547 2548
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2549 2550 2551 2552 2553 2554 2555 2556 2557
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2558 2559 2560

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2561
	}
2562 2563 2564 2565
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2566 2567
	obj->pages = st;

I
Imre Deak 已提交
2568 2569 2570 2571
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2572
	if (i915_gem_object_needs_bit17_swizzle(obj))
2573 2574
		i915_gem_object_do_bit_17_swizzle(obj);

2575 2576 2577 2578
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2579 2580 2581
	return 0;

err_pages:
2582
	sg_mark_end(sg);
2583 2584
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2585 2586
	sg_free_table(st);
	kfree(st);
2587 2588 2589 2590 2591 2592 2593 2594 2595

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2596 2597 2598 2599
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2616
	if (obj->pages)
2617 2618
		return 0;

2619
	if (obj->madv != I915_MADV_WILLNEED) {
2620
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2621
		return -EFAULT;
2622 2623
	}

2624 2625
	BUG_ON(obj->pages_pin_count);

2626 2627 2628 2629
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2630
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2631 2632 2633 2634

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2635
	return 0;
2636 2637
}

2638 2639 2640 2641 2642
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2643 2644
	struct sgt_iter sgt_iter;
	struct page *page;
2645 2646
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2647 2648 2649 2650 2651 2652 2653
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2654 2655 2656 2657 2658 2659
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2660

2661 2662
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2663 2664 2665 2666 2667 2668

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2669 2670
	if (pages != stack_pages)
		drm_free_large(pages);
2671 2672 2673 2674 2675

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2688 2689 2690
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2691 2692 2693 2694 2695 2696 2697 2698
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2699
void i915_vma_move_to_active(struct i915_vma *vma,
2700
			     struct drm_i915_gem_request *req)
2701
{
2702
	struct drm_i915_gem_object *obj = vma->obj;
2703
	struct intel_engine_cs *engine;
2704

2705
	engine = i915_gem_request_get_engine(req);
2706 2707

	/* Add a reference if we're newly entering the active list. */
2708
	if (obj->active == 0)
2709
		drm_gem_object_reference(&obj->base);
2710
	obj->active |= intel_engine_flag(engine);
2711

2712
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2713
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2714

2715
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2716 2717
}

2718 2719
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2720
{
2721 2722
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2723 2724

	i915_gem_request_assign(&obj->last_write_req, NULL);
2725
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2726 2727
}

2728
static void
2729
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2730
{
2731
	struct i915_vma *vma;
2732

2733 2734
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2735

2736
	list_del_init(&obj->engine_list[ring]);
2737 2738
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2739
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2740 2741 2742 2743 2744
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2745

2746 2747 2748 2749 2750 2751 2752
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2753 2754 2755
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2756
	}
2757

2758
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2759
	drm_gem_object_unreference(&obj->base);
2760 2761
}

2762
static int
2763
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2764
{
2765
	struct intel_engine_cs *engine;
2766
	int ret;
2767

2768
	/* Carefully retire all requests without writing to the rings */
2769
	for_each_engine(engine, dev_priv) {
2770
		ret = intel_engine_idle(engine);
2771 2772
		if (ret)
			return ret;
2773
	}
2774
	i915_gem_retire_requests(dev_priv);
2775 2776

	/* Finally reset hw state */
2777
	for_each_engine(engine, dev_priv)
2778
		intel_ring_init_seqno(engine, seqno);
2779

2780
	return 0;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2794
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2809
int
2810
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2811
{
2812 2813
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2814
		int ret = i915_gem_init_seqno(dev_priv, 0);
2815 2816
		if (ret)
			return ret;
2817

2818 2819
		dev_priv->next_seqno = 1;
	}
2820

2821
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2822
	return 0;
2823 2824
}

2825 2826 2827 2828 2829
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2830
void __i915_add_request(struct drm_i915_gem_request *request,
2831 2832
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2833
{
2834
	struct intel_engine_cs *engine;
2835
	struct drm_i915_private *dev_priv;
2836
	struct intel_ringbuffer *ringbuf;
2837
	u32 request_start;
2838
	u32 reserved_tail;
2839 2840
	int ret;

2841
	if (WARN_ON(request == NULL))
2842
		return;
2843

2844
	engine = request->engine;
2845
	dev_priv = request->i915;
2846 2847
	ringbuf = request->ringbuf;

2848 2849 2850 2851 2852
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2853
	request_start = intel_ring_get_tail(ringbuf);
2854 2855 2856
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2857 2858 2859 2860 2861 2862 2863
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2864 2865
	if (flush_caches) {
		if (i915.enable_execlists)
2866
			ret = logical_ring_flush_all_caches(request);
2867
		else
2868
			ret = intel_ring_flush_all_caches(request);
2869 2870 2871
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2872

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2895 2896 2897 2898 2899
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2900
	request->postfix = intel_ring_get_tail(ringbuf);
2901

2902
	if (i915.enable_execlists)
2903
		ret = engine->emit_request(request);
2904
	else {
2905
		ret = engine->add_request(request);
2906 2907

		request->tail = intel_ring_get_tail(ringbuf);
2908
	}
2909 2910
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2911

2912
	i915_queue_hangcheck(engine->i915);
2913

2914 2915 2916
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2917
	intel_mark_busy(dev_priv);
2918

2919
	/* Sanity check that the reserved size was large enough. */
2920 2921 2922 2923 2924 2925 2926
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2927 2928
}

2929
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2930
				   const struct i915_gem_context *ctx)
2931
{
2932
	unsigned long elapsed;
2933

2934 2935 2936
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2937 2938
		return true;

2939 2940
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2941
		if (!i915_gem_context_is_default(ctx)) {
2942
			DRM_DEBUG("context hanging too fast, banning!\n");
2943
			return true;
2944 2945 2946
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2947
			return true;
2948
		}
2949 2950 2951 2952 2953
	}

	return false;
}

2954
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2955
				  struct i915_gem_context *ctx,
2956
				  const bool guilty)
2957
{
2958 2959 2960 2961
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2962

