sched.c 225.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
400
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
401 402 403

	unsigned long nr_spread_over;

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
827
/*
P
Peter Zijlstra 已提交
828
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
829 830
 * default: 1s
 */
P
Peter Zijlstra 已提交
831
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
832

833 834
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
835 836 837 838 839
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
840

841 842 843 844 845 846 847
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
848
	if (sysctl_sched_rt_runtime < 0)
849 850 851 852
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974 975 976 977
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

978
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
979 980 981 982 983 984
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
985
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
986
 */
A
Alexey Dobriyan 已提交
987
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991 992 993 994 995 996 997 998

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1020
	if (!cpu_active(cpu_of(rq)))
1021
		return 0;
P
Peter Zijlstra 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1042
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1049
#ifdef CONFIG_SMP
1050 1051 1052 1053
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1054
{
1055
	struct rq *rq = arg;
1056

1057 1058 1059 1060
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1061 1062
}

1063 1064 1065 1066 1067 1068
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1069
{
1070 1071
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072

1073
	hrtimer_set_expires(timer, time);
1074 1075 1076 1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1095
		hrtick_clear(cpu_rq(cpu));
1096 1097 1098 1099 1100 1101
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1102
static __init void init_hrtick(void)
1103 1104 1105
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1116

A
Andrew Morton 已提交
1117
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1118 1119
{
}
1120
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1121

1122
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1123
{
1124 1125
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1131

1132 1133
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1134
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1135
}
A
Andrew Morton 已提交
1136
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143 1144
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1145 1146 1147
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1148
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149

I
Ingo Molnar 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1163
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1169
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1170 1171
		return;

1172
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1235
#endif /* CONFIG_NO_HZ */
1236

1237
#else /* !CONFIG_SMP */
1238
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1239 1240
{
	assert_spin_locked(&task_rq(p)->lock);
1241
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1242
}
1243
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1244

1245 1246 1247 1248 1249 1250 1251 1252
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1253 1254 1255
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1256
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1257

1258 1259 1260
/*
 * delta *= weight / lw
 */
1261
static unsigned long
1262 1263 1264 1265 1266
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1267 1268 1269 1270 1271 1272 1273
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1274 1275 1276 1277 1278

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1279
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1280
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1281 1282
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1283
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1284

1285
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1286 1287
}

1288
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1289 1290
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1291
	lw->inv_weight = 0;
1292 1293
}

1294
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1295 1296
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1297
	lw->inv_weight = 0;
1298 1299
}

1300 1301 1302 1303
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1304
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 1306 1307 1308
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 1321 1322
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1323 1324
 */
static const int prio_to_weight[40] = {
1325 1326 1327 1328 1329 1330 1331 1332
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1333 1334
};

1335 1336 1337 1338 1339 1340 1341
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1342
static const u32 prio_to_wmult[40] = {
1343 1344 1345 1346 1347 1348 1349 1350
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1351
};
1352

I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1378

1379 1380 1381 1382 1383 1384
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1395
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1396
typedef int (*tg_visitor)(struct task_group *, void *);
1397 1398 1399 1400 1401

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1402
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1403 1404
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1405
	int ret;
1406 1407 1408 1409

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1410 1411 1412
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1413 1414 1415 1416 1417 1418 1419
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1420 1421 1422
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1423 1424 1425 1426 1427

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1428
out_unlock:
1429
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1430 1431

	return ret;
1432 1433
}

P
Peter Zijlstra 已提交
1434 1435 1436
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1437
}
P
Peter Zijlstra 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1456 1457 1458 1459 1460 1461 1462

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1463 1464
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1465
{
1466 1467 1468 1469
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1470
	if (!tg->se[cpu])
1471 1472
		return;

1473
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1485 1486 1487
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1488 1489 1490 1491 1492 1493
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1494
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1495
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1496

1497 1498 1499 1500
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1501

1502 1503 1504 1505 1506 1507
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1508

1509 1510 1511
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1512
}
1513 1514

/*
1515 1516 1517
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1518
 */
P
Peter Zijlstra 已提交
1519
static int tg_shares_up(struct task_group *tg, void *data)
1520
{
1521 1522
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1523
	struct sched_domain *sd = data;
1524
	int i;
1525

1526 1527 1528
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1529 1530
	}

1531 1532 1533 1534 1535
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1536

P
Peter Zijlstra 已提交
1537 1538 1539
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1540 1541
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1542 1543

	return 0;
1544 1545 1546
}

/*
1547 1548 1549
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1550
 */
P
Peter Zijlstra 已提交
1551
static int tg_load_down(struct task_group *tg, void *data)
1552
{
1553
	unsigned long load;
P
Peter Zijlstra 已提交
1554
	long cpu = (long)data;
1555

1556 1557 1558 1559 1560 1561 1562
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1563

1564
	tg->cfs_rq[cpu]->h_load = load;
1565

P
Peter Zijlstra 已提交
1566
	return 0;
1567 1568
}

1569
static void update_shares(struct sched_domain *sd)
1570
{
P
Peter Zijlstra 已提交
1571 1572 1573 1574 1575
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1576
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1577
	}
1578 1579
}

1580 1581 1582 1583 1584 1585 1586
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1587
static void update_h_load(long cpu)
1588
{
P
Peter Zijlstra 已提交
1589
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1590 1591 1592 1593
}

#else

1594
static inline void update_shares(struct sched_domain *sd)
1595 1596 1597
{
}

1598 1599 1600 1601
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1602 1603 1604 1605
#endif

#endif

V
Vegard Nossum 已提交
1606
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1607 1608
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1609
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1610 1611 1612
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1613
#endif
1614

I
Ingo Molnar 已提交
1615 1616
#include "sched_stats.h"
#include "sched_idletask.c"
1617 1618
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1619 1620 1621 1622 1623
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1624 1625
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1626

1627
static void inc_nr_running(struct rq *rq)
1628 1629 1630 1631
{
	rq->nr_running++;
}

1632
static void dec_nr_running(struct rq *rq)
1633 1634 1635 1636
{
	rq->nr_running--;
}

1637 1638 1639
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1640 1641 1642 1643
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1644

I
Ingo Molnar 已提交
1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1653

I
Ingo Molnar 已提交
1654 1655
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1656 1657
}

1658 1659 1660 1661 1662 1663
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1664
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1665
{
I
Ingo Molnar 已提交
1666
	sched_info_queued(p);
1667
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1668
	p->se.on_rq = 1;
1669 1670
}

1671
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1672
{
1673 1674 1675 1676 1677 1678
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1679
	sched_info_dequeued(p);
1680
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1681
	p->se.on_rq = 0;
1682 1683
}

1684
/*
I
Ingo Molnar 已提交
1685
 * __normal_prio - return the priority that is based on the static prio
1686 1687 1688
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1689
	return p->static_prio;
1690 1691
}

1692 1693 1694 1695 1696 1697 1698
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1699
static inline int normal_prio(struct task_struct *p)
1700 1701 1702
{
	int prio;

1703
	if (task_has_rt_policy(p))
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1717
static int effective_prio(struct task_struct *p)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1730
/*
I
Ingo Molnar 已提交
1731
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1732
 */
I
Ingo Molnar 已提交
1733
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1734
{
1735
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1736
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1737

1738
	enqueue_task(rq, p, wakeup);
1739
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1745
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1746
{
1747
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1748 1749
		rq->nr_uninterruptible++;

1750
	dequeue_task(rq, p, sleep);
1751
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1758
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1759 1760 1761 1762
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1763 1764
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1765
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1766
#ifdef CONFIG_SMP
1767 1768 1769 1770 1771 1772
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1773 1774
	task_thread_info(p)->cpu = cpu;
#endif
1775 1776
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1789
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1790

1791 1792 1793 1794 1795 1796
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1797 1798 1799
/*
 * Is this task likely cache-hot:
 */
1800
static int
1801 1802 1803 1804
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1805 1806 1807
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1808 1809 1810
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1811 1812
		return 1;

1813 1814 1815
	if (p->sched_class != &fair_sched_class)
		return 0;

1816 1817 1818 1819 1820
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1821 1822 1823 1824 1825 1826
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1827
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1828
{
I
Ingo Molnar 已提交
1829 1830
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1831 1832
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1833
	u64 clock_offset;
I
Ingo Molnar 已提交
1834 1835

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1836 1837 1838 1839

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1840 1841 1842 1843
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1844 1845 1846 1847 1848
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1849
#endif
1850 1851
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1852 1853

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1854 1855
}

1856
struct migration_req {
L
Linus Torvalds 已提交
1857 1858
	struct list_head list;

1859
	struct task_struct *task;
L
Linus Torvalds 已提交
1860 1861 1862
	int dest_cpu;

	struct completion done;
1863
};
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1869
static int
1870
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1871
{
1872
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1878
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884 1885 1886
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1887

L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1894 1895 1896 1897 1898 1899 1900
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1907
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1908 1909
{
	unsigned long flags;
I
Ingo Molnar 已提交
1910
	int running, on_rq;
R
Roland McGrath 已提交
1911
	unsigned long ncsw;
1912
	struct rq *rq;
L
Linus Torvalds 已提交
1913

1914 1915 1916 1917 1918 1919 1920 1921
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1934 1935 1936
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1937
			cpu_relax();
R
Roland McGrath 已提交
1938
		}
1939

1940 1941 1942 1943 1944 1945
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1946
		trace_sched_wait_task(rq, p);
1947 1948
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1949
		ncsw = 0;
1950
		if (!match_state || p->state == match_state)
1951
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1952
		task_rq_unlock(rq, &flags);
1953

R
Roland McGrath 已提交
1954 1955 1956 1957 1958 1959
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1984

1985 1986 1987 1988 1989 1990 1991
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1992 1993

	return ncsw;
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2009
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2021 2022
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2023 2024 2025 2026
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2027
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2028
{
2029
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2030
	unsigned long total = weighted_cpuload(cpu);
2031

2032
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2033
		return total;
2034

I
Ingo Molnar 已提交
2035
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2036 2037 2038
}

/*
2039 2040
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2041
 */
A
Alexey Dobriyan 已提交
2042
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2043
{
2044
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2045
	unsigned long total = weighted_cpuload(cpu);
2046

2047
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2048
		return total;
2049

I
Ingo Molnar 已提交
2050
	return max(rq->cpu_load[type-1], total);
2051 2052
}

N
Nick Piggin 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2070 2071
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2072
			continue;
2073

N
Nick Piggin 已提交
2074 2075 2076 2077 2078
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2079
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2090 2091
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2092 2093 2094 2095 2096 2097 2098 2099

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2100
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2101 2102 2103 2104 2105 2106 2107

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2108
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2109
 */
I
Ingo Molnar 已提交
2110
static int
2111 2112
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2113 2114 2115 2116 2117
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2118
	/* Traverse only the allowed CPUs */
2119
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2120

2121
	for_each_cpu_mask_nr(i, *tmp) {
2122
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2148

2149
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2150 2151 2152
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2153 2154
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2155 2156
		if (tmp->flags & flag)
			sd = tmp;
2157
	}
N
Nick Piggin 已提交
2158

2159 2160 2161
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2162
	while (sd) {
2163
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2164
		struct sched_group *group;
2165 2166 2167 2168 2169 2170
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2171 2172 2173

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2174 2175 2176 2177
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2178

2179
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2180 2181 2182 2183 2184
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2185

2186
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2218
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2219
{
2220
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2221 2222
	unsigned long flags;
	long old_state;
2223
	struct rq *rq;
L
Linus Torvalds 已提交
2224

2225 2226 2227
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2244
	smp_wmb();
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2250
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2251 2252 2253
		goto out_running;

	cpu = task_cpu(p);
2254
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2261 2262 2263
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2270
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2290
#endif /* CONFIG_SCHEDSTATS */
2291

L
Linus Torvalds 已提交
2292 2293
out_activate:
#endif /* CONFIG_SMP */
2294 2295 2296 2297 2298 2299 2300 2301 2302
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2303
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2304
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2305 2306 2307
	success = 1;

out_running:
2308
	trace_sched_wakeup(rq, p);
2309
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2310