2963 2964 2965
	hs = &ctx->hang_stats;

	if (guilty) {
2966
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2967 2968 2969 2970
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2971 2972 2973
	}
}

2974 2975 2976 2977
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2978
	kmem_cache_free(req->i915->requests, req);
2979 2980
}

2981
static inline int
2982
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2983
			 struct i915_gem_context *ctx,
2984
			 struct drm_i915_gem_request **req_out)
2985
{
2986
	struct drm_i915_private *dev_priv = engine->i915;
2987
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2988
	struct drm_i915_gem_request *req;
2989 2990
	int ret;

2991 2992 2993
	if (!req_out)
		return -EINVAL;

2994
	*req_out = NULL;
2995

2996 2997 2998 2999 3000
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3001 3002 3003
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3004 3005
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3006 3007
		return -ENOMEM;

3008
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3009 3010
	if (ret)
		goto err;
3011

3012 3013
	kref_init(&req->ref);
	req->i915 = dev_priv;
3014
	req->engine = engine;
3015
	req->reset_counter = reset_counter;
3016 3017
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3018

3019 3020 3021 3022 3023 3024 3025
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3026
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3027 3028 3029 3030 3031 3032 3033

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3034

3035
	*req_out = req;
3036
	return 0;
3037

3038 3039
err_ctx:
	i915_gem_context_unreference(ctx);
3040 3041 3042
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3059
		       struct i915_gem_context *ctx)
3060 3061 3062 3063 3064
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3065
		ctx = engine->i915->kernel_context;
3066 3067 3068 3069
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3070
struct drm_i915_gem_request *
3071
i915_gem_find_active_request(struct intel_engine_cs *engine)
3072
{
3073 3074
	struct drm_i915_gem_request *request;

3075
	list_for_each_entry(request, &engine->request_list, list) {
3076
		if (i915_gem_request_completed(request, false))
3077
			continue;
3078

3079
		return request;
3080
	}
3081 3082 3083 3084

	return NULL;
}

3085
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3086
				       struct intel_engine_cs *engine)
3087 3088 3089 3090
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3091
	request = i915_gem_find_active_request(engine);
3092 3093 3094 3095

	if (request == NULL)
		return;

3096
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3097

3098
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3099

3100
	list_for_each_entry_continue(request, &engine->request_list, list)
3101
		i915_set_reset_status(dev_priv, request->ctx, false);
3102
}
3103

3104
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3105
					struct intel_engine_cs *engine)
3106
{
3107 3108
	struct intel_ringbuffer *buffer;

3109
	while (!list_empty(&engine->active_list)) {
3110
		struct drm_i915_gem_object *obj;
3111

3112
		obj = list_first_entry(&engine->active_list,
3113
				       struct drm_i915_gem_object,
3114
				       engine_list[engine->id]);
3115

3116
		i915_gem_object_retire__read(obj, engine->id);
3117
	}
3118

3119 3120 3121 3122 3123 3124
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3125
	if (i915.enable_execlists) {
3126 3127
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3128

3129
		intel_execlists_cancel_requests(engine);
3130 3131
	}

3132 3133 3134 3135 3136 3137 3138
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3139
	while (!list_empty(&engine->request_list)) {
3140 3141
		struct drm_i915_gem_request *request;

3142
		request = list_first_entry(&engine->request_list,
3143 3144 3145
					   struct drm_i915_gem_request,
					   list);

3146
		i915_gem_request_retire(request);
3147
	}
3148 3149 3150 3151 3152 3153 3154 3155

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3156
	list_for_each_entry(buffer, &engine->buffers, link) {
3157 3158 3159
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3160 3161

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3162 3163
}

3164
void i915_gem_reset(struct drm_device *dev)
3165
{
3166
	struct drm_i915_private *dev_priv = dev->dev_private;
3167
	struct intel_engine_cs *engine;
3168

3169 3170 3171 3172 3173
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3174
	for_each_engine(engine, dev_priv)
3175
		i915_gem_reset_engine_status(dev_priv, engine);
3176

3177
	for_each_engine(engine, dev_priv)
3178
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3179

3180 3181
	i915_gem_context_reset(dev);

3182
	i915_gem_restore_fences(dev);
3183 3184

	WARN_ON(i915_verify_lists(dev));
3185 3186 3187 3188
}

/**
 * This function clears the request list as sequence numbers are passed.
3189
 * @engine: engine to retire requests on
3190
 */
3191
void
3192
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3193
{
3194
	WARN_ON(i915_verify_lists(engine->dev));
3195

3196 3197 3198 3199
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3200
	 */
3201
	while (!list_empty(&engine->request_list)) {
3202 3203
		struct drm_i915_gem_request *request;

3204
		request = list_first_entry(&engine->request_list,
3205 3206 3207
					   struct drm_i915_gem_request,
					   list);

3208
		if (!i915_gem_request_completed(request, true))
3209 3210
			break;

3211
		i915_gem_request_retire(request);
3212
	}
3213

3214 3215 3216 3217
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3218
	while (!list_empty(&engine->active_list)) {
3219 3220
		struct drm_i915_gem_object *obj;

3221 3222
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3223
				       engine_list[engine->id]);
3224

3225
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3226 3227
			break;

3228
		i915_gem_object_retire__read(obj, engine->id);
3229 3230
	}

3231 3232 3233 3234
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3235
	}
3236

3237
	WARN_ON(i915_verify_lists(engine->dev));
3238 3239
}

3240
bool
3241
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3242
{
3243
	struct intel_engine_cs *engine;
3244
	bool idle = true;
3245

3246
	for_each_engine(engine, dev_priv) {
3247 3248
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3249
		if (i915.enable_execlists) {
3250
			spin_lock_bh(&engine->execlist_lock);
3251
			idle &= list_empty(&engine->execlist_queue);
3252
			spin_unlock_bh(&engine->execlist_lock);
3253
		}
3254 3255 3256 3257 3258 3259 3260 3261
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3262 3263
}

3264
static void
3265 3266
i915_gem_retire_work_handler(struct work_struct *work)
{
3267 3268 3269
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3270
	bool idle;
3271

3272
	/* Come back later if the device is busy... */
3273 3274
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3275
		idle = i915_gem_retire_requests(dev_priv);
3276
		mutex_unlock(&dev->struct_mutex);
3277
	}
3278
	if (!idle)
3279 3280
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3281
}
3282

3283 3284 3285 3286 3287
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3288
	struct drm_device *dev = dev_priv->dev;
3289
	struct intel_engine_cs *engine;
3290

3291 3292
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3293
			return;
3294

3295
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3296
	 * Also locking seems to be fubar here, engine->request_list is protected
3297 3298
	 * by dev->struct_mutex. */

3299
	intel_mark_idle(dev_priv);
3300 3301

	if (mutex_trylock(&dev->struct_mutex)) {
3302
		for_each_engine(engine, dev_priv)
3303
			i915_gem_batch_pool_fini(&engine->batch_pool);
3304

3305 3306
		mutex_unlock(&dev->struct_mutex);
	}
3307 3308
}

3309 3310 3311 3312
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3313
 * @obj: object to flush
3314 3315 3316 3317
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3318
	int i;
3319 3320 3321

	if (!obj->active)
		return 0;
3322

3323
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3324
		struct drm_i915_gem_request *req;
3325

3326 3327 3328 3329
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3330
		if (i915_gem_request_completed(req, true))
3331
			i915_gem_object_retire__read(obj, i);
3332 3333 3334 3335 3336
	}

	return 0;
}

3337 3338
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3339 3340 3341
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3366
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3367 3368
	int i, n = 0;
	int ret;
3369

3370 3371 3372
	if (args->flags != 0)
		return -EINVAL;

3373 3374 3375 3376
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3377
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3378 3379 3380 3381 3382
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3383 3384
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3385 3386 3387
	if (ret)
		goto out;

3388
	if (!obj->active)
3389
		goto out;
3390 3391

	/* Do this after OLR check to make sure we make forward progress polling
3392
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3393
	 */
3394
	if (args->timeout_ns == 0) {
3395 3396 3397 3398 3399
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3400

3401
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3402 3403 3404 3405 3406 3407
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3408 3409
	mutex_unlock(&dev->struct_mutex);

3410 3411
	for (i = 0; i < n; i++) {
		if (ret == 0)
3412
			ret = __i915_wait_request(req[i], true,
3413
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3414
						  to_rps_client(file));
3415
		i915_gem_request_unreference(req[i]);
3416
	}
3417
	return ret;
3418 3419 3420 3421 3422 3423 3424

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3425 3426 3427
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3428 3429
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3430 3431 3432 3433
{
	struct intel_engine_cs *from;
	int ret;

3434
	from = i915_gem_request_get_engine(from_req);
3435 3436 3437
	if (to == from)
		return 0;

3438
	if (i915_gem_request_completed(from_req, true))
3439 3440
		return 0;

3441
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3442
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3443
		ret = __i915_wait_request(from_req,
3444 3445 3446
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3447 3448 3449
		if (ret)
			return ret;

3450
		i915_gem_object_retire_request(obj, from_req);
3451 3452
	} else {
		int idx = intel_ring_sync_index(from, to);
3453 3454 3455
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3456 3457 3458 3459

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3460
		if (*to_req == NULL) {
3461 3462 3463 3464 3465 3466 3467
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3468 3469
		}

3470 3471
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3486 3487 3488 3489 3490
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3491 3492 3493
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3494 3495 3496
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3497
 * rather than a particular GPU ring. Conceptually we serialise writes
3498
 * between engines inside the GPU. We only allow one engine to write
3499 3500 3501 3502 3503 3504 3505 3506 3507
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3508
 *
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3519 3520
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3521 3522
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3523 3524
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3525
{
3526
	const bool readonly = obj->base.pending_write_domain == 0;
3527
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3528
	int ret, i, n;
3529

3530
	if (!obj->active)
3531 3532
		return 0;

3533 3534
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3535

3536 3537 3538 3539 3540
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3541
		for (i = 0; i < I915_NUM_ENGINES; i++)
3542 3543 3544 3545
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3546
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3547 3548 3549
		if (ret)
			return ret;
	}
3550

3551
	return 0;
3552 3553
}

3554 3555 3556 3557 3558 3559 3560
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3561 3562 3563
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3586
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3587
{
3588
	struct drm_i915_gem_object *obj = vma->obj;
3589
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3590
	int ret;
3591

3592
	if (list_empty(&vma->obj_link))
3593 3594
		return 0;

3595 3596 3597 3598
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3599

B
Ben Widawsky 已提交
3600
	if (vma->pin_count)
3601
		return -EBUSY;
3602

3603 3604
	BUG_ON(obj->pages == NULL);

3605 3606 3607 3608 3609
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3610

3611
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3612
		i915_gem_object_finish_gtt(obj);
3613

3614 3615 3616 3617
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3618 3619

		__i915_vma_iounmap(vma);
3620
	}
3621

3622
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3623

3624
	vma->vm->unbind_vma(vma);
3625
	vma->bound = 0;
3626

3627
	list_del_init(&vma->vm_link);
3628
	if (vma->is_ggtt) {
3629 3630 3631 3632 3633 3634
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3635
		vma->ggtt_view.pages = NULL;
3636
	}
3637

B
Ben Widawsky 已提交
3638 3639 3640 3641
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3642
	 * no more VMAs exist. */
I
Imre Deak 已提交
3643
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3644
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3645