L
Linus Torvalds 已提交
2311
	p->state = TASK_RUNNING;
2312 2313 2314 2315
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2316
out:
2317 2318
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2319 2320 2321 2322 2323
	task_rq_unlock(rq, &flags);

	return success;
}

2324
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2325
{
2326
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2327 2328 2329
}
EXPORT_SYMBOL(wake_up_process);

2330
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336 2337
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2338 2339 2340 2341 2342 2343 2344
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2345
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2346 2347
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2348 2349 2350

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2351 2352 2353 2354 2355 2356
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2357
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2358
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2359
#endif
N
Nick Piggin 已提交
2360

P
Peter Zijlstra 已提交
2361
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2362
	p->se.on_rq = 0;
2363
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2364

2365 2366 2367 2368
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2390
	set_task_cpu(p, cpu);
2391 2392 2393 2394 2395

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2396 2397
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2398

2399
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2400
	if (likely(sched_info_on()))
2401
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2402
#endif
2403
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2404 2405
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2406
#ifdef CONFIG_PREEMPT
2407
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2408
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2409
#endif
N
Nick Piggin 已提交
2410
	put_cpu();
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2420
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2421 2422
{
	unsigned long flags;
I
Ingo Molnar 已提交
2423
	struct rq *rq;
L
Linus Torvalds 已提交
2424 2425

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2426
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2427
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2428 2429 2430

	p->prio = effective_prio(p);

2431
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2432
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2433 2434
	} else {
		/*
I
Ingo Molnar 已提交
2435 2436
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2437
		 */
2438
		p->sched_class->task_new(rq, p);
2439
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2440
	}
2441
	trace_sched_wakeup_new(rq, p);
2442
	check_preempt_curr(rq, p, 0);
2443 2444 2445 2446
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2447
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2448 2449
}

2450 2451 2452
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2453 2454
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2455 2456 2457 2458 2459 2460 2461 2462 2463
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2464
 * @notifier: notifier struct to unregister
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2494
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2506
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2507

2508 2509 2510
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2511
 * @prev: the current task that is being switched out
2512 2513 2514 2515 2516 2517 2518 2519 2520
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2521 2522 2523
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2524
{
2525
	fire_sched_out_preempt_notifiers(prev, next);
2526 2527 2528 2529
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2530 2531
/**
 * finish_task_switch - clean up after a task-switch
2532
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2533 2534
 * @prev: the thread we just switched away from.
 *
2535 2536 2537 2538
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2539 2540
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2541
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2542 2543 2544
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2545
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2546 2547 2548
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2549
	long prev_state;
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2555
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2556 2557
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2558
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2564
	prev_state = prev->state;
2565 2566
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2567 2568 2569 2570
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2571

2572
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2573 2574
	if (mm)
		mmdrop(mm);
2575
	if (unlikely(prev_state == TASK_DEAD)) {
2576 2577 2578
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2579
		 */
2580
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2581
		put_task_struct(prev);
2582
	}
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2589
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2590 2591
	__releases(rq->lock)
{
2592 2593
	struct rq *rq = this_rq();

2594 2595 2596 2597 2598
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2599
	if (current->set_child_tid)
2600
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2607
static inline void
2608
context_switch(struct rq *rq, struct task_struct *prev,
2609
	       struct task_struct *next)
L
Linus Torvalds 已提交
2610
{
I
Ingo Molnar 已提交
2611
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2612

2613
	prepare_task_switch(rq, prev, next);
2614
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2615 2616
	mm = next->mm;
	oldmm = prev->active_mm;
2617 2618 2619 2620 2621 2622 2623
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2624
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629 2630
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2631
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2632 2633 2634
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2635 2636 2637 2638 2639 2640 2641
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643
#endif
L
Linus Torvalds 已提交
2644 2645 2646 2647

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2648 2649 2650 2651 2652 2653 2654
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2678
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2693 2694
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2695

2696
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2706
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2727
/*
I
Ingo Molnar 已提交
2728 2729
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2730
 */
I
Ingo Molnar 已提交
2731
static void update_cpu_load(struct rq *this_rq)
2732
{
2733
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2746 2747 2748 2749 2750 2751 2752
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2753 2754
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2755 2756
}

I
Ingo Molnar 已提交
2757 2758
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2765
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2766 2767 2768
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2769
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2770 2771 2772 2773
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2774
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2775
			spin_lock(&rq1->lock);
2776
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2777 2778
		} else {
			spin_lock(&rq2->lock);
2779
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2780 2781
		}
	}
2782 2783
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2784 2785 2786 2787 2788 2789 2790 2791
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2792
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2806
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2807 2808 2809 2810
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2811 2812
	int ret = 0;

2813 2814 2815 2816 2817
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2818
	if (unlikely(!spin_trylock(&busiest->lock))) {
2819
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2820 2821
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2822
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2823
			ret = 1;
L
Linus Torvalds 已提交
2824
		} else
2825
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2826
	}
S
Steven Rostedt 已提交
2827
	return ret;
L
Linus Torvalds 已提交
2828 2829
}

2830 2831 2832 2833 2834 2835 2836
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2837 2838 2839
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2840
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2841 2842
 * the cpu_allowed mask is restored.
 */
2843
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2844
{
2845
	struct migration_req req;
L
Linus Torvalds 已提交
2846
	unsigned long flags;
2847
	struct rq *rq;
L
Linus Torvalds 已提交
2848 2849 2850

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2852 2853
		goto out;

2854
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2855 2856 2857 2858
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2859

L
Linus Torvalds 已提交
2860 2861 2862 2863 2864
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2865

L
Linus Torvalds 已提交
2866 2867 2868 2869 2870 2871 2872
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2873 2874
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2875 2876 2877 2878
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2879
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2880
	put_cpu();
N
Nick Piggin 已提交
2881 2882
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2889 2890
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2891
{
2892
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2893
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2894
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2895 2896 2897 2898
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2899
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2905
static
2906
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2907
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2908
		     int *all_pinned)
L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2916 2917
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2918
		return 0;
2919
	}
2920 2921
	*all_pinned = 0;

2922 2923
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2924
		return 0;
2925
	}
L
Linus Torvalds 已提交
2926

2927 2928 2929 2930 2931 2932
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2933 2934
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2935
#ifdef CONFIG_SCHEDSTATS
2936
		if (task_hot(p, rq->clock, sd)) {
2937
			schedstat_inc(sd, lb_hot_gained[idle]);
2938 2939
			schedstat_inc(p, se.nr_forced_migrations);
		}
2940 2941 2942 2943
#endif
		return 1;
	}

2944 2945
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2946
		return 0;
2947
	}
L
Linus Torvalds 已提交
2948 2949 2950
	return 1;
}

2951 2952 2953 2954 2955
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2956
{
2957
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2958 2959
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2960

2961
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2962 2963
		goto out;

2964 2965
	pinned = 1;

L
Linus Torvalds 已提交
2966
	/*
I
Ingo Molnar 已提交
2967
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2968
	 */
I
Ingo Molnar 已提交
2969 2970
	p = iterator->start(iterator->arg);
next:
2971
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2972
		goto out;
2973 2974

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2975 2976 2977
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2978 2979
	}

I
Ingo Molnar 已提交
2980
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2981
	pulled++;
I
Ingo Molnar 已提交
2982
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2983

2984
	/*
2985
	 * We only want to steal up to the prescribed amount of weighted load.
2986
	 */
2987
	if (rem_load_move > 0) {
2988 2989
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2990 2991
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2992 2993 2994
	}
out:
	/*
2995
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2996 2997 2998 2999
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3000 3001 3002

	if (all_pinned)
		*all_pinned = pinned;
3003 3004

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3005 3006
}

I
Ingo Molnar 已提交
3007
/*
P
Peter Williams 已提交
3008 3009 3010
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3011 3012 3013 3014
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3015
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3016 3017 3018
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3019
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3020
	unsigned long total_load_moved = 0;
3021
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3022 3023

	do {
P
Peter Williams 已提交
3024 3025
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3026
				max_load_move - total_load_moved,
3027
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3028
		class = class->next;
3029 3030 3031 3032

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3033
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3034

P
Peter Williams 已提交
3035 3036 3037
	return total_load_moved > 0;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3074
	const struct sched_class *class;
P
Peter Williams 已提交
3075 3076

	for (class = sched_class_highest; class; class = class->next)
3077
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3078 3079 3080
			return 1;

	return 0;
I
Ingo Molnar 已提交
3081 3082
}

L
Linus Torvalds 已提交
3083 3084
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3085 3086
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3087 3088 3089
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3090
		   unsigned long *imbalance, enum cpu_idle_type idle,
3091
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3092 3093 3094
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095
	unsigned long max_pull;
3096 3097
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3098
	int load_idx, group_imb = 0;
3099 3100 3101 3102 3103 3104
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3105 3106

	max_load = this_load = total_load = total_pwr = 0;
3107 3108
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3109

I
Ingo Molnar 已提交
3110
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3111
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3112
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3113 3114 3115
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3116 3117

	do {
3118
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3119 3120
		int local_group;
		int i;
3121
		int __group_imb = 0;
3122
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123
		unsigned long sum_nr_running, sum_weighted_load;
3124 3125
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3126 3127 3128

		local_group = cpu_isset(this_cpu, group->cpumask);

3129 3130 3131
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3132
		/* Tally up the load of all CPUs in the group */
3133
		sum_weighted_load = sum_nr_running = avg_load = 0;
3134 3135
		sum_avg_load_per_task = avg_load_per_task = 0;

3136 3137
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3138

3139
		for_each_cpu_mask_nr(i, group->cpumask) {
3140 3141 3142 3143 3144 3145
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3146

3147
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3148 3149
				*sd_idle = 0;

L
Linus Torvalds 已提交
3150
			/* Bias balancing toward cpus of our domain */
3151 3152 3153 3154 3155 3156
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3157
				load = target_load(i, load_idx);
3158
			} else {
N
Nick Piggin 已提交
3159
				load = source_load(i, load_idx);
3160 3161 3162 3163 3164
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3165 3166

			avg_load += load;
3167
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3168
			sum_weighted_load += weighted_cpuload(i);
3169 3170

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3171 3172
		}

3173 3174 3175
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3176 3177
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3178
		 */
3179 3180
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3181 3182 3183 3184
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3185
		total_load += avg_load;
3186
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3187 3188

		/* Adjust by relative CPU power of the group */
3189 3190
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3206 3207
			__group_imb = 1;

3208
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3209

L
Linus Torvalds 已提交
3210 3211 3212
		if (local_group) {
			this_load = avg_load;
			this = group;
3213 3214 3215
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3216
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3217 3218
			max_load = avg_load;
			busiest = group;
3219 3220
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3221
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3222
		}
3223 3224 3225 3226 3227 3228

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3229 3230 3231
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3232 3233 3234 3235 3236 3237 3238 3239 3240

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3241
		/*
3242 3243
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3244 3245
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3246
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3247
			goto group_next;
3248

I
Ingo Molnar 已提交
3249
		/*
3250
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3251 3252 3253 3254 3255
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3256 3257
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3258 3259
			group_min = group;
			min_nr_running = sum_nr_running;
3260 3261
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3262
		}
3263

I
Ingo Molnar 已提交
3264
		/*
3265
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3277
		}
3278 3279
group_next:
#endif
L
Linus Torvalds 已提交
3280 3281 3282
		group = group->next;
	} while (group != sd->groups);

3283
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3284 3285 3286 3287 3288 3289 3290 3291
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3292
	busiest_load_per_task /= busiest_nr_running;
3293 3294 3295
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3296 3297 3298 3299 3300 3301 3302 3303
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3304
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3305 3306
	 * appear as very large values with unsigned longs.
	 */
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3319 3320

	/* Don't want to pull so many tasks that a group would go idle */
3321
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3322

L
Linus Torvalds 已提交
3323
	/* How much load to actually move to equalise the imbalance */
3324 3325
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3326 3327
			/ SCHED_LOAD_SCALE;

3328 3329 3330 3331 3332 3333
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3334
	if (*imbalance < busiest_load_per_task) {
3335
		unsigned long tmp, pwr_now, pwr_move;
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3346
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3347

3348
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3349
					busiest_load_per_task * imbn) {
3350
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3360 3361 3362 3363
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3364 3365 3366
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3367 3368
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3369
		if (max_load > tmp)
3370
			pwr_move += busiest->__cpu_power *
3371
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3372 3373

		/* Amount of load we'd add */
3374
		if (max_load * busiest->__cpu_power <
3375
				busiest_load_per_task * SCHED_LOAD_SCALE)
3376 3377
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3378
		else
3379 3380 3381 3382
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3383 3384 3385
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3386 3387
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392
	}

	return busiest;

out_balanced:
3393
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3394
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3395
		goto ret;
L
Linus Torvalds 已提交
3396

3397 3398 3399 3400 3401
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3402
ret:
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3410
static struct rq *
I
Ingo Molnar 已提交
3411
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3413
{
3414
	struct rq *busiest = NULL, *rq;
3415
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3416 3417
	int i;

3418
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3419
		unsigned long wl;
3420 3421 3422 3423

		if (!cpu_isset(i, *cpus))
			continue;

3424
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3425
		wl = weighted_cpuload(i);
3426

I
Ingo Molnar 已提交
3427
		if (rq->nr_running == 1 && wl > imbalance)
3428
			continue;
L
Linus Torvalds 已提交
3429

I
Ingo Molnar 已提交
3430 3431
		if (wl > max_load) {
			max_load = wl;
3432
			busiest = rq;
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438
		}
	}

	return busiest;
}

3439 3440 3441 3442 3443 3444
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3445 3446 3447 3448
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3449
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3450
			struct sched_domain *sd, enum cpu_idle_type idle,
3451
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3452
{
P
Peter Williams 已提交
3453
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3454 3455
	struct sched_group *group;
	unsigned long imbalance;
3456
	struct rq *busiest;
3457
	unsigned long flags;
N
Nick Piggin 已提交
3458

3459 3460
	cpus_setall(*cpus);

3461 3462 3463
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3464
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3465
	 * portraying it as CPU_NOT_IDLE.
3466
	 */
I
Ingo Molnar 已提交
3467
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3469
		sd_idle = 1;
L
Linus Torvalds 已提交
3470

3471
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3472

3473
redo:
3474
	update_shares(sd);
3475
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476
				   cpus, balance);
3477

3478
	if (*balance == 0)
3479 3480
		goto out_balanced;

L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3486
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3492
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3493 3494 3495

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3496
	ld_moved = 0;
L
Linus Torvalds 已提交
3497 3498 3499 3500
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3501
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3502 3503
		 * correctly treated as an imbalance.
		 */
3504
		local_irq_save(flags);
N
Nick Piggin 已提交
3505
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3506
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3508
		double_rq_unlock(this_rq, busiest);
3509
		local_irq_restore(flags);
3510

3511 3512 3513
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3514
		if (ld_moved && this_cpu != smp_processor_id())
3515 3516
			resched_cpu(this_cpu);

3517
		/* All tasks on this runqueue were pinned by CPU affinity */
3518
		if (unlikely(all_pinned)) {
3519 3520
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3521
				goto redo;
3522
			goto out_balanced;
3523
		}
L
Linus Torvalds 已提交
3524
	}
3525

P
Peter Williams 已提交
3526
	if (!ld_moved) {
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3532
			spin_lock_irqsave(&busiest->lock, flags);
3533 3534 3535 3536 3537

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3538
				spin_unlock_irqrestore(&busiest->lock, flags);
3539 3540 3541 3542
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3543 3544 3545
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3546
				active_balance = 1;
L
Linus Torvalds 已提交
3547
			}
3548
			spin_unlock_irqrestore(&busiest->lock, flags);
3549
			if (active_balance)
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554 3555
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3556
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3557
		}
3558
	} else
L
Linus Torvalds 已提交
3559 3560
		sd->nr_balance_failed = 0;

3561
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3562 3563
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3564 3565 3566 3567 3568 3569 3570 3571 3572
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3573 3574
	}

P
Peter Williams 已提交
3575
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3576
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3577 3578 3579
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3580 3581 3582 3583

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3584
	sd->nr_balance_failed = 0;
3585 3586

out_one_pinned:
L
Linus Torvalds 已提交
3587
	/* tune up the balancing interval */
3588 3589
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3590 3591
		sd->balance_interval *= 2;

3592
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 3595 3596 3597
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3598 3599
	if (ld_moved)
		update_shares(sd);
3600
	return ld_moved;
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3607
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3608 3609
 * this_rq is locked.
 */
3610
static int
3611 3612
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3613 3614
{
	struct sched_group *group;
3615
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3616
	unsigned long imbalance;
P
Peter Williams 已提交
3617
	int ld_moved = 0;
N
Nick Piggin 已提交
3618
	int sd_idle = 0;
3619
	int all_pinned = 0;
3620 3621

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3622

3623 3624 3625 3626
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3627
	 * portraying it as CPU_NOT_IDLE.
3628 3629 3630
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3631
		sd_idle = 1;
L
Linus Torvalds 已提交
3632

3633
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3634
redo:
3635
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3636
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3637
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3638
	if (!group) {
I
Ingo Molnar 已提交
3639
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3640
		goto out_balanced;
L
Linus Torvalds 已提交
3641 3642
	}

3643
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3644
	if (!busiest) {
I
Ingo Molnar 已提交
3645
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3646
		goto out_balanced;
L
Linus Torvalds 已提交
3647 3648
	}

N
Nick Piggin 已提交
3649 3650
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3651
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3652

P
Peter Williams 已提交
3653
	ld_moved = 0;
3654 3655 3656
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3657 3658
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3659
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3660 3661
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3662
		double_unlock_balance(this_rq, busiest);
3663

3664
		if (unlikely(all_pinned)) {
3665 3666
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3667 3668
				goto redo;
		}
3669 3670
	}

P
Peter Williams 已提交
3671
	if (!ld_moved) {
I
Ingo Molnar 已提交
3672
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3673 3674
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3675 3676
			return -1;
	} else
3677
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3678

3679
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3680
	return ld_moved;
3681 3682

out_balanced:
I
Ingo Molnar 已提交
3683
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3684
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3686
		return -1;
3687
	sd->nr_balance_failed = 0;
3688

3689
	return 0;
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694 3695
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3696
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3697 3698
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3699 3700
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3701
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3702 3703

	for_each_domain(this_cpu, sd) {
3704 3705 3706 3707 3708 3709
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3710
			/* If we've pulled tasks over stop searching: */
3711 3712
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3713 3714 3715 3716 3717 3718

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3719
	}
I
Ingo Molnar 已提交
3720
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3721 3722 3723 3724 3725
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3726
	}
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3737
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3738
{
3739
	int target_cpu = busiest_rq->push_cpu;
3740 3741
	struct sched_domain *sd;
	struct rq *target_rq;
3742

3743
	/* Is there any task to move? */
3744 3745 3746 3747
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3748 3749

	/*
3750
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3751
	 * we need to fix it. Originally reported by
3752
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3753
	 */
3754
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3755

3756 3757
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3758 3759
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3760 3761

	/* Search for an sd spanning us and the target CPU. */
3762
	for_each_domain(target_cpu, sd) {
3763
		if ((sd->flags & SD_LOAD_BALANCE) &&
3764
		    cpu_isset(busiest_cpu, sd->span))
3765
				break;
3766
	}
3767

3768
	if (likely(sd)) {
3769
		schedstat_inc(sd, alb_count);
3770

P
Peter Williams 已提交
3771 3772
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3773 3774 3775 3776
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3777
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3778 3779
}

3780 3781 3782
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3783
	cpumask_t cpu_mask;
3784 3785 3786 3787 3788
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3789
/*
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3800
 *
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3820
		if (!cpu_active(cpu) &&
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3857 3858 3859 3860 3861
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3862
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3863
{
3864 3865
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3866 3867
	unsigned long interval;
	struct sched_domain *sd;
3868
	/* Earliest time when we have to do rebalance again */
3869
	unsigned long next_balance = jiffies + 60*HZ;
3870
	int update_next_balance = 0;
3871
	int need_serialize;
3872
	cpumask_t tmp;
L
Linus Torvalds 已提交
3873

3874
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3875 3876 3877 3878
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3879
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3880 3881 3882 3883 3884 3885
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3886 3887 3888
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3889
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3890

3891
		if (need_serialize) {
3892 3893 3894 3895
			if (!spin_trylock(&balancing))
				goto out;
		}

3896
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3897
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3898 3899
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3900 3901 3902
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3903
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3904
			}
3905
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3906
		}
3907
		if (need_serialize)
3908 3909
			spin_unlock(&balancing);
out:
3910
		if (time_after(next_balance, sd->last_balance + interval)) {
3911
			next_balance = sd->last_balance + interval;
3912 3913
			update_next_balance = 1;
		}
3914 3915 3916 3917 3918 3919 3920 3921

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3922
	}
3923 3924 3925 3926 3927 3928 3929 3930

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3931 3932 3933 3934 3935 3936 3937 3938 3939
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3940 3941 3942 3943
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3944

I
Ingo Molnar 已提交
3945
	rebalance_domains(this_cpu, idle);
3946 3947 3948 3949 3950 3951 3952

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3953 3954
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3955 3956 3957 3958
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3959
		cpu_clear(this_cpu, cpus);
3960
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3961 3962 3963 3964 3965 3966 3967 3968
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3969
			rebalance_domains(balance_cpu, CPU_IDLE);
3970 3971

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3972 3973
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3986
static inline void trigger_load_balance(struct rq *rq, int cpu)
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4013
			if (ilb < nr_cpu_ids)
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4038
}
I
Ingo Molnar 已提交
4039 4040 4041

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4042 4043 4044
/*
 * on UP we do not need to balance between CPUs:
 */
4045
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4046 4047
{
}
I
Ingo Molnar 已提交
4048

L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4056 4057
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4058
 */
4059
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4060 4061
{
	unsigned long flags;
4062
	struct rq *rq;
4063
	u64 ns = 0;
4064

4065
	rq = task_rq_lock(p, &flags);
4066

4067
	if (task_current(rq, p)) {
4068 4069
		u64 delta_exec;

I
Ingo Molnar 已提交
4070 4071
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4072
		if ((s64)delta_exec > 0)
4073
			ns = delta_exec;
4074
	}
4075

4076
	task_rq_unlock(rq, &flags);
4077

L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4092
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4100 4101
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4102 4103
}

4104 4105 4106 4107 4108
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4109
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 4111 4112 4113 4114 4115 4116
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4117
	account_group_user_time(p, cputime);
4118 4119 4120 4121 4122 4123
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4144
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4145 4146
	cputime64_t tmp;

4147 4148 4149 4150
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4151

L
Linus Torvalds 已提交
4152
	p->stime = cputime_add(p->stime, cputime);
4153
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159 4160

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4161
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4162
		cpustat->system = cputime64_add(cpustat->system, tmp);
4163
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4191
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4192 4193 4194

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4195
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4196 4197 4198 4199
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4200
	} else
L
Linus Torvalds 已提交
4201 4202 4203
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4274
	struct task_struct *curr = rq->curr;
4275 4276

	sched_clock_tick();
I
Ingo Molnar 已提交
4277 4278

	spin_lock(&rq->lock);
4279
	update_rq_clock(rq);
4280
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4281
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4282
	spin_unlock(&rq->lock);
4283

4284
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4285 4286
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4287
#endif
L
Linus Torvalds 已提交
4288 4289
}

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4302

4303
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4304
{
4305
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4306 4307 4308
	/*
	 * Underflow?
	 */
4309 4310
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4311
#endif
L
Linus Torvalds 已提交
4312
	preempt_count() += val;
4313
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4314 4315 4316
	/*
	 * Spinlock count overflowing soon?
	 */
4317 4318
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4319 4320 4321
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4322 4323 4324
}
EXPORT_SYMBOL(add_preempt_count);

4325
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4326
{
4327
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4328 4329 4330
	/*
	 * Underflow?
	 */
4331 4332
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4333 4334 4335
	/*
	 * Is the spinlock portion underflowing?
	 */
4336 4337 4338
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4339
#endif
4340