3646 3647 3648 3649 3650 3651
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3652
	return 0;
3653 3654
}

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3665
int i915_gpu_idle(struct drm_device *dev)
3666
{
3667
	struct drm_i915_private *dev_priv = dev->dev_private;
3668
	struct intel_engine_cs *engine;
3669
	int ret;
3670 3671

	/* Flush everything onto the inactive list. */
3672
	for_each_engine(engine, dev_priv) {
3673
		if (!i915.enable_execlists) {
3674 3675
			struct drm_i915_gem_request *req;

3676
			req = i915_gem_request_alloc(engine, NULL);
3677 3678
			if (IS_ERR(req))
				return PTR_ERR(req);
3679

3680
			ret = i915_switch_context(req);
3681
			i915_add_request_no_flush(req);
3682 3683
			if (ret)
				return ret;
3684
		}
3685

3686
		ret = intel_engine_idle(engine);
3687 3688 3689
		if (ret)
			return ret;
	}
3690

3691
	WARN_ON(i915_verify_lists(dev));
3692
	return 0;
3693 3694
}

3695
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3696 3697
				     unsigned long cache_level)
{
3698
	struct drm_mm_node *gtt_space = &vma->node;
3699 3700
	struct drm_mm_node *other;

3701 3702 3703 3704 3705 3706
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3707
	 */
3708
	if (vma->vm->mm.color_adjust == NULL)
3709 3710
		return true;

3711
	if (!drm_mm_node_allocated(gtt_space))
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3728
/**
3729 3730
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3731 3732 3733 3734 3735
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3736
 */
3737
static struct i915_vma *
3738 3739
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3740
			   const struct i915_ggtt_view *ggtt_view,
3741
			   unsigned alignment,
3742
			   uint64_t flags)
3743
{
3744
	struct drm_device *dev = obj->base.dev;
3745 3746
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3747
	u32 fence_alignment, unfenced_alignment;
3748 3749
	u32 search_flag, alloc_flag;
	u64 start, end;
3750
	u64 size, fence_size;
B
Ben Widawsky 已提交
3751
	struct i915_vma *vma;
3752
	int ret;
3753

3754 3755 3756 3757 3758
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3759

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3789

3790 3791 3792
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3793
		end = min_t(u64, end, ggtt->mappable_end);
3794
	if (flags & PIN_ZONE_4G)
3795
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3796

3797
	if (alignment == 0)
3798
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3799
						unfenced_alignment;
3800
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3801 3802 3803
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3804
		return ERR_PTR(-EINVAL);
3805 3806
	}

3807 3808 3809
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3810
	 */
3811
	if (size > end) {
3812
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3813 3814
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3815
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3816
			  end);
3817
		return ERR_PTR(-E2BIG);
3818 3819
	}

3820
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3821
	if (ret)
3822
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3823

3824 3825
	i915_gem_object_pin_pages(obj);

3826 3827 3828
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3829
	if (IS_ERR(vma))
3830
		goto err_unpin;
B
Ben Widawsky 已提交
3831

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3850
	} else {
3851 3852 3853 3854 3855 3856 3857
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3858

3859
search_free:
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3873

3874 3875
			goto err_free_vma;
		}
3876
	}
3877
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3878
		ret = -EINVAL;
3879
		goto err_remove_node;
3880 3881
	}

3882
	trace_i915_vma_bind(vma, flags);
3883
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3884
	if (ret)
I
Imre Deak 已提交
3885
		goto err_remove_node;
3886

3887
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3888
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3889

3890
	return vma;
B
Ben Widawsky 已提交
3891

3892
err_remove_node:
3893
	drm_mm_remove_node(&vma->node);
3894
err_free_vma:
B
Ben Widawsky 已提交
3895
	i915_gem_vma_destroy(vma);
3896
	vma = ERR_PTR(ret);
3897
err_unpin:
B
Ben Widawsky 已提交
3898
	i915_gem_object_unpin_pages(obj);
3899
	return vma;
3900 3901
}

3902
bool
3903 3904
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3905 3906 3907 3908 3909
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3910
	if (obj->pages == NULL)
3911
		return false;
3912

3913 3914 3915 3916
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3917
	if (obj->stolen || obj->phys_handle)
3918
		return false;
3919

3920 3921 3922 3923 3924 3925 3926 3927
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3928 3929
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3930
		return false;
3931
	}
3932

C
Chris Wilson 已提交
3933
	trace_i915_gem_object_clflush(obj);
3934
	drm_clflush_sg(obj->pages);
3935
	obj->cache_dirty = false;
3936 3937

	return true;
3938 3939 3940 3941
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3942
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3943
{
C
Chris Wilson 已提交
3944 3945
	uint32_t old_write_domain;

3946
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3947 3948
		return;

3949
	/* No actual flushing is required for the GTT write domain.  Writes
3950 3951
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3952 3953 3954 3955
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3956
	 */
3957 3958
	wmb();

3959 3960
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3961

3962
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3963

C
Chris Wilson 已提交
3964
	trace_i915_gem_object_change_domain(obj,
3965
					    obj->base.read_domains,
C
Chris Wilson 已提交
3966
					    old_write_domain);
3967 3968 3969 3970
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3971
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3972
{
C
Chris Wilson 已提交
3973
	uint32_t old_write_domain;
3974

3975
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3976 3977
		return;

3978
	if (i915_gem_clflush_object(obj, obj->pin_display))
3979
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3980

3981 3982
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3983

3984
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3985

C
Chris Wilson 已提交
3986
	trace_i915_gem_object_change_domain(obj,
3987
					    obj->base.read_domains,
C
Chris Wilson 已提交
3988
					    old_write_domain);
3989 3990
}

3991 3992
/**
 * Moves a single object to the GTT read, and possibly write domain.
3993 3994
 * @obj: object to act on
 * @write: ask for write access or read only
3995 3996 3997 3998
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3999
int
4000
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4001
{
4002 4003 4004
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4005
	uint32_t old_write_domain, old_read_domains;
4006
	struct i915_vma *vma;
4007
	int ret;
4008

4009 4010 4011
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4012
	ret = i915_gem_object_wait_rendering(obj, !write);
4013 4014 4015
	if (ret)
		return ret;

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4028
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4029

4030 4031 4032 4033 4034 4035 4036
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4037 4038
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4039

4040 4041 4042
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4043 4044
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4045
	if (write) {
4046 4047 4048
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4049 4050
	}

C
Chris Wilson 已提交
4051 4052 4053 4054
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4055
	/* And bump the LRU for this access */
4056 4057
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4058
		list_move_tail(&vma->vm_link,
4059
			       &ggtt->base.inactive_list);
4060

4061 4062 4063
	return 0;
}

4064 4065
/**
 * Changes the cache-level of an object across all VMA.
4066 4067
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4079 4080 4081
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4082
	struct drm_device *dev = obj->base.dev;
4083
	struct i915_vma *vma, *next;
4084
	bool bound = false;
4085
	int ret = 0;
4086 4087

	if (obj->cache_level == cache_level)
4088
		goto out;
4089

4090 4091 4092 4093 4094
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4095
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4096 4097 4098 4099 4100 4101 4102 4103
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4104
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4105
			ret = i915_vma_unbind(vma);
4106 4107
			if (ret)
				return ret;
4108 4109
		} else
			bound = true;
4110 4111
	}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4124
		ret = i915_gem_object_wait_rendering(obj, false);
4125 4126 4127
		if (ret)
			return ret;

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4145 4146 4147
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4148 4149 4150 4151 4152 4153 4154 4155
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4156 4157
		}

4158
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4159 4160 4161 4162 4163 4164 4165
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4166 4167
	}

4168
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4169 4170 4171
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4172
out:
4173 4174 4175 4176
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4177
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4178
		if (i915_gem_clflush_object(obj, true))
4179
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4180 4181 4182 4183 4184
	}

	return 0;
}

B
Ben Widawsky 已提交
4185 4186
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4187
{
B
Ben Widawsky 已提交
4188
	struct drm_i915_gem_caching *args = data;
4189 4190
	struct drm_i915_gem_object *obj;

4191
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4192 4193
	if (&obj->base == NULL)
		return -ENOENT;
4194

4195 4196 4197 4198 4199 4200
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4201 4202 4203 4204
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4205 4206 4207 4208
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4209

4210 4211
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4212 4213
}

B
Ben Widawsky 已提交
4214 4215
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4216
{
4217
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4218
	struct drm_i915_gem_caching *args = data;
4219 4220 4221 4222
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4223 4224
	switch (args->caching) {
	case I915_CACHING_NONE:
4225 4226
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4227
	case I915_CACHING_CACHED:
4228 4229 4230 4231 4232 4233
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4234
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4235 4236
			return -ENODEV;

4237 4238
		level = I915_CACHE_LLC;
		break;
4239 4240 4241
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4242 4243 4244 4245
	default:
		return -EINVAL;
	}

4246 4247
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4248 4249
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4250
		goto rpm_put;
B
Ben Widawsky 已提交
4251

4252
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4263 4264 4265
rpm_put:
	intel_runtime_pm_put(dev_priv);

4266 4267 4268
	return ret;
}

4269
/*
4270 4271 4272
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4273 4274
 */
int
4275 4276
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4277
				     const struct i915_ggtt_view *view)
4278
{
4279
	u32 old_read_domains, old_write_domain;
4280 4281
	int ret;

4282 4283 4284
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4285
	obj->pin_display++;
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4296 4297
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4298
	if (ret)
4299
		goto err_unpin_display;
4300

4301 4302 4303 4304
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4305 4306 4307
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4308
	if (ret)
4309
		goto err_unpin_display;
4310

4311
	i915_gem_object_flush_cpu_write_domain(obj);
4312

4313
	old_write_domain = obj->base.write_domain;
4314
	old_read_domains = obj->base.read_domains;
4315 4316 4317 4318

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4319
	obj->base.write_domain = 0;
4320
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4321 4322 4323

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4324
					    old_write_domain);
4325 4326

	return 0;
4327 4328

err_unpin_display:
4329
	obj->pin_display--;
4330 4331 4332 4333
	return ret;
}

void
4334 4335
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4336
{
4337 4338 4339
	if (WARN_ON(obj->pin_display == 0))
		return;

4340 4341
	i915_gem_object_ggtt_unpin_view(obj, view);

4342
	obj->pin_display--;
4343 4344
}

4345 4346
/**
 * Moves a single object to the CPU read, and possibly write domain.
4347 4348
 * @obj: object to act on
 * @write: requesting write or read-only access
4349 4350 4351 4352
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4353
int
4354
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4355
{
C
Chris Wilson 已提交
4356
	uint32_t old_write_domain, old_read_domains;
4357 4358
	int ret;

4359 4360 4361
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4362
	ret = i915_gem_object_wait_rendering(obj, !write);
4363 4364 4365
	if (ret)
		return ret;

4366
	i915_gem_object_flush_gtt_write_domain(obj);
4367

4368 4369
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4370

4371
	/* Flush the CPU cache if it's still invalid. */
4372
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4373
		i915_gem_clflush_object(obj, false);
4374

4375
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4376 4377 4378 4379 4380
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4381
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4382 4383 4384 4385 4386

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4387 4388
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4389
	}
4390

C
Chris Wilson 已提交
4391 4392 4393 4394
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4395 4396 4397
	return 0;
}

4398 4399 4400
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4401 4402 4403 4404
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4405 4406 4407
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4408
static int
4409
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4410
{
4411 4412
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4413
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4414
	struct drm_i915_gem_request *request, *target = NULL;
4415
	int ret;
4416

4417 4418 4419 4420
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4421 4422 4423
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4424