4341 4342
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4350
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4351
 */
I
Ingo Molnar 已提交
4352
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4353
{
4354 4355 4356 4357 4358
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4359
	debug_show_held_locks(prev);
4360
	print_modules();
I
Ingo Molnar 已提交
4361 4362
	if (irqs_disabled())
		print_irqtrace_events(prev);
4363 4364 4365 4366 4367

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4368
}
L
Linus Torvalds 已提交
4369

I
Ingo Molnar 已提交
4370 4371 4372 4373 4374
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4375
	/*
I
Ingo Molnar 已提交
4376
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4377 4378 4379
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4380
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4381 4382
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4383 4384
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4385
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4386 4387
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4388 4389
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4390 4391
	}
#endif
I
Ingo Molnar 已提交
4392 4393 4394 4395 4396 4397
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4398
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4399
{
4400
	const struct sched_class *class;
I
Ingo Molnar 已提交
4401
	struct task_struct *p;
L
Linus Torvalds 已提交
4402 4403

	/*
I
Ingo Molnar 已提交
4404 4405
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4406
	 */
I
Ingo Molnar 已提交
4407
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4408
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4409 4410
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4411 4412
	}

I
Ingo Molnar 已提交
4413 4414
	class = sched_class_highest;
	for ( ; ; ) {
4415
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4425

I
Ingo Molnar 已提交
4426 4427 4428 4429 4430 4431
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4432
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4433
	struct rq *rq;
4434
	int cpu;
I
Ingo Molnar 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4448

4449
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4450
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4451

4452
	spin_lock_irq(&rq->lock);
4453
	update_rq_clock(rq);
4454
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4455 4456

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4457
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4458
			prev->state = TASK_RUNNING;
4459
		else
4460
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4461
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4462 4463
	}

4464 4465 4466 4467
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4468

I
Ingo Molnar 已提交
4469
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4470 4471
		idle_balance(cpu, rq);

4472
	prev->sched_class->put_prev_task(rq, prev);
4473
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4474 4475

	if (likely(prev != next)) {
4476 4477
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4478 4479 4480 4481
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4482
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4483 4484 4485 4486 4487 4488
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4489 4490 4491
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4492
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4493
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4494

L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4503
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4504
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4510

L
Linus Torvalds 已提交
4511 4512
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4513
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4514
	 */
N
Nick Piggin 已提交
4515
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4516 4517
		return;

4518 4519 4520 4521
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4522

4523 4524 4525 4526 4527 4528
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4529 4530 4531 4532
}
EXPORT_SYMBOL(preempt_schedule);

/*
4533
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4534 4535 4536 4537 4538 4539 4540
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4541

4542
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4543 4544
	BUG_ON(ti->preempt_count || !irqs_disabled());

4545 4546 4547 4548 4549 4550
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4551

4552 4553 4554 4555 4556 4557
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4558 4559 4560 4561
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4562 4563
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4564
{
4565
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4566 4567 4568 4569
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4570 4571
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4572 4573 4574
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4575
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4576 4577 4578 4579 4580
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4581
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4582

4583
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4584 4585
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4586
		if (curr->func(curr, mode, sync, key) &&
4587
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4598
 */
4599
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4600
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4613
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4619
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4631
void
I
Ingo Molnar 已提交
4632
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4649 4650 4651 4652 4653 4654 4655 4656 4657
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4658
void complete(struct completion *x)
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4664
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4665 4666 4667 4668
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4669 4670 4671 4672 4673 4674
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4675
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4681
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4682 4683 4684 4685
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4686 4687
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4695
			if (signal_pending_state(state, current)) {
4696 4697
				timeout = -ERESTARTSYS;
				break;
4698 4699
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4700 4701 4702
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4703
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4704
		__remove_wait_queue(&x->wait, &wait);
4705 4706
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4707 4708
	}
	x->done--;
4709
	return timeout ?: 1;
L
Linus Torvalds 已提交
4710 4711
}

4712 4713
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4714 4715 4716 4717
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4718
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4719
	spin_unlock_irq(&x->wait.lock);
4720 4721
	return timeout;
}
L
Linus Torvalds 已提交
4722

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4733
void __sched wait_for_completion(struct completion *x)
4734 4735
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4736
}
4737
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4738

4739 4740 4741 4742 4743 4744 4745 4746 4747
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4748
unsigned long __sched
4749
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4750
{
4751
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4752
}
4753
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4754

4755 4756 4757 4758 4759 4760 4761
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4762
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4763
{
4764 4765 4766 4767
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4768
}
4769
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4770

4771 4772 4773 4774 4775 4776 4777 4778
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4779
unsigned long __sched
4780 4781
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4782
{
4783
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4784
}
4785
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4786

4787 4788 4789 4790 4791 4792 4793
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4849 4850
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4851
{
I
Ingo Molnar 已提交
4852 4853 4854 4855
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4856

4857
	__set_current_state(state);
L
Linus Torvalds 已提交
4858

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4873 4874 4875
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4876
long __sched
I
Ingo Molnar 已提交
4877
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4878
{
4879
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4880 4881 4882
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4883
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4884
{
4885
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4886 4887 4888
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4889
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4890
{
4891
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4892 4893 4894
}
EXPORT_SYMBOL(sleep_on_timeout);

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4907
void rt_mutex_setprio(struct task_struct *p, int prio)
4908 4909
{
	unsigned long flags;
4910
	int oldprio, on_rq, running;
4911
	struct rq *rq;
4912
	const struct sched_class *prev_class = p->sched_class;
4913 4914 4915 4916

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4917
	update_rq_clock(rq);
4918

4919
	oldprio = p->prio;
I
Ingo Molnar 已提交
4920
	on_rq = p->se.on_rq;
4921
	running = task_current(rq, p);
4922
	if (on_rq)
4923
		dequeue_task(rq, p, 0);
4924 4925
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4926 4927 4928 4929 4930 4931

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4932 4933
	p->prio = prio;

4934 4935
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4936
	if (on_rq) {
4937
		enqueue_task(rq, p, 0);
4938 4939

		check_class_changed(rq, p, prev_class, oldprio, running);
4940 4941 4942 4943 4944 4945
	}
	task_rq_unlock(rq, &flags);
}

#endif

4946
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4947
{
I
Ingo Molnar 已提交
4948
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4949
	unsigned long flags;
4950
	struct rq *rq;
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956 4957 4958

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4959
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4960 4961 4962 4963
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4964
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4965
	 */
4966
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4967 4968 4969
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4970
	on_rq = p->se.on_rq;
4971
	if (on_rq)
4972
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4973 4974

	p->static_prio = NICE_TO_PRIO(nice);
4975
	set_load_weight(p);
4976 4977 4978
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4979

I
Ingo Molnar 已提交
4980
	if (on_rq) {
4981
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4982
		/*
4983 4984
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4985
		 */
4986
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4987 4988 4989 4990 4991 4992 4993
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4994 4995 4996 4997 4998
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4999
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5000
{
5001 5002
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5003

M
Matt Mackall 已提交
5004 5005 5006 5007
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5019
	long nice, retval;
L
Linus Torvalds 已提交
5020 5021 5022 5023 5024 5025

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5026 5027
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5037 5038 5039
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5058
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065 5066
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5067
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5068 5069 5070
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5071
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5086
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5087 5088 5089 5090 5091 5092 5093 5094
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5095
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5096
{
5097
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5098 5099 5100
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5101 5102
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5103
{
I
Ingo Molnar 已提交
5104
	BUG_ON(p->se.on_rq);
5105

L
Linus Torvalds 已提交
5106
	p->policy = policy;
I
Ingo Molnar 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5119
	p->rt_priority = prio;
5120 5121 5122
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5123
	set_load_weight(p);
L
Linus Torvalds 已提交
5124 5125
}

5126 5127
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5128
{
5129
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5130
	unsigned long flags;
5131
	const struct sched_class *prev_class = p->sched_class;
5132
	struct rq *rq;
L
Linus Torvalds 已提交
5133

5134 5135
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5136 5137 5138 5139 5140
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5141 5142
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5143
		return -EINVAL;
L
Linus Torvalds 已提交
5144 5145
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5146 5147
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5148 5149
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5150
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5151
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5152
		return -EINVAL;
5153
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5154 5155
		return -EINVAL;

5156 5157 5158
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5159
	if (user && !capable(CAP_SYS_NICE)) {
5160
		if (rt_policy(policy)) {
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5177 5178 5179 5180 5181 5182
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5183

5184 5185 5186 5187 5188
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5189

5190
	if (user) {
5191
#ifdef CONFIG_RT_GROUP_SCHED
5192 5193 5194 5195
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5196 5197
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5198
			return -EPERM;
5199 5200
#endif

5201 5202 5203 5204 5205
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5206 5207 5208 5209 5210
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5211 5212 5213 5214
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5215
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5216 5217 5218
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5219 5220
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5221 5222
		goto recheck;
	}
I
Ingo Molnar 已提交
5223
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5224
	on_rq = p->se.on_rq;
5225
	running = task_current(rq, p);
5226
	if (on_rq)
5227
		deactivate_task(rq, p, 0);
5228 5229
	if (running)
		p->sched_class->put_prev_task(rq, p);
5230

L
Linus Torvalds 已提交
5231
	oldprio = p->prio;
I
Ingo Molnar 已提交
5232
	__setscheduler(rq, p, policy, param->sched_priority);
5233

5234 5235
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5236 5237
	if (on_rq) {
		activate_task(rq, p, 0);
5238 5239

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5240
	}
5241 5242 5243
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5244 5245
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5246 5247
	return 0;
}
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5262 5263
EXPORT_SYMBOL_GPL(sched_setscheduler);

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5281 5282
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5283 5284 5285
{
	struct sched_param lparam;
	struct task_struct *p;
5286
	int retval;
L
Linus Torvalds 已提交
5287 5288 5289 5290 5291

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5292 5293 5294

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5295
	p = find_process_by_pid(pid);
5296 5297 5298
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5299

L
Linus Torvalds 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5309 5310
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5311
{
5312 5313 5314 5315
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5335
	struct task_struct *p;
5336
	int retval;
L
Linus Torvalds 已提交
5337 5338

	if (pid < 0)
5339
		return -EINVAL;
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5361
	struct task_struct *p;
5362
	int retval;
L
Linus Torvalds 已提交
5363 5364

	if (!param || pid < 0)
5365
		return -EINVAL;
L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5392
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5393 5394
{
	cpumask_t cpus_allowed;
5395
	cpumask_t new_mask = *in_mask;
5396 5397
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5398

5399
	get_online_cpus();
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5405
		put_online_cpus();
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5411
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5422 5423 5424 5425
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5426
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5427
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5428
 again:
5429
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5430

P
Paul Menage 已提交
5431
	if (!retval) {
5432
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5443 5444
out_unlock:
	put_task_struct(p);
5445
	put_online_cpus();
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5476
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5477 5478 5479 5480
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5481
	struct task_struct *p;
L
Linus Torvalds 已提交
5482 5483
	int retval;

5484
	get_online_cpus();
L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490 5491
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5492 5493 5494 5495
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5496
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5497 5498 5499

out_unlock:
	read_unlock(&tasklist_lock);
5500
	put_online_cpus();
L
Linus Torvalds 已提交
5501

5502
	return retval;
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5533 5534
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5535 5536 5537
 */
asmlinkage long sys_sched_yield(void)
{
5538
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5539

5540
	schedstat_inc(rq, yld_count);
5541
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5548
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5549 5550 5551 5552 5553 5554 5555 5556
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5557
static void __cond_resched(void)
L
Linus Torvalds 已提交
5558
{
5559 5560 5561
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5562 5563 5564 5565 5566
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5574
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5575
{
5576 5577
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582
		__cond_resched();
		return 1;
	}
	return 0;
}
5583
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5589
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5590 5591 5592
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5593
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5594
{
N
Nick Piggin 已提交
5595
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5596 5597
	int ret = 0;

N
Nick Piggin 已提交
5598
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5599
		spin_unlock(lock);
N
Nick Piggin 已提交
5600 5601 5602 5603
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5604
		ret = 1;
L
Linus Torvalds 已提交
5605 5606
		spin_lock(lock);
	}
J
Jan Kara 已提交
5607
	return ret;
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612 5613 5614
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5615
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5616
		local_bh_enable();
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5628
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5639
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5647
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5648

5649
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5650 5651 5652
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5653
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5654 5655 5656 5657 5658
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5659
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5660 5661
	long ret;

5662
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5663 5664 5665
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5666
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5687
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5688
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5712
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5713
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5730
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5731
	unsigned int time_slice;
5732
	int retval;
L
Linus Torvalds 已提交
5733 5734 5735
	struct timespec t;

	if (pid < 0)
5736
		return -EINVAL;
L
Linus Torvalds 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5748 5749 5750 5751 5752 5753
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5754
		time_slice = DEF_TIMESLICE;
5755
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5756 5757 5758 5759 5760
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5761 5762
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5763 5764
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5765
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5766
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5767 5768
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5769

L
Linus Torvalds 已提交
5770 5771 5772 5773 5774
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5775
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5776

5777
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5778 5779
{
	unsigned long free = 0;
5780
	unsigned state;
L
Linus Torvalds 已提交
5781 5782

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5783
	printk(KERN_INFO "%-13.13s %c", p->comm,
5784
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5785
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5786
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5787
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5788
	else
I
Ingo Molnar 已提交
5789
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5790 5791
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5792
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5793
	else
I
Ingo Molnar 已提交
5794
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5795 5796 5797
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5798
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5799 5800
		while (!*n)
			n++;
5801
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5802 5803
	}
#endif
5804
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5805
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5806

5807
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5808 5809
}

I
Ingo Molnar 已提交
5810
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5811
{
5812
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5813

5814 5815 5816
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5817
#else
5818 5819
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5820 5821 5822 5823 5824 5825 5826 5827
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5828
		if (!state_filter || (p->state & state_filter))
5829
			sched_show_task(p);
L
Linus Torvalds 已提交
5830 5831
	} while_each_thread(g, p);

5832 5833
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5834 5835 5836
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5837
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5838 5839 5840 5841 5842
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5843 5844
}

I
Ingo Molnar 已提交
5845 5846
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5847
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5848 5849
}

5850 5851 5852 5853 5854 5855 5856 5857
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5858
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5859
{
5860
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5861 5862
	unsigned long flags;

I
Ingo Molnar 已提交
5863 5864 5865
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5866
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5867
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5868
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5869 5870 5871

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5872 5873 5874
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5875 5876 5877
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5878 5879 5880
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5881
	task_thread_info(idle)->preempt_count = 0;
5882
#endif
I
Ingo Molnar 已提交
5883 5884 5885 5886
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5921 5922

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5923 5924
}

L
Linus Torvalds 已提交
5925 5926 5927 5928
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5929
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5948
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5949 5950
 * call is not atomic; no spinlocks may be held.
 */
5951
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5952
{
5953
	struct migration_req req;
L
Linus Torvalds 已提交
5954
	unsigned long flags;
5955
	struct rq *rq;
5956
	int ret = 0;
L
Linus Torvalds 已提交
5957 5958

	rq = task_rq_lock(p, &flags);
5959
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5960 5961 5962 5963
		ret = -EINVAL;
		goto out;
	}

5964 5965 5966 5967 5968 5969
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5970
	if (p->sched_class->set_cpus_allowed)
5971
		p->sched_class->set_cpus_allowed(p, new_mask);
5972
	else {
5973 5974
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5975 5976
	}

L
Linus Torvalds 已提交
5977
	/* Can the task run on the task's current CPU? If so, we're done */
5978
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5979 5980
		goto out;

5981
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5982 5983 5984 5985 5986 5987 5988 5989 5990
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5991

L
Linus Torvalds 已提交
5992 5993
	return ret;
}
5994
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5995 5996

/*
I
Ingo Molnar 已提交
5997
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5998 5999 6000 6001 6002 6003
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6004 6005
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6006
 */
6007
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6008
{
6009
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6010
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6011

6012
	if (unlikely(!cpu_active(dest_cpu)))
6013
		return ret;
L
Linus Torvalds 已提交
6014 6015 6016 6017 6018 6019 6020

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6021
		goto done;
L
Linus Torvalds 已提交
6022 6023
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6024
		goto fail;
L
Linus Torvalds 已提交
6025

I
Ingo Molnar 已提交
6026
	on_rq = p->se.on_rq;
6027
	if (on_rq)
6028
		deactivate_task(rq_src, p, 0);
6029

L
Linus Torvalds 已提交
6030
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6031 6032
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6033
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6034
	}
L
Linus Torvalds 已提交
6035
done:
6036
	ret = 1;
L
Linus Torvalds 已提交
6037
fail:
L
Linus Torvalds 已提交
6038
	double_rq_unlock(rq_src, rq_dest);
6039
	return ret;
L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045 6046
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6047
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6048 6049
{
	int cpu = (long)data;
6050
	struct rq *rq;
L
Linus Torvalds 已提交
6051 6052 6053 6054 6055 6056

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6057
		struct migration_req *req;
L
Linus Torvalds 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6080
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6081 6082
		list_del_init(head->next);

N
Nick Piggin 已提交
6083 6084 6085
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6115
/*
6116
 * Figure out where task on dead CPU should go, use force if necessary.
6117 6118
 * NOTE: interrupts should be disabled by the caller
 */
6119
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6120
{
6121
	unsigned long flags;
L
Linus Torvalds 已提交
6122
	cpumask_t mask;
6123 6124
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6125

6126 6127 6128 6129 6130 6131 6132
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6133
		if (dest_cpu >= nr_cpu_ids)
6134 6135 6136
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6137
		if (dest_cpu >= nr_cpu_ids) {
6138 6139 6140
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6141 6142 6143 6144
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6145
			 * cpuset_cpus_allowed() will not block. It must be
6146 6147
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6148
			rq = task_rq_lock(p, &flags);
6149
			p->cpus_allowed = cpus_allowed;
6150 6151
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6152

6153 6154 6155 6156 6157
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6158
			if (p->mm && printk_ratelimit()) {
6159 6160
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6161 6162
					task_pid_nr(p), p->comm, dead_cpu);
			}
6163
		}
6164
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169 6170 6171 6172 6173
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6174
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6175
{
6176
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6190
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6191

6192
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6193

6194 6195
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6196 6197
			continue;

6198 6199 6200
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6201

6202
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6203 6204
}

I
Ingo Molnar 已提交
6205 6206
/*
 * Schedules idle task to be the next runnable task on current CPU.
6207 6208
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6209 6210 6211
 */
void sched_idle_next(void)
{
6212
	int this_cpu = smp_processor_id();
6213
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6214 6215 6216 6217
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6218
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6219

6220 6221 6222
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6223 6224 6225
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6226
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6227

6228 6229
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6230 6231 6232 6233

	spin_unlock_irqrestore(&rq->lock, flags);
}

6234 6235
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6249
/* called under rq->lock with disabled interrupts */
6250
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6251
{
6252
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6253 6254

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6255
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6256 6257

	/* Cannot have done final schedule yet: would have vanished. */
6258
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6259

6260
	get_task_struct(p);
L
Linus Torvalds 已提交
6261 6262 6263

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6264
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6265 6266
	 * fine.
	 */
6267
	spin_unlock_irq(&rq->lock);
6268
	move_task_off_dead_cpu(dead_cpu, p);
6269
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6270

6271
	put_task_struct(p);
L
Linus Torvalds 已提交
6272 6273 6274 6275 6276
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6277
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6278
	struct task_struct *next;
6279

I
Ingo Molnar 已提交
6280 6281 6282
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6283
		update_rq_clock(rq);
6284
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6285 6286
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6287
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6288
		migrate_dead(dead_cpu, next);
6289

L
Linus Torvalds 已提交
6290 6291 6292 6293
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6294 6295 6296
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6297 6298
	{
		.procname	= "sched_domain",
6299
		.mode		= 0555,
6300
	},
I
Ingo Molnar 已提交
6301
	{0, },
6302 6303 6304
};

static struct ctl_table sd_ctl_root[] = {
6305
	{
6306
		.ctl_name	= CTL_KERN,
6307
		.procname	= "kernel",
6308
		.mode		= 0555,
6309 6310
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6311
	{0, },
6312 6313 6314 6315 6316
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6317
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6318 6319 6320 6321

	return entry;
}

6322 6323
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6324
	struct ctl_table *entry;
6325

6326 6327 6328
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6329
	 * will always be set. In the lowest directory the names are
6330 6331 6332
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6333 6334
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6335 6336 6337
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6338 6339 6340 6341 6342

	kfree(*tablep);
	*tablep = NULL;
}

6343
static void
6344
set_table_entry(struct ctl_table *entry,
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6358
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6359

6360 6361 6362
	if (table == NULL)
		return NULL;

6363
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6364
		sizeof(long), 0644, proc_doulongvec_minmax);
6365
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6366
		sizeof(long), 0644, proc_doulongvec_minmax);
6367
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6368
		sizeof(int), 0644, proc_dointvec_minmax);
6369
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6370
		sizeof(int), 0644, proc_dointvec_minmax);
6371
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6372
		sizeof(int), 0644, proc_dointvec_minmax);
6373
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6374
		sizeof(int), 0644, proc_dointvec_minmax);
6375
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6376
		sizeof(int), 0644, proc_dointvec_minmax);
6377
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6378
		sizeof(int), 0644, proc_dointvec_minmax);
6379
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6380
		sizeof(int), 0644, proc_dointvec_minmax);
6381
	set_table_entry(&table[9], "cache_nice_tries",
6382 6383
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6384
	set_table_entry(&table[10], "flags", &sd->flags,
6385
		sizeof(int), 0644, proc_dointvec_minmax);
6386 6387 6388
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6389 6390 6391 6392

	return table;
}

6393
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6394 6395 6396 6397 6398 6399 6400 6401 6402
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6403 6404
	if (table == NULL)
		return NULL;
6405 6406 6407 6408 6409

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6410
		entry->mode = 0555;
6411 6412 6413 6414 6415 6416 6417 6418
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6419
static void register_sched_domain_sysctl(void)
6420 6421 6422 6423 6424
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6425 6426 6427
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6428 6429 6430
	if (entry == NULL)
		return;

6431
	for_each_online_cpu(i) {
6432 6433
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6434
		entry->mode = 0555;
6435
		entry->child = sd_alloc_ctl_cpu_table(i);
6436
		entry++;
6437
	}
6438 6439

	WARN_ON(sd_sysctl_header);
6440 6441
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6442

6443
/* may be called multiple times per register */
6444 6445
static void unregister_sched_domain_sysctl(void)
{
6446 6447
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6448
	sd_sysctl_header = NULL;
6449 6450
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6451
}
6452
#else
6453 6454 6455 6456
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6457 6458 6459 6460
{
}
#endif

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6491 6492 6493 6494
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6495 6496
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6497 6498
{
	struct task_struct *p;
6499
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6500
	unsigned long flags;
6501
	struct rq *rq;
L
Linus Torvalds 已提交
6502 6503

	switch (action) {
6504

L
Linus Torvalds 已提交
6505
	case CPU_UP_PREPARE:
6506
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6507
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6508 6509 6510 6511 6512
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6513
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6514 6515 6516
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6517

L
Linus Torvalds 已提交
6518
	case CPU_ONLINE:
6519
	case CPU_ONLINE_FROZEN:
6520
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6521
		wake_up_process(cpu_rq(cpu)->migration_thread);
6522 6523 6524 6525 6526 6527

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6528 6529

			set_rq_online(rq);
6530 6531
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6532
		break;
6533

L
Linus Torvalds 已提交
6534 6535
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6536
	case CPU_UP_CANCELED_FROZEN:
6537 6538
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6539
		/* Unbind it from offline cpu so it can run. Fall thru. */
6540 6541
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6542 6543 6544
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6545