4425
	spin_lock(&file_priv->mm.lock);
4426
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4427 4428
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4429

4430 4431 4432 4433 4434 4435 4436
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4437
		target = request;
4438
	}
4439 4440
	if (target)
		i915_gem_request_reference(target);
4441
	spin_unlock(&file_priv->mm.lock);
4442

4443
	if (target == NULL)
4444
		return 0;
4445

4446
	ret = __i915_wait_request(target, true, NULL, NULL);
4447 4448
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4449

4450
	i915_gem_request_unreference(target);
4451

4452 4453 4454
	return ret;
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4471 4472 4473 4474
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4475 4476 4477
	return false;
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4496
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4497 4498 4499 4500

	obj->map_and_fenceable = mappable && fenceable;
}

4501 4502 4503 4504 4505 4506
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4507
{
4508
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4509
	struct i915_vma *vma;
4510
	unsigned bound;
4511 4512
	int ret;

4513 4514 4515
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4516
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4517
		return -EINVAL;
4518

4519 4520 4521
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4522 4523 4524 4525 4526 4527
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4528
	if (vma) {
B
Ben Widawsky 已提交
4529 4530 4531
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4532
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4533
			WARN(vma->pin_count,
4534
			     "bo is already pinned in %s with incorrect alignment:"
4535
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4536
			     " obj->map_and_fenceable=%d\n",
4537
			     ggtt_view ? "ggtt" : "ppgtt",
4538 4539
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4540
			     alignment,
4541
			     !!(flags & PIN_MAPPABLE),
4542
			     obj->map_and_fenceable);
4543
			ret = i915_vma_unbind(vma);
4544 4545
			if (ret)
				return ret;
4546 4547

			vma = NULL;
4548 4549 4550
		}
	}

4551
	bound = vma ? vma->bound : 0;
4552
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4553 4554
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4555 4556
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4557 4558
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4559 4560 4561
		if (ret)
			return ret;
	}
4562

4563 4564
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4565
		__i915_vma_set_map_and_fenceable(vma);
4566 4567
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4568

4569
	vma->pin_count++;
4570 4571 4572
	return 0;
}

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4590 4591 4592 4593
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4594
	BUG_ON(!view);
4595

4596
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4597
				      alignment, flags | PIN_GLOBAL);
4598 4599
}

4600
void
4601 4602
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4603
{
4604
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4605

4606
	WARN_ON(vma->pin_count == 0);
4607
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4608

4609
	--vma->pin_count;
4610 4611 4612 4613
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4614
		    struct drm_file *file)
4615 4616
{
	struct drm_i915_gem_busy *args = data;
4617
	struct drm_i915_gem_object *obj;
4618 4619
	int ret;

4620
	ret = i915_mutex_lock_interruptible(dev);
4621
	if (ret)
4622
		return ret;
4623

4624
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4625
	if (&obj->base == NULL) {
4626 4627
		ret = -ENOENT;
		goto unlock;
4628
	}
4629

4630 4631 4632 4633
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4634
	 */
4635
	ret = i915_gem_object_flush_active(obj);
4636 4637
	if (ret)
		goto unref;
4638

4639 4640 4641 4642
	args->busy = 0;
	if (obj->active) {
		int i;

4643
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4644 4645 4646 4647
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4648
				args->busy |= 1 << (16 + req->engine->exec_id);
4649 4650
		}
		if (obj->last_write_req)
4651
			args->busy |= obj->last_write_req->engine->exec_id;
4652
	}
4653

4654
unref:
4655
	drm_gem_object_unreference(&obj->base);
4656
unlock:
4657
	mutex_unlock(&dev->struct_mutex);
4658
	return ret;
4659 4660 4661 4662 4663 4664
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4665
	return i915_gem_ring_throttle(dev, file_priv);
4666 4667
}

4668 4669 4670 4671
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4672
	struct drm_i915_private *dev_priv = dev->dev_private;
4673
	struct drm_i915_gem_madvise *args = data;
4674
	struct drm_i915_gem_object *obj;
4675
	int ret;
4676 4677 4678 4679 4680 4681 4682 4683 4684

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4685 4686 4687 4688
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4689
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4690
	if (&obj->base == NULL) {
4691 4692
		ret = -ENOENT;
		goto unlock;
4693 4694
	}

B
Ben Widawsky 已提交
4695
	if (i915_gem_obj_is_pinned(obj)) {
4696 4697
		ret = -EINVAL;
		goto out;
4698 4699
	}

4700 4701 4702 4703 4704 4705 4706 4707 4708
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4709 4710
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4711

C
Chris Wilson 已提交
4712
	/* if the object is no longer attached, discard its backing storage */
4713
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4714 4715
		i915_gem_object_truncate(obj);

4716
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4717

4718
out:
4719
	drm_gem_object_unreference(&obj->base);
4720
unlock:
4721
	mutex_unlock(&dev->struct_mutex);
4722
	return ret;
4723 4724
}

4725 4726
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4727
{
4728 4729
	int i;

4730
	INIT_LIST_HEAD(&obj->global_list);
4731
	for (i = 0; i < I915_NUM_ENGINES; i++)
4732
		INIT_LIST_HEAD(&obj->engine_list[i]);
4733
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4734
	INIT_LIST_HEAD(&obj->vma_list);
4735
	INIT_LIST_HEAD(&obj->batch_pool_link);
4736

4737 4738
	obj->ops = ops;

4739 4740 4741 4742 4743 4744
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4745
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4746
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4747 4748 4749 4750
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4751
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4752
						  size_t size)
4753
{
4754
	struct drm_i915_gem_object *obj;
4755
	struct address_space *mapping;
D
Daniel Vetter 已提交
4756
	gfp_t mask;
4757
	int ret;
4758

4759
	obj = i915_gem_object_alloc(dev);
4760
	if (obj == NULL)
4761
		return ERR_PTR(-ENOMEM);
4762