L
Linus Torvalds 已提交
6546
	case CPU_DEAD:
6547
	case CPU_DEAD_FROZEN:
6548
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6549 6550 6551 6552 6553
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6554
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6555
		update_rq_clock(rq);
6556
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6557
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6558 6559
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6560
		migrate_dead_tasks(cpu);
6561
		spin_unlock_irq(&rq->lock);
6562
		cpuset_unlock();
L
Linus Torvalds 已提交
6563 6564 6565
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6566 6567 6568 6569 6570
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6571 6572
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6573 6574
			struct migration_req *req;

L
Linus Torvalds 已提交
6575
			req = list_entry(rq->migration_queue.next,
6576
					 struct migration_req, list);
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6582

6583 6584
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6585 6586 6587 6588 6589
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6590
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6591 6592 6593
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6594 6595 6596 6597 6598 6599 6600 6601
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6602
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6603 6604 6605 6606
	.notifier_call = migration_call,
	.priority = 10
};

6607
static int __init migration_init(void)
L
Linus Torvalds 已提交
6608 6609
{
	void *cpu = (void *)(long)smp_processor_id();
6610
	int err;
6611 6612

	/* Start one for the boot CPU: */
6613 6614
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6615 6616
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6617 6618

	return err;
L
Linus Torvalds 已提交
6619
}
6620
early_initcall(migration_init);
L
Linus Torvalds 已提交
6621 6622 6623
#endif

#ifdef CONFIG_SMP
6624

6625
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6626

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6649 6650
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6651
{
I
Ingo Molnar 已提交
6652
	struct sched_group *group = sd->groups;
6653
	char str[256];
L
Linus Torvalds 已提交
6654

6655
	cpulist_scnprintf(str, sizeof(str), sd->span);
6656
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6657 6658 6659 6660 6661 6662 6663 6664 6665

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6666 6667
	}

6668 6669
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6670 6671 6672 6673 6674 6675 6676 6677 6678

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6679

I
Ingo Molnar 已提交
6680
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6681
	do {
I
Ingo Molnar 已提交
6682 6683 6684
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6685 6686 6687
			break;
		}

I
Ingo Molnar 已提交
6688 6689 6690 6691 6692 6693
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6694

I
Ingo Molnar 已提交
6695 6696 6697 6698 6699
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6700

6701
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6702 6703 6704 6705
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6706

6707
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6708

6709
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6710
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6711

I
Ingo Molnar 已提交
6712 6713 6714
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6715

6716
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6717
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6718

6719
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6720 6721 6722 6723
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6724

I
Ingo Molnar 已提交
6725 6726
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6727
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6728
	int level = 0;
L
Linus Torvalds 已提交
6729

I
Ingo Molnar 已提交
6730 6731 6732 6733
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6734

I
Ingo Molnar 已提交
6735 6736
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6737 6738 6739 6740 6741 6742
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6743
	for (;;) {
6744
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6745
			break;
L
Linus Torvalds 已提交
6746 6747
		level++;
		sd = sd->parent;
6748
		if (!sd)
I
Ingo Molnar 已提交
6749 6750
			break;
	}
6751
	kfree(groupmask);
L
Linus Torvalds 已提交
6752
}
6753
#else /* !CONFIG_SCHED_DEBUG */
6754
# define sched_domain_debug(sd, cpu) do { } while (0)
6755
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6756

6757
static int sd_degenerate(struct sched_domain *sd)
6758 6759 6760 6761 6762 6763 6764 6765
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6766 6767 6768
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6782 6783
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6802 6803 6804
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6805 6806 6807 6808 6809 6810 6811
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6821 6822
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6823

6824 6825
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6826 6827 6828 6829 6830 6831 6832
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6833
	cpu_set(rq->cpu, rd->span);
6834
	if (cpu_isset(rq->cpu, cpu_online_map))
6835
		set_rq_online(rq);
G
Gregory Haskins 已提交
6836 6837 6838 6839

	spin_unlock_irqrestore(&rq->lock, flags);
}

6840
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6841 6842 6843
{
	memset(rd, 0, sizeof(*rd));

6844 6845
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6846 6847

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6848 6849 6850 6851
}

static void init_defrootdomain(void)
{
6852
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6853 6854 6855
	atomic_set(&def_root_domain.refcount, 1);
}

6856
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6857 6858 6859 6860 6861 6862 6863
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6864
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6865 6866 6867 6868

	return rd;
}

L
Linus Torvalds 已提交
6869
/*
I
Ingo Molnar 已提交
6870
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6871 6872
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6873 6874
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6875
{
6876
	struct rq *rq = cpu_rq(cpu);
6877 6878 6879
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6880
	for (tmp = sd; tmp; ) {
6881 6882 6883
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6884

6885
		if (sd_parent_degenerate(tmp, parent)) {
6886
			tmp->parent = parent->parent;
6887 6888
			if (parent->parent)
				parent->parent->child = tmp;
6889 6890
		} else
			tmp = tmp->parent;
6891 6892
	}

6893
	if (sd && sd_degenerate(sd)) {
6894
		sd = sd->parent;
6895 6896 6897
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6898 6899 6900

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6901
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6902
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6903 6904 6905
}

/* cpus with isolated domains */
6906
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6907 6908 6909 6910

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6911 6912
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6922
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6923 6924

/*
6925 6926 6927 6928
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6929 6930 6931 6932 6933
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6934
static void
6935
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6936
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6937 6938 6939
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6940 6941 6942 6943
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6944 6945
	cpus_clear(*covered);

6946
	for_each_cpu_mask_nr(i, *span) {
6947
		struct sched_group *sg;
6948
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6949 6950
		int j;

6951
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6952 6953
			continue;

6954
		cpus_clear(sg->cpumask);
6955
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6956

6957
		for_each_cpu_mask_nr(j, *span) {
6958
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6959 6960
				continue;

6961
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6973
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6974

6975
#ifdef CONFIG_NUMA
6976

6977 6978 6979 6980 6981
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6982
 * Find the next node to include in a given scheduling domain. Simply
6983 6984 6985 6986
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6987
static int find_next_best_node(int node, nodemask_t *used_nodes)
6988 6989 6990 6991 6992
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6993
	for (i = 0; i < nr_node_ids; i++) {
6994
		/* Start at @node */
6995
		n = (node + i) % nr_node_ids;
6996 6997 6998 6999 7000

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7001
		if (node_isset(n, *used_nodes))
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7013
	node_set(best_node, *used_nodes);
7014 7015 7016 7017 7018 7019
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7020
 * @span: resulting cpumask
7021
 *
I
Ingo Molnar 已提交
7022
 * Given a node, construct a good cpumask for its sched_domain to span. It
7023 7024 7025
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7026
static void sched_domain_node_span(int node, cpumask_t *span)
7027
{
7028 7029
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7030
	int i;
7031

7032
	cpus_clear(*span);
7033
	nodes_clear(used_nodes);
7034

7035
	cpus_or(*span, *span, *nodemask);
7036
	node_set(node, used_nodes);
7037 7038

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7039
		int next_node = find_next_best_node(node, &used_nodes);
7040

7041
		node_to_cpumask_ptr_next(nodemask, next_node);
7042
		cpus_or(*span, *span, *nodemask);
7043 7044
	}
}
7045
#endif /* CONFIG_NUMA */
7046

7047
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7048

7049
/*
7050
 * SMT sched-domains:
7051
 */
L
Linus Torvalds 已提交
7052 7053
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7054
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7055

I
Ingo Molnar 已提交
7056
static int
7057 7058
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7059
{
7060 7061
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7062 7063
	return cpu;
}
7064
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7065

7066 7067 7068
/*
 * multi-core sched-domains:
 */
7069 7070
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7071
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7072
#endif /* CONFIG_SCHED_MC */
7073 7074

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7075
static int
7076 7077
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7078
{
7079
	int group;
7080 7081 7082 7083

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7084 7085 7086
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7087 7088
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7089
static int
7090 7091
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7092
{
7093 7094
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7095 7096 7097 7098
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7099
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7100
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7101

I
Ingo Molnar 已提交
7102
static int
7103 7104
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7105
{
7106
	int group;
7107
#ifdef CONFIG_SCHED_MC
7108 7109 7110
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7111
#elif defined(CONFIG_SCHED_SMT)
7112 7113 7114
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7115
#else
7116
	group = cpu;
L
Linus Torvalds 已提交
7117
#endif
7118 7119 7120
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7121 7122 7123 7124
}

#ifdef CONFIG_NUMA
/*
7125 7126 7127
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7128
 */
7129
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7130
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7131

7132
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7133
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7134

7135
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7136
				 struct sched_group **sg, cpumask_t *nodemask)
7137
{
7138 7139
	int group;

7140 7141 7142
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7143 7144 7145 7146

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7147
}
7148

7149 7150 7151 7152 7153 7154 7155
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7156
	do {
7157
		for_each_cpu_mask_nr(j, sg->cpumask) {
7158
			struct sched_domain *sd;
7159

7160 7161 7162 7163 7164 7165 7166 7167
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7168

7169 7170 7171 7172
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7173
}
7174
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7175

7176
#ifdef CONFIG_NUMA
7177
/* Free memory allocated for various sched_group structures */
7178
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7179
{
7180
	int cpu, i;
7181

7182
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7183 7184 7185 7186 7187 7188
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7189
		for (i = 0; i < nr_node_ids; i++) {
7190 7191
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7192 7193 7194
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7211
#else /* !CONFIG_NUMA */
7212
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7213 7214
{
}
7215
#endif /* CONFIG_NUMA */
7216

7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7243 7244
	sd->groups->__cpu_power = 0;

7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7255
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7256 7257 7258 7259 7260 7261 7262 7263
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7264
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7265 7266 7267 7268
		group = group->next;
	} while (group != child->groups);
}

7269 7270 7271 7272 7273
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7274 7275 7276 7277 7278 7279
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7280
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7281

7282 7283 7284 7285 7286
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7287
	sd->level = SD_LV_##type;				\
7288
	SD_INIT_NAME(sd, type);					\
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7337 7338 7339 7340
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7341 7342 7343 7344 7345 7346
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7372
/*
7373 7374
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7375
 */
7376 7377
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7378 7379
{
	int i;
G
Gregory Haskins 已提交
7380
	struct root_domain *rd;
7381 7382
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7383 7384
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7385
	int sd_allnodes = 0;
7386 7387 7388 7389

	/*
	 * Allocate the per-node list of sched groups
	 */
7390
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7391
				    GFP_KERNEL);
7392 7393
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7394
		return -ENOMEM;
7395 7396
	}
#endif
L
Linus Torvalds 已提交
7397

7398
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7399 7400
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7401 7402 7403
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7404 7405 7406
		return -ENOMEM;
	}

7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7426
	/*
7427
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7428
	 */
7429
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7430
		struct sched_domain *sd = NULL, *p;
7431
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7432

7433 7434
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7435 7436

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7437
		if (cpus_weight(*cpu_map) >
7438
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7439
			sd = &per_cpu(allnodes_domains, i);
7440
			SD_INIT(sd, ALLNODES);
7441
			set_domain_attribute(sd, attr);
7442
			sd->span = *cpu_map;
7443
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7444
			p = sd;
7445
			sd_allnodes = 1;
7446 7447 7448
		} else
			p = NULL;

L
Linus Torvalds 已提交
7449
		sd = &per_cpu(node_domains, i);
7450
		SD_INIT(sd, NODE);
7451
		set_domain_attribute(sd, attr);
7452
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7453
		sd->parent = p;
7454 7455
		if (p)
			p->child = sd;
7456
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7457 7458 7459 7460
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7461
		SD_INIT(sd, CPU);
7462
		set_domain_attribute(sd, attr);
7463
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7464
		sd->parent = p;
7465 7466
		if (p)
			p->child = sd;
7467
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7468

7469 7470 7471
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7472
		SD_INIT(sd, MC);
7473
		set_domain_attribute(sd, attr);
7474 7475 7476
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7477
		p->child = sd;
7478
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7479 7480
#endif

L
Linus Torvalds 已提交
7481 7482 7483
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7484
		SD_INIT(sd, SIBLING);
7485
		set_domain_attribute(sd, attr);
7486
		sd->span = per_cpu(cpu_sibling_map, i);
7487
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7488
		sd->parent = p;
7489
		p->child = sd;
7490
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7491 7492 7493 7494 7495
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7496
	for_each_cpu_mask_nr(i, *cpu_map) {
7497 7498 7499 7500 7501 7502
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7503 7504
			continue;