4763 4764 4765
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4766

4767 4768 4769 4770 4771 4772 4773
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4774
	mapping = file_inode(obj->base.filp)->i_mapping;
4775
	mapping_set_gfp_mask(mapping, mask);
4776

4777
	i915_gem_object_init(obj, &i915_gem_object_ops);
4778

4779 4780
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4781

4782 4783
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4799 4800
	trace_i915_gem_object_create(obj);

4801
	return obj;
4802 4803 4804 4805 4806

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4807 4808
}

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4833
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4834
{
4835
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4836
	struct drm_device *dev = obj->base.dev;
4837
	struct drm_i915_private *dev_priv = dev->dev_private;
4838
	struct i915_vma *vma, *next;
4839

4840 4841
	intel_runtime_pm_get(dev_priv);

4842 4843
	trace_i915_gem_object_destroy(obj);

4844
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4845 4846 4847 4848
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4849 4850
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4851

4852 4853
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4854

4855
			WARN_ON(i915_vma_unbind(vma));
4856

4857 4858
			dev_priv->mm.interruptible = was_interruptible;
		}
4859 4860
	}

B
Ben Widawsky 已提交
4861 4862 4863 4864 4865
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4866 4867
	WARN_ON(obj->frontbuffer_bits);

4868 4869 4870 4871 4872
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4873 4874
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4875
	if (discard_backing_storage(obj))
4876
		obj->madv = I915_MADV_DONTNEED;
4877
	i915_gem_object_put_pages(obj);
4878
	i915_gem_object_free_mmap_offset(obj);
4879

4880 4881
	BUG_ON(obj->pages);

4882 4883
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4884

4885 4886 4887
	if (obj->ops->release)
		obj->ops->release(obj);

4888 4889
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4890

4891
	kfree(obj->bit_17);
4892
	i915_gem_object_free(obj);
4893 4894

	intel_runtime_pm_put(dev_priv);
4895 4896
}

4897 4898
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4899 4900
{
	struct i915_vma *vma;
4901
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4902 4903
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4904
			return vma;
4905 4906 4907 4908 4909 4910 4911 4912
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4913

4914
	GEM_BUG_ON(!view);
4915

4916
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4917
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4918
			return vma;
4919 4920 4921
	return NULL;
}

B
Ben Widawsky 已提交
4922 4923 4924
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4925 4926 4927 4928 4929

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4930 4931
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4932

4933
	list_del(&vma->obj_link);
4934

4935
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4936 4937
}

4938
static void
4939
i915_gem_stop_engines(struct drm_device *dev)
4940 4941
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4942
	struct intel_engine_cs *engine;
4943

4944
	for_each_engine(engine, dev_priv)
4945
		dev_priv->gt.stop_engine(engine);
4946 4947
}

4948
int
4949
i915_gem_suspend(struct drm_device *dev)
4950
{
4951
	struct drm_i915_private *dev_priv = dev->dev_private;
4952
	int ret = 0;
4953

4954
	mutex_lock(&dev->struct_mutex);
4955
	ret = i915_gpu_idle(dev);
4956
	if (ret)
4957
		goto err;
4958

4959
	i915_gem_retire_requests(dev_priv);
4960

4961
	i915_gem_stop_engines(dev);
4962
	i915_gem_context_lost(dev_priv);
4963 4964
	mutex_unlock(&dev->struct_mutex);

4965
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4966
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4967
	flush_delayed_work(&dev_priv->mm.idle_work);
4968

4969 4970 4971 4972 4973
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4974
	return 0;
4975 4976 4977 4978

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4979 4980
}

4981 4982
void i915_gem_init_swizzling(struct drm_device *dev)
{
4983
	struct drm_i915_private *dev_priv = dev->dev_private;
4984

4985
	if (INTEL_INFO(dev)->gen < 5 ||
4986 4987 4988 4989 4990 4991
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4992 4993 4994
	if (IS_GEN5(dev))
		return;

4995 4996
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4997
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4998
	else if (IS_GEN7(dev))
4999
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5000 5001
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5002 5003
	else
		BUG();
5004
}
D
Daniel Vetter 已提交
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5033
int i915_gem_init_engines(struct drm_device *dev)
5034
{
5035
	struct drm_i915_private *dev_priv = dev->dev_private;
5036
	int ret;
5037

5038
	ret = intel_init_render_ring_buffer(dev);
5039
	if (ret)
5040
		return ret;
5041 5042

	if (HAS_BSD(dev)) {
5043
		ret = intel_init_bsd_ring_buffer(dev);
5044 5045
		if (ret)
			goto cleanup_render_ring;
5046
	}
5047

5048
	if (HAS_BLT(dev)) {
5049 5050 5051 5052 5053
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5054 5055 5056 5057 5058 5059
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5060 5061 5062 5063 5064
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5065

5066 5067
	return 0;

B
Ben Widawsky 已提交
5068
cleanup_vebox_ring:
5069
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5070
cleanup_blt_ring:
5071
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5072
cleanup_bsd_ring:
5073
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5074
cleanup_render_ring:
5075
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5076 5077 5078 5079 5080 5081 5082

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5083
	struct drm_i915_private *dev_priv = dev->dev_private;
5084
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5085
	int ret;
5086

5087 5088 5089
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5090
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5091
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5092

5093 5094 5095
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5096

5097
	if (HAS_PCH_NOP(dev)) {
5098 5099 5100 5101 5102 5103 5104 5105 5106
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5107 5108
	}

5109 5110
	i915_gem_init_swizzling(dev);

5111 5112 5113 5114 5115 5116 5117 5118
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5119
	BUG_ON(!dev_priv->kernel_context);
5120

5121 5122 5123 5124 5125 5126 5127
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5128
	for_each_engine(engine, dev_priv) {
5129
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5130
		if (ret)
5131
			goto out;
D
Daniel Vetter 已提交
5132
	}
5133

5134 5135
	intel_mocs_init_l3cc_table(dev);

5136
	/* We can't enable contexts until all firmware is loaded */
5137 5138 5139
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5140

5141 5142 5143 5144 5145
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
5146

5147 5148
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5149
	return ret;
5150 5151
}

5152 5153 5154 5155 5156 5157
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5158

5159
	if (!i915.enable_execlists) {
5160
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5161 5162 5163
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5164
	} else {
5165
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5166 5167 5168
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5169 5170
	}

5171 5172 5173 5174 5175 5176 5177 5178
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5179
	i915_gem_init_userptr(dev_priv);
5180
	i915_gem_init_ggtt(dev);
5181

5182
	ret = i915_gem_context_init(dev);
5183 5184
	if (ret)
		goto out_unlock;
5185

5186
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5187
	if (ret)
5188
		goto out_unlock;
5189

5190
	ret = i915_gem_init_hw(dev);
5191 5192 5193 5194 5195 5196
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5197
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5198
		ret = 0;
5199
	}
5200 5201

out_unlock:
5202
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5203
	mutex_unlock(&dev->struct_mutex);
5204

5205
	return ret;
5206 5207
}

5208
void
5209
i915_gem_cleanup_engines(struct drm_device *dev)
5210
{
5211
	struct drm_i915_private *dev_priv = dev->dev_private;
5212
	struct intel_engine_cs *engine;
5213

5214
	for_each_engine(engine, dev_priv)
5215
		dev_priv->gt.cleanup_engine(engine);
5216 5217
}

5218
static void
5219
init_engine_lists(struct intel_engine_cs *engine)
5220
{
5221 5222
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5223 5224
}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5239
	if (intel_vgpu_active(dev_priv))
5240 5241 5242 5243 5244 5245 5246 5247 5248
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5249
void
5250
i915_gem_load_init(struct drm_device *dev)
5251
{
5252
	struct drm_i915_private *dev_priv = dev->dev_private;
5253 5254
	int i;

5255
	dev_priv->objects =
5256 5257 5258 5259
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5260 5261 5262 5263 5264
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5265 5266 5267 5268 5269
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5270

B
Ben Widawsky 已提交
5271
	INIT_LIST_HEAD(&dev_priv->vm_list);
5272
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5273 5274
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5275
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5276 5277
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5278
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5279
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5280 5281
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5282 5283
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5284
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5285

5286 5287
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5288 5289 5290 5291 5292 5293 5294 5295
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5296
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5297

5298
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5299

5300 5301
	dev_priv->mm.interruptible = true;

5302
	mutex_init(&dev_priv->fb_tracking.lock);
5303
}
5304

5305 5306 5307 5308 5309 5310 5311 5312 5313
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5342
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5343
{
5344
	struct drm_i915_file_private *file_priv = file->driver_priv;
5345 5346 5347 5348 5349

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5350
	spin_lock(&file_priv->mm.lock);
5351 5352 5353 5354 5355 5356 5357 5358 5359
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5360
	spin_unlock(&file_priv->mm.lock);
5361

5362
	if (!list_empty(&file_priv->rps.link)) {
5363
		spin_lock(&to_i915(dev)->rps.client_lock);
5364
		list_del(&file_priv->rps.link);
5365
		spin_unlock(&to_i915(dev)->rps.client_lock);
5366
	}
5367 5368 5369 5370 5371
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5372
	int ret;
5373 5374 5375 5376 5377 5378 5379 5380 5381

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5382
	file_priv->file = file;
5383
	INIT_LIST_HEAD(&file_priv->rps.link);
5384 5385 5386 5387

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5388 5389
	file_priv->bsd_ring = -1;

5390 5391 5392
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5393

5394
	return ret;
5395 5396
}

5397 5398
/**
 * i915_gem_track_fb - update frontbuffer tracking
5399 5400 5401
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5402 5403 5404 5405
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5423
/* All the new VM stuff */
5424 5425
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5426 5427 5428 5429
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5430
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5431

5432
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5433
		if (vma->is_ggtt &&
5434 5435 5436
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5437 5438
			return vma->node.start;
	}
5439

5440 5441
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5442 5443 5444
	return -1;
}

5445 5446
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5447 5448 5449
{
	struct i915_vma *vma;

5450
	list_for_each_entry(vma, &o->vma_list, obj_link)
5451
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5452 5453
			return vma->node.start;

5454
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5455 5456 5457 5458 5459 5460 5461 5462
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5463
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5464
		if (vma->is_ggtt &&
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5475
				  const struct i915_ggtt_view *view)
5476 5477 5478
{
	struct i915_vma *vma;

5479
	list_for_each_entry(vma, &o->vma_list, obj_link)
5480
		if (vma->is_ggtt &&
5481
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5482
		    drm_mm_node_allocated(&vma->node))
5483 5484 5485 5486 5487 5488 5489
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5490
	struct i915_vma *vma;
5491

5492
	list_for_each_entry(vma, &o->vma_list, obj_link)
5493
		if (drm_mm_node_allocated(&vma->node))
5494 5495 5496 5497 5498
			return true;

	return false;
}

5499
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5500 5501 5502
{
	struct i915_vma *vma;

5503
	GEM_BUG_ON(list_empty(&o->vma_list));
5504

5505
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5506
		if (vma->is_ggtt &&
5507
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5508
			return vma->node.size;
5509
	}
5510

5511 5512 5513
	return 0;
}

5514
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5515 5516
{
	struct i915_vma *vma;
5517
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5518 5519
		if (vma->pin_count > 0)
			return true;
5520

5521
	return false;
5522
}
5523

5524 5525 5526 5527 5528 5529 5530
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5531
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5532 5533 5534 5535 5536 5537 5538
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5549
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5550
	if (IS_ERR(obj))
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5564
	obj->dirty = 1;		/* Backing store is now out of date */
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}