I
Ingo Molnar 已提交
7505
		init_sched_build_groups(this_sibling_map, cpu_map,
7506 7507
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7508 7509 7510
	}
#endif

7511 7512
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7513
	for_each_cpu_mask_nr(i, *cpu_map) {
7514 7515 7516 7517 7518 7519
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7520
			continue;
7521

I
Ingo Molnar 已提交
7522
		init_sched_build_groups(this_core_map, cpu_map,
7523 7524
					&cpu_to_core_group,
					send_covered, tmpmask);
7525 7526 7527
	}
#endif

L
Linus Torvalds 已提交
7528
	/* Set up physical groups */
7529
	for (i = 0; i < nr_node_ids; i++) {
7530 7531
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7532

7533 7534 7535
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7536 7537
			continue;

7538 7539 7540
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7541 7542 7543 7544
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7545 7546 7547 7548 7549 7550 7551
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7552

7553
	for (i = 0; i < nr_node_ids; i++) {
7554 7555
		/* Set up node groups */
		struct sched_group *sg, *prev;
7556 7557 7558
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7559 7560
		int j;

7561 7562 7563 7564 7565
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7566
			sched_group_nodes[i] = NULL;
7567
			continue;
7568
		}
7569

7570
		sched_domain_node_span(i, domainspan);
7571
		cpus_and(*domainspan, *domainspan, *cpu_map);
7572

7573
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7574 7575 7576 7577 7578
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7579
		sched_group_nodes[i] = sg;
7580
		for_each_cpu_mask_nr(j, *nodemask) {
7581
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7582

7583 7584 7585
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7586
		sg->__cpu_power = 0;
7587
		sg->cpumask = *nodemask;
7588
		sg->next = sg;
7589
		cpus_or(*covered, *covered, *nodemask);
7590 7591
		prev = sg;

7592
		for (j = 0; j < nr_node_ids; j++) {
7593
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7594
			int n = (i + j) % nr_node_ids;
7595
			node_to_cpumask_ptr(pnodemask, n);
7596

7597 7598 7599 7600
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7601 7602
				break;

7603 7604
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7605 7606
				continue;

7607 7608
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7609 7610 7611
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7612
				goto error;
7613
			}
7614
			sg->__cpu_power = 0;
7615
			sg->cpumask = *tmpmask;
7616
			sg->next = prev->next;
7617
			cpus_or(*covered, *covered, *tmpmask);
7618 7619 7620 7621
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7622 7623 7624
#endif

	/* Calculate CPU power for physical packages and nodes */
7625
#ifdef CONFIG_SCHED_SMT
7626
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7627 7628
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7629
		init_sched_groups_power(i, sd);
7630
	}
L
Linus Torvalds 已提交
7631
#endif
7632
#ifdef CONFIG_SCHED_MC
7633
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7634 7635
		struct sched_domain *sd = &per_cpu(core_domains, i);

7636
		init_sched_groups_power(i, sd);
7637 7638
	}
#endif
7639

7640
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7641 7642
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7643
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7644 7645
	}

7646
#ifdef CONFIG_NUMA
7647
	for (i = 0; i < nr_node_ids; i++)
7648
		init_numa_sched_groups_power(sched_group_nodes[i]);
7649

7650 7651
	if (sd_allnodes) {
		struct sched_group *sg;
7652

7653 7654
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7655 7656
		init_numa_sched_groups_power(sg);
	}
7657 7658
#endif

L
Linus Torvalds 已提交
7659
	/* Attach the domains */
7660
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7661 7662 7663
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7664 7665
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7666 7667 7668
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7669
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7670
	}
7671

7672
	SCHED_CPUMASK_FREE((void *)allmasks);
7673 7674
	return 0;

7675
#ifdef CONFIG_NUMA
7676
error:
7677 7678
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7679
	return -ENOMEM;
7680
#endif
L
Linus Torvalds 已提交
7681
}
P
Paul Jackson 已提交
7682

7683 7684 7685 7686 7687
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7688 7689
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7690 7691
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7692 7693 7694 7695 7696 7697 7698 7699

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7700 7701 7702 7703
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7704
/*
I
Ingo Molnar 已提交
7705
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7706 7707
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7708
 */
7709
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7710
{
7711 7712
	int err;

7713
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7714 7715 7716 7717 7718
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7719
	dattr_cur = NULL;
7720
	err = build_sched_domains(doms_cur);
7721
	register_sched_domain_sysctl();
7722 7723

	return err;
7724 7725
}

7726 7727
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7728
{
7729
	free_sched_groups(cpu_map, tmpmask);
7730
}
L
Linus Torvalds 已提交
7731

7732 7733 7734 7735
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7736
static void detach_destroy_domains(const cpumask_t *cpu_map)
7737
{
7738
	cpumask_t tmpmask;
7739 7740
	int i;

7741 7742
	unregister_sched_domain_sysctl();

7743
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7744
		cpu_attach_domain(NULL, &def_root_domain, i);
7745
	synchronize_sched();
7746
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7747 7748
}

7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7765 7766
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7767
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7768 7769 7770 7771
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7772 7773 7774
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7775 7776 7777
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7778 7779
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7780 7781
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7782
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7783
 *
7784 7785 7786 7787
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7788 7789
 * Call with hotplug lock held
 */
7790 7791
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7792
{
7793
	int i, j, n;
P
Paul Jackson 已提交
7794

7795
	mutex_lock(&sched_domains_mutex);
7796

7797 7798 7799
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7800
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7801 7802 7803

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7804
		for (j = 0; j < n; j++) {
7805 7806
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7807 7808 7809 7810 7811 7812 7813 7814
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7815 7816 7817 7818 7819 7820 7821
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7822 7823 7824
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7825 7826
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7827 7828 7829
				goto match2;
		}
		/* no match - add a new doms_new */
7830 7831
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7832 7833 7834 7835 7836 7837 7838
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7839
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7840
	doms_cur = doms_new;
7841
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7842
	ndoms_cur = ndoms_new;
7843 7844

	register_sched_domain_sysctl();
7845

7846
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7847 7848
}

7849
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7850
int arch_reinit_sched_domains(void)
7851
{
7852
	get_online_cpus();
7853 7854 7855 7856

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7857
	rebuild_sched_domains();
7858
	put_online_cpus();
7859

7860
	return 0;
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7881 7882
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7883 7884 7885
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7886
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7887
					    const char *buf, size_t count)
7888 7889 7890
{
	return sched_power_savings_store(buf, count, 0);
}
7891 7892 7893
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7894 7895 7896
#endif

#ifdef CONFIG_SCHED_SMT
7897 7898
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7899 7900 7901
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7902
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7903
					     const char *buf, size_t count)
7904 7905 7906
{
	return sched_power_savings_store(buf, count, 1);
}
7907 7908
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7928
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7929

7930
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7931
/*
7932 7933
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7934 7935 7936
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7937 7938 7939 7940 7941 7942
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7943
		partition_sched_domains(1, NULL, NULL);
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7954
{
P
Peter Zijlstra 已提交
7955 7956
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7957 7958
	switch (action) {
	case CPU_DOWN_PREPARE:
7959
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7960
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7961 7962 7963
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7964
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7965
	case CPU_ONLINE:
7966
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7967
		enable_runtime(cpu_rq(cpu));
7968 7969
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7970 7971 7972 7973 7974 7975 7976
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7977 7978
	cpumask_t non_isolated_cpus;

7979 7980 7981 7982 7983
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7984
	get_online_cpus();
7985
	mutex_lock(&sched_domains_mutex);
7986
	arch_init_sched_domains(&cpu_online_map);
7987
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7988 7989
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7990
	mutex_unlock(&sched_domains_mutex);
7991
	put_online_cpus();
7992 7993

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7994 7995
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7996 7997 7998 7999 8000
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8001
	init_hrtick();
8002 8003

	/* Move init over to a non-isolated CPU */
8004
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8005
		BUG();
I
Ingo Molnar 已提交
8006
	sched_init_granularity();
L
Linus Torvalds 已提交
8007 8008 8009 8010
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8011
	sched_init_granularity();
L
Linus Torvalds 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8022
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8023 8024
{
	cfs_rq->tasks_timeline = RB_ROOT;
8025
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8026 8027 8028
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8029
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8030 8031
}

P
Peter Zijlstra 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8045
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8046 8047
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8048 8049 8050 8051 8052 8053 8054
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8055 8056
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8057

8058
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8059
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8060 8061
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8062 8063
}

P
Peter Zijlstra 已提交
8064
#ifdef CONFIG_FAIR_GROUP_SCHED
8065 8066 8067
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8068
{
8069
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8070 8071 8072 8073 8074 8075 8076
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8077 8078 8079 8080
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8081 8082 8083 8084 8085
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8086 8087
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8088
	se->load.inv_weight = 0;
8089
	se->parent = parent;
P
Peter Zijlstra 已提交
8090
}
8091
#endif
P
Peter Zijlstra 已提交
8092

8093
#ifdef CONFIG_RT_GROUP_SCHED
8094 8095 8096
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8097
{
8098 8099
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8100 8101 8102 8103
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8104
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8105 8106 8107 8108
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8109 8110 8111
	if (!rt_se)
		return;

8112 8113 8114 8115 8116
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8117
	rt_se->my_q = rt_rq;
8118
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8119 8120 8121 8122
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8123 8124
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8125
	int i, j;
8126 8127 8128 8129 8130 8131 8132
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8133 8134 8135
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8136 8137 8138 8139 8140 8141
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8142
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8143 8144 8145 8146 8147 8148 8149

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8150 8151 8152 8153 8154 8155 8156

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8157 8158
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8159 8160 8161 8162 8163
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8164 8165 8166 8167 8168 8169 8170 8171
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8172 8173
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8174
	}
I
Ingo Molnar 已提交
8175

G
Gregory Haskins 已提交
8176 8177 8178 8179
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8180 8181 8182 8183 8184 8185
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8186 8187 8188
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8189 8190
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8191

8192
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8193
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8194 8195 8196 8197 8198 8199
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8200 8201
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8202

8203
	for_each_possible_cpu(i) {
8204
		struct rq *rq;
L
Linus Torvalds 已提交
8205 8206 8207

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8208
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8209
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8210
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8211
#ifdef CONFIG_FAIR_GROUP_SCHED
8212
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8213
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8234
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8235
#elif defined CONFIG_USER_SCHED
8236 8237
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8249
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8250
				&per_cpu(init_cfs_rq, i),
8251 8252
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8253

8254
#endif
D
Dhaval Giani 已提交
8255 8256 8257
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8258
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8259
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8260
#ifdef CONFIG_CGROUP_SCHED
8261
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8262
#elif defined CONFIG_USER_SCHED
8263
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8264
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8265
				&per_cpu(init_rt_rq, i),
8266 8267
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8268
#endif
I
Ingo Molnar 已提交
8269
#endif
L
Linus Torvalds 已提交
8270

I
Ingo Molnar 已提交
8271 8272
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8273
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8274
		rq->sd = NULL;
G
Gregory Haskins 已提交
8275
		rq->rd = NULL;
L
Linus Torvalds 已提交
8276
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8277
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8278
		rq->push_cpu = 0;
8279
		rq->cpu = i;
8280
		rq->online = 0;
L
Linus Torvalds 已提交
8281 8282
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8283
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8284
#endif
P
Peter Zijlstra 已提交
8285
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8286 8287 8288
		atomic_set(&rq->nr_iowait, 0);
	}

8289
	set_load_weight(&init_task);
8290

8291 8292 8293 8294
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8295
#ifdef CONFIG_SMP
8296
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8297 8298
#endif

8299 8300 8301 8302
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8316 8317 8318 8319
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8320 8321

	scheduler_running = 1;
L
Linus Torvalds 已提交
8322 8323 8324 8325 8326
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8327
#ifdef in_atomic
L
Linus Torvalds 已提交
8328 8329
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8349 8350 8351 8352 8353 8354
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8355 8356 8357
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8358

8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8370 8371
void normalize_rt_tasks(void)
{
8372
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8373
	unsigned long flags;
8374
	struct rq *rq;
L
Linus Torvalds 已提交
8375

8376
	read_lock_irqsave(&tasklist_lock, flags);
8377
	do_each_thread(g, p) {
8378 8379 8380 8381 8382 8383
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8384 8385
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8386 8387 8388
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8389
#endif
I
Ingo Molnar 已提交
8390 8391 8392 8393 8394 8395 8396 8397

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8398
			continue;
I
Ingo Molnar 已提交
8399
		}
L
Linus Torvalds 已提交
8400

8401
		spin_lock(&p->pi_lock);
8402
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8403

8404
		normalize_task(rq, p);
8405

8406
		__task_rq_unlock(rq);
8407
		spin_unlock(&p->pi_lock);
8408 8409
	} while_each_thread(g, p);

8410
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8411 8412 8413
}

#endif /* CONFIG_MAGIC_SYSRQ */
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8432
struct task_struct *curr_task(int cpu)
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8443 8444
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8445 8446 8447 8448 8449 8450 8451
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8452
void set_curr_task(int cpu, struct task_struct *p)
8453 8454 8455 8456 8457
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8458

8459 8460
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8475 8476
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8477 8478
{
	struct cfs_rq *cfs_rq;
8479
	struct sched_entity *se, *parent_se;
8480
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8481 8482
	int i;

8483
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8484 8485
	if (!tg->cfs_rq)
		goto err;
8486
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8487 8488
	if (!tg->se)
		goto err;
8489 8490

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8491 8492

	for_each_possible_cpu(i) {
8493
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8494

P
Peter Zijlstra 已提交
8495 8496
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8497 8498 8499
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8500 8501
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8502 8503 8504
		if (!se)
			goto err;

8505 8506
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8525
#else /* !CONFG_FAIR_GROUP_SCHED */
8526 8527 8528 8529
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8530 8531
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8543
#endif /* CONFIG_FAIR_GROUP_SCHED */
8544 8545

#ifdef CONFIG_RT_GROUP_SCHED
8546 8547 8548 8549
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8550 8551
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8563 8564
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8565 8566
{
	struct rt_rq *rt_rq;
8567
	struct sched_rt_entity *rt_se, *parent_se;
8568 8569 8570
	struct rq *rq;
	int i;

8571
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8572 8573
	if (!tg->rt_rq)
		goto err;
8574
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8575 8576 8577
	if (!tg->rt_se)
		goto err;

8578 8579
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8580 8581 8582 8583

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8584 8585 8586 8587
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8588

P
Peter Zijlstra 已提交
8589 8590 8591 8592
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8593

8594 8595
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8596 8597
	}

8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8614
#else /* !CONFIG_RT_GROUP_SCHED */
8615 8616 8617 8618
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8619 8620
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8632
#endif /* CONFIG_RT_GROUP_SCHED */
8633

8634
#ifdef CONFIG_GROUP_SCHED
8635 8636 8637 8638 8639 8640 8641 8642
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8643
struct task_group *sched_create_group(struct task_group *parent)
8644 8645 8646 8647 8648 8649 8650 8651 8652
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8653
	if (!alloc_fair_sched_group(tg, parent))
8654 8655
		goto err;

8656
	if (!alloc_rt_sched_group(tg, parent))
8657 8658
		goto err;

8659
	spin_lock_irqsave(&task_group_lock, flags);
8660
	for_each_possible_cpu(i) {
8661 8662
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8663
	}
P
Peter Zijlstra 已提交
8664
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8665 8666 8667 8668 8669

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8670
	list_add_rcu(&tg->siblings, &parent->children);
8671
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8672

8673
	return tg;
S
Srivatsa Vaddagiri 已提交
8674 8675

err:
P
Peter Zijlstra 已提交
8676
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8677 8678 8679
	return ERR_PTR(-ENOMEM);
}

8680
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8681
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8682 8683
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8684
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8685 8686
}

8687
/* Destroy runqueue etc associated with a task group */
8688
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8689
{
8690
	unsigned long flags;
8691
	int i;
S
Srivatsa Vaddagiri 已提交
8692

8693
	spin_lock_irqsave(&task_group_lock, flags);
8694
	for_each_possible_cpu(i) {
8695 8696
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8697
	}
P
Peter Zijlstra 已提交
8698
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8699
	list_del_rcu(&tg->siblings);
8700
	spin_unlock_irqrestore(&task_group_lock, flags);
8701 8702

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8703
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8704 8705
}

8706
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8707 8708 8709
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8710 8711
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8712 8713 8714 8715 8716 8717 8718 8719 8720
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8721
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8722 8723
	on_rq = tsk->se.on_rq;

8724
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8725
		dequeue_task(rq, tsk, 0);
8726 8727
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8728

P
Peter Zijlstra 已提交
8729
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8730

P
Peter Zijlstra 已提交
8731 8732 8733 8734 8735
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8736 8737 8738
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8739
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8740 8741 8742

	task_rq_unlock(rq, &flags);
}
8743
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8744

8745
#ifdef CONFIG_FAIR_GROUP_SCHED
8746
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8747 8748 8749 8750 8751
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8752
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8753 8754 8755
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8756
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8757

8758
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8759
		enqueue_entity(cfs_rq, se, 0);
8760
}
8761

8762 8763 8764 8765 8766 8767 8768 8769 8770
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8771 8772
}

8773 8774
static DEFINE_MUTEX(shares_mutex);

8775
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8776 8777
{
	int i;
8778
	unsigned long flags;
8779

8780 8781 8782 8783 8784 8785
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8786 8787
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8788 8789
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8790

8791
	mutex_lock(&shares_mutex);
8792
	if (tg->shares == shares)
8793
		goto done;
S
Srivatsa Vaddagiri 已提交
8794

8795
	spin_lock_irqsave(&task_group_lock, flags);
8796 8797
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8798
	list_del_rcu(&tg->siblings);
8799
	spin_unlock_irqrestore(&task_group_lock, flags);
8800 8801 8802 8803 8804 8805 8806 8807

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8808
	tg->shares = shares;
8809 8810 8811 8812 8813
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8814
		set_se_shares(tg->se[i], shares);
8815
	}
S
Srivatsa Vaddagiri 已提交
8816

8817 8818 8819 8820
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8821
	spin_lock_irqsave(&task_group_lock, flags);
8822 8823
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8824
	list_add_rcu(&tg->siblings, &tg->parent->children);
8825
	spin_unlock_irqrestore(&task_group_lock, flags);
8826
done:
8827
	mutex_unlock(&shares_mutex);
8828
	return 0;
S
Srivatsa Vaddagiri 已提交
8829 8830
}

8831 8832 8833 8834
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8835
#endif
8836

8837
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8838
/*
P
Peter Zijlstra 已提交
8839
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8840
 */
P
Peter Zijlstra 已提交
8841 8842 8843 8844 8845
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8846
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8847

P
Peter Zijlstra 已提交
8848
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8849 8850
}

P
Peter Zijlstra 已提交
8851 8852
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8853
{
P
Peter Zijlstra 已提交
8854
	struct task_struct *g, *p;
8855

P
Peter Zijlstra 已提交
8856 8857 8858 8859
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8860

P
Peter Zijlstra 已提交
8861 8862
	return 0;
}
8863

P
Peter Zijlstra 已提交
8864 8865 8866 8867 8868
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8869

P
Peter Zijlstra 已提交
8870 8871 8872 8873 8874 8875
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8876

P
Peter Zijlstra 已提交
8877 8878
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8879

P
Peter Zijlstra 已提交
8880 8881 8882
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8883 8884
	}

8885 8886 8887 8888 8889
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8890

8891 8892 8893
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8894 8895
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8896

P
Peter Zijlstra 已提交
8897
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8898

8899 8900 8901 8902 8903
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8904

8905 8906 8907
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8908 8909 8910
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8911

P
Peter Zijlstra 已提交
8912 8913 8914 8915
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8916

P
Peter Zijlstra 已提交
8917
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8918
	}
P
Peter Zijlstra 已提交
8919

P
Peter Zijlstra 已提交
8920 8921 8922 8923
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8924 8925
}

P
Peter Zijlstra 已提交
8926
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8927
{
P
Peter Zijlstra 已提交
8928 8929 8930 8931 8932 8933 8934
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8935 8936
}

8937 8938
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8939
{
P
Peter Zijlstra 已提交
8940
	int i, err = 0;
P
Peter Zijlstra 已提交
8941 8942

	mutex_lock(&rt_constraints_mutex);
8943
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8944 8945
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8946
		goto unlock;
P
Peter Zijlstra 已提交
8947 8948

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8949 8950
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8951 8952 8953 8954 8955 8956 8957 8958 8959

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8960
 unlock:
8961
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8962 8963 8964
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8965 8966
}

8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8979 8980 8981 8982
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8983
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8984 8985
		return -1;

8986
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8987 8988 8989
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8990 8991 8992 8993 8994 8995 8996 8997

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8998 8999 9000
	if (rt_period == 0)
		return -EINVAL;

9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9015
	u64 runtime, period;
9016 9017
	int ret = 0;

9018 9019 9020
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9021 9022 9023 9024 9025 9026 9027 9028
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9029

9030
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9031
	read_lock(&tasklist_lock);
9032
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9033
	read_unlock(&tasklist_lock);
9034 9035 9036 9037
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9038
#else /* !CONFIG_RT_GROUP_SCHED */
9039 9040
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9041 9042 9043
	unsigned long flags;
	int i;

9044 9045 9046
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9057 9058
	return 0;
}
9059
#endif /* CONFIG_RT_GROUP_SCHED */
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9090

9091
#ifdef CONFIG_CGROUP_SCHED
9092 9093

/* return corresponding task_group object of a cgroup */
9094
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9095
{
9096 9097
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9098 9099 9100
}

static struct cgroup_subsys_state *
9101
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9102
{
9103
	struct task_group *tg, *parent;
9104

9105
	if (!cgrp->parent) {
9106 9107 9108 9109
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9110 9111
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9112 9113 9114 9115 9116 9117
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9118 9119
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9120
{
9121
	struct task_group *tg = cgroup_tg(cgrp);
9122 9123 9124 9125

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9126 9127 9128
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9129
{
9130 9131
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9132
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9133 9134
		return -EINVAL;
#else
9135 9136 9137
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9138
#endif
9139 9140 9141 9142 9143

	return 0;
}

static void
9144
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9145 9146 9147 9148 9149
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9150
#ifdef CONFIG_FAIR_GROUP_SCHED
9151
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9152
				u64 shareval)
9153
{
9154
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9155 9156
}

9157
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9158
{
9159
	struct task_group *tg = cgroup_tg(cgrp);
9160 9161 9162

	return (u64) tg->shares;
}
9163
#endif /* CONFIG_FAIR_GROUP_SCHED */
9164

9165
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9166
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9167
				s64 val)
P
Peter Zijlstra 已提交
9168
{
9169
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9170 9171
}

9172
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9173
{
9174
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9175
}
9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9187
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9188

9189
static struct cftype cpu_files[] = {
9190
#ifdef CONFIG_FAIR_GROUP_SCHED
9191 9192
	{
		.name = "shares",
9193 9194
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9195
	},
9196 9197
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9198
	{
P
Peter Zijlstra 已提交
9199
		.name = "rt_runtime_us",
9200 9201
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9202
	},
9203 9204
	{
		.name = "rt_period_us",
9205 9206
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9207
	},
9208
#endif
9209 9210 9211 9212
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9213
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9214 9215 9216
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9217 9218 9219 9220 9221 9222 9223
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9224 9225 9226
	.early_init	= 1,
};

9227
#endif	/* CONFIG_CGROUP_SCHED */
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9248
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9249
{
9250
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9263
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9280
static void
9281
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9282
{
9283
	struct cpuacct *ca = cgroup_ca(cgrp);
9284 9285 9286 9287 9288 9289

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9290
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9291
{
9292
	struct cpuacct *ca = cgroup_ca(cgrp);
9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9334 9335 9336
static struct cftype files[] = {
	{
		.name = "usage",
9337 9338
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9339 9340 9341
	},
};

9342
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9343
{
9344
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